
Greed is Good

Greedy Optimization Methods for Large-Scale

Structured Problems

by

Julie Nutini

B.Sc., The University of British Columbia (Okanagan), 2010

M.Sc., The University of British Columbia (Okanagan), 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

May 2018

c© Julie Nutini 2018

The following individuals certify that they have read, and recommend to the

Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Greed is Good: Greedy Optimization Methods for Large-Scale Structured Problems

submitted by Julie Nutini in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in Computer Science

Examining Committee:

Mark Schmidt, Computer Science

Supervisor

Chen Greif, Computer Science

Supervisory Committee Member

Will Evans, Computer Science

Supervisory Committee Member

Bruce Shepherd, Computer Science

University Examiner

Ozgur Yilmaz, Mathematics

University Examiner

ii

Abstract

This work looks at large-scale machine learning, with a particular focus on greedy methods. A

recent trend caused by big datasets is to use optimization methods that have a cheap iteration

cost. In this category are (block) coordinate descent and Kaczmarz methods, as the updates

of these methods only rely on a reduced subspace of the problem at each iteration. Prior to

our work, the literature cast greedy variations of these methods as computationally expensive

with comparable convergence rates to randomized versions. In this dissertation, we show that

greed is good. Specifically, we show that greedy coordinate descent and Kaczmarz methods

have efficient implementations and can be faster than their randomized counterparts for certain

common problem structures in machine learning. We show linear convergence for greedy (block)

coordinate descent methods under a revived relaxation of strong convexity from 1963, which

we call the Polyak- Lojasiewicz (PL) inequality. Of the proposed relaxations of strong convexity

in the recent literature, we show that the PL inequality is the weakest condition that still

ensures a global minimum. Further, we highlight the exploitable flexibility in block coordinate

descent methods, not only in the different types of selection rules possible, but also in the

types of updates we can use. We show that using second-order or exact updates with greedy

block coordinate descent methods can lead to superlinear or finite convergence (respectively) for

popular machine learning problems. Finally, we introduce the notion of “active-set complexity”,

which we define as the number of iterations required before an algorithm is guaranteed to reach

the optimal active manifold, and show explicit bounds for two common problem instances when

using the proximal gradient or the proximal coordinate descent method.

iii

Lay Summary

A recent trend caused by big datasets is to use methods that are computationally inexpensive

to solve large-scale problems in machine learning. This work looks at several of these methods,

with a particular focus on greedy variations, that is, methods that try to make the most possible

progress at each step. Prior to our work, these greedy methods were regarded as computation-

ally expensive with similar performance to cheaper versions that make a random amount of

progress at each step. In this dissertation, we show that greed is good. Specifically, we show

that these greedy methods can be very efficient and can be faster relative to their randomized

counterparts for solving machine learning problems with certain structure. We exploit the flex-

ibility of these methods and show various ways (both theoretically and empirically) to speed

them up.

iv

Preface

The body of research in this dissertation (Chapters 2 - 6) is based off of several collaborative

papers that have either been previously published or are currently under review.

• The work in Chapter 2 was published in the Proceedings of the 32nd International Con-

ference on Machine Learning (ICML) [Nutini et al., 2015]:

J. Nutini, Mark Schmidt, Issam H. Laradji, Michael Friedlander and Hoyt Koepke.

Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random

Selection, ICML 2015 [arXiv].

The majority of this chapter’s manuscript was written by J. Nutini and Mark Schmidt.

The new convergence rate analysis for the greedy coordinate descent method (Section

2.2.3) was done by Michael Friedlander and Mark Schmidt. The analysis of strong-

convexity constants (Section 2.3) was contributed to by Michael Friedlander. The Gauss-

Southwell-Lipschitz rule and nearest neighbour analysis in Sections 2.5.2 and 2.5.3 were

a joint effort by J. Nutini, Issam Laradji and Mark Schmidt. The majority of the work in

Section 2.8 (numerical experiments) was done by Issam Laradji, with help from J. Nutini.

Appendix A.1 showing how to calculate the greedy Gauss-Southwell rule efficiently for

sparse problems was primary researched by Issam Laradji and Mark Schmidt. All other

sections were primarily researched by J. Nutini and Mark Schmidt. The final co-author on

this paper, Hoyt Koepke, was the primary researcher on extending the greedy coordinate

descent analysis to the case of using exact coordinate optimization (excluded from this

dissertation).

• A version of Chapter 3 was published in the Proceedings of the 32nd Conference on

Uncertainty in Artificial Intelligence (UAI) [Nutini et al., 2016]:

J. Nutini, Behrooz Sepehry, Issam H. Laradji, Mark Schmidt, Hoyt Koepke and Alim

Virani. Convergence Rates for Greedy Kaczmarz Algorithms, and Faster Random-

ized Kaczmarz Rules Using the Orthogonality Graph, UAI 2016 [arXiv].

The majority of this chapter’s manuscript was researched and written by J. Nutini and

Mark Schmidt. The majority of the work in Section 3.9 and Appendix B.12 (numerical

experiments) was done by Issam Laradji, with help from J. Nutini and Alim Virani. A

section of the corresponding paper on extending the convergence rate analysis of Kaczmarz

v

http://arxiv.org/abs/1506.00552
https://arxiv.org/abs/1612.07838

methods to consider more than one step (i.e., a sequence of steps) was written by my co-

authors Behrooz Sepehry, Hoyt Koepke and Mark Schmidt, and therefore excluded from

this dissertation.

• The material in Chapter 4 was published in the Proceedings of the 27th European Con-

ference on Machine Learning (ECML) [Karimi et al., 2016]:

Hamed Karimi, J. Nutini and Mark Schmidt. Linear Convergence of Gradient and

Proximal-Gradient Methods Under the Polyak- Lojasiewicz Condition, ECML 2016

[arXiv].

Hamed Karimi, Mark Schmidt and I all made contributions to Theorem 2 and Section C.5,

while the work in Section C.4 was done by Hamed Karimi. Several results presented in

the corresponding paper are excluded from this dissertation as they were written by

my co-authors. These include using the Polyak- Lojasiewicz (PL) inequality to give new

convergence rate analyses for stochastic gradient descent methods and stochastic variance

reduced gradient methods, as well as a result proving the equivalence of our proposed

proximal-PL condition to two other previously proposed conditions.

• A version of Chapter 5 has been submitted for publication [Nutini et al., 2017a]:

J. Nutini, Issam H. Laradji and Mark Schmidt. Let’s Make Block Coordinate De-

scent Go Fast: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and

Superlinear Convergence (2017) [arXiv].

This chapter’s manuscript was written by J. Nutini and Mark Schmidt. The majority of

the research was joint work between J. Nutini, Issam Laradji and Mark Schmidt. Section

5.5 and Appendix D.5 (numerical experiments) were primarily done by Issam Laradji,

with help from J. Nutini and Mark Schmidt.

• The material in Chapter 6 is a compilation of material from the reference for Chap-

ter 5 [Nutini et al., 2017a] and a manuscript that has been submitted for publication [Nu-

tini et al., 2017b]:

J. Nutini, Mark Schmidt and Warren Hare. “Active-set complexity” of proximal

gradient: How long does it take to find the sparsity pattern? (2017) [arXiv].

The majority of this chapter’s manuscript was written by J. Nutini and Mark Schmidt.

The proof of Lemmas 2 and 4 was joint work by Warren Hare, Mark Schmidt and J.

Nutini. The majority of the work in Section 6.5 (numerical experiments) was done by

Issam Laradji, with help from J. Nutini and Mark Schmidt.

vi

https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1712.08859
https://arxiv.org/abs/1712.03577

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vii

List of Tables . xiii

List of Figures . xiv

Acknowledgements . xvii

Dedication .xviii

1 Introduction . 1

1.1 Big-Data: A Barrier to Learning? . 1

1.2 The Learning Problem/Algorithm . 2

1.2.1 Loss Functions . 4

1.3 First-Order Methods . 6

1.4 Gradient Descent . 8

1.5 Stochastic Gradient Descent . 8

1.6 Coordinate Descent Methods . 10

1.7 Linear Systems and Kaczmarz Methods . 12

1.8 Relaxing Strong Convexity . 13

1.9 Proximal First-Order Methods . 13

1.10 Summary of Contributions . 14

2 Greedy Coordinate Descent . 17

2.1 Problems of Interest . 18

2.2 Analysis of Convergence Rates . 19

2.2.1 Randomized Coordinate Descent . 20

2.2.2 Gauss-Southwell . 20

2.2.3 Refined Gauss-Southwell Analysis . 21

vii

2.3 Comparison for Separable Quadratic . 22

2.3.1 ‘Working Together’ Interpretation . 22

2.3.2 Fast Convergence with Bias Term . 23

2.4 Rates with Different Lipschitz Constants . 23

2.5 Rules Depending on Lipschitz Constants . 24

2.5.1 Lipschitz Sampling . 24

2.5.2 Gauss-Southwell-Lipschitz Rule . 24

2.5.3 Connection between GSL Rule and Normalized Nearest Neighbour Search 26

2.6 Approximate Gauss-Southwell . 28

2.6.1 Multiplicative Errors . 28

2.6.2 Additive Errors . 29

2.7 Proximal Gradient Gauss-Southwell . 30

2.8 Experiments . 33

2.9 Discussion . 35

3 Greedy Kaczmarz . 36

3.1 Problems of Interest . 37

3.2 Kaczmarz Algorithm and Greedy Selection Rules 38

3.2.1 Efficient Calculations for Sparse A . 39

3.2.2 Approximate Calculation . 39

3.3 Analyzing Selection Rules . 40

3.3.1 Randomized and Maximum Residual . 41

3.3.2 Tighter Uniform and MR Analysis . 43

3.3.3 Maximum Distance Rule . 44

3.4 Kaczmarz and Coordinate Descent . 45

3.5 Example: Diagonal A . 45

3.6 Approximate Greedy Rules . 47

3.6.1 Multiplicative Error . 47

3.6.2 Additive Error . 47

3.7 Systems of Linear Inequalities . 48

3.8 Faster Randomized Kaczmarz Methods . 49

3.9 Experiments . 50

3.10 Discussion . 52

4 Relaxing Strong Convexity . 53

4.1 Polyak- Lojasiewicz Inequality . 54

4.1.1 Relationships Between Conditions . 55

4.1.2 Invex and Non-Convex Functions . 57

4.1.3 Relevant Problems . 59

4.2 Convergence of Huge-Scale Methods . 59

viii

4.2.1 Randomized Coordinate Descent . 60

4.2.2 Greedy Coordinate Descent . 61

4.2.3 Sign-Based Gradient Methods . 61

4.3 Proximal Gradient Generalization . 63

4.3.1 Relevant Problems . 64

4.3.2 Least Squares with `1-Regularization . 65

4.3.3 Proximal Coordinate Descent . 65

4.3.4 Support Vector Machines . 66

4.4 Discussion . 67

5 Greedy Block Coordinate Descent . 68

5.1 Block Coordinate Descent Algorithms . 69

5.1.1 Block Selection Rules . 70

5.1.2 Fixed vs. Variable Blocks . 71

5.1.3 Block Update Rules . 72

5.1.4 Problems of Interest . 73

5.2 Improved Greedy Rules . 74

5.2.1 Block Gauss-Southwell . 74

5.2.2 Block Gauss-Southwell-Lipschitz . 75

5.2.3 Block Gauss-Southwell-Quadratic . 76

5.2.4 Block Gauss-Southwell-Diagonal . 77

5.2.5 Convergence Rate under Polyak- Lojasiewicz 78

5.2.6 Convergence Rate with General Functions 79

5.3 Practical Issues . 80

5.3.1 Tractable GSD for Variable Blocks . 80

5.3.2 Tractable GSQ for Variable Blocks . 82

5.3.3 Lipschitz Estimates for Fixed Blocks . 83

5.3.4 Efficient Line Searches . 83

5.3.5 Block Partitioning with Fixed Blocks . 84

5.3.6 Newton Updates . 84

5.4 Message-Passing for Huge-Block Updates . 85

5.4.1 Partitioning into Forest-Structured Blocks 90

5.4.2 Approximate Greedy Rules with Forest-Structured Blocks 91

5.5 Numerical Experiments . 91

5.5.1 Greedy Rules with Gradient Updates . 92

5.5.2 Greedy Rules with Matrix Updates . 94

5.5.3 Message-Passing Updates . 95

5.6 Discussion . 96

ix

6 Active-Set Identification and Complexity . 98

6.1 Notation and Assumptions . 101

6.2 Manifold Identification for Separable g . 102

6.2.1 Proximal Gradient Method . 102

6.2.2 Proximal Coordinate Descent Method . 104

6.3 Active-Set Complexity . 106

6.4 Superlinear and Finite Convergence of Proximal BCD 108

6.4.1 Proximal-Newton Updates and Superlinear Convergence 108

6.4.2 Practical Proximal-Newton Methods . 109

6.4.3 Optimal Updates for Quadratic f and Piecewise-Linear g 110

6.5 Numerical Experiments . 111

6.6 Discussion . 112

7 Discussion . 114

Bibliography . 119

Appendices .

A Chapter 2 Supplementary Material . 135

A.1 Efficient Calculation of GS Rules for Sparse Problems 135

A.1.1 Problem h2 . 135

A.1.2 Problem h1 . 136

A.2 Relationship Between µ1 and µ . 137

A.3 Analysis for Separable Quadratic Case . 138

A.3.1 Equivalent Definition of Strong Convexity 138

A.3.2 Strong Convexity Constant µ1 for Separable Quadratic Functions 139

A.4 Gauss-Southwell-Lipschitz Rule: Convergence Rate 141

A.5 Comparing µL to µ1 and µ . 142

A.5.1 Relationship Between µL and µ1 . 142

A.5.2 Relationship Between µL and µ . 143

A.6 Approximate Gauss-Southwell with Additive Error 143

A.6.1 Gradient Bound in Terms of L1 . 144

A.6.2 Additive Error Bound in Terms of L1 . 146

A.6.3 Additive Error Bound in Terms of L . 146

A.7 Convergence Analysis of GS-s, GS-r, and GS-q Rules 148

A.7.1 Notation and Basic Inequality . 148

A.7.2 Convergence Bound for GS-q Rule . 149

A.7.3 GS-q is at Least as Fast as Random . 149

A.7.4 GS-q is at Least as Fast as GS-r . 151

x

A.7.5 Lack of Progress of the GS-s Rule . 153

A.7.6 Lack of Progress of the GS-r Rule . 155

A.8 Proximal Gradient in the `1-Norm . 157

B Chapter 3 Supplementary Material . 159

B.1 Efficient Calculations for Sparse A . 159

B.2 Randomized and Maximum Residual . 160

B.3 Tighter Uniform and MR Analysis . 162

B.4 Maximum Distance Rule . 163

B.5 Kaczmarz and Coordinate Descent . 164

B.6 Example: Diagonal A . 165

B.7 Multiplicative Error . 167

B.8 Additive Error . 168

B.9 MD Rule and Randomized Kaczmarz via Johnson-Lindenstrauss 169

B.10 Systems of Linear Inequalities . 171

B.11 Faster Randomized Kaczmarz Using the Orthogonality Graph of A 172

B.12 Additional Experiments . 173

C Chapter 4 Supplementary Material . 176

C.1 Relationships Between Conditions . 176

C.2 Relevant Problems . 179

C.3 Sign-Based Gradient Methods . 180

C.4 Proximal-PL Lemma . 181

C.5 Relevant Problems . 183

C.6 Proximal Coordinate Descent . 185

D Chapter 5 Supplementary Material . 187

D.1 Cost of Multi-Class Logistic Regression . 187

D.1.1 Cost of Gradient Descent . 187

D.1.2 Cost of Randomized Coordinate Descent 188

D.1.3 Cost of Greedy Coordinate Descent (Arbitrary Blocks) 189

D.1.4 Cost of Greedy Coordinate Descent (Fixed Blocks) 189

D.2 Blockwise Lipschitz Constants . 190

D.2.1 Quadratic Functions . 191

D.2.2 Least Squares . 191

D.2.3 Logistic Regression . 191

D.2.4 Multi-Class Logistic Regression . 192

D.3 Derivation of GSD Rule . 193

D.4 Efficiently Testing the Forest Property . 194

D.5 Full Experimental Results . 196

xi

D.5.1 Datasets . 196

D.5.2 Greedy Rules with Gradients Updates . 197

D.5.3 Greedy Rules with Matrix and Newton Updates 198

xii

List of Tables

Table 3.1 Comparison of Convergence Rates . 44

Table 3.2 Convergence Rate Constants for Diagonal A 46

Table B.1 Convergence Rate Constants for Diagonal A 167

xiii

List of Figures

Figure 1.1 Visualization of several iterations of cyclic coordinate descent on the level

curves of a quadratic function. The steps alternate between updating x1 and

x2, and converge towards the minimum value. 11

Figure 2.1 Visualization of the Gauss-Southwell selection rule. Shown here are three

different projections of a function onto individual coordinates given the cor-

responding values of x = [x1, x2, x3]. The dotted green lines are the indi-

vidual gradient values (tangent lines) at x. We see that the Gauss-Southwell

rule selects the coordinate corresponding to the largest (steepest) individual

gradient value (in magnitude). 20

Figure 2.2 Visualization of the Gauss-Southwell-Lipschitz selection rule compared to

the Gauss-Southwell selection rule. When the slopes of the tangent lines

(gradient values) are similar, the GSL will make more progress by selecting

the coordinate with the slower changing derivative (smaller Li). 25

Figure 2.3 Visualization of the GS rule as a nearest neighbour problem. The “nearest

neighbour” corresponds to the vector that is the closest (in distance) to r(x),

i.e., we want to minimize the distance between two vectors. Alternatively,

the GS rule is evaluated as a maximization of an inner product. This makes

sense as the smaller the angle between two vectors, the larger the cosine of

that angle and in turn, the larger the inner product. 27

Figure 2.4 Comparison of coordinate selection rules for 4 instances of problem h1. 32

Figure 2.5 Comparison of coordinate selection rules for graph-based semi-supervised

learning. 35

Figure 3.1 Example of the updating procedure for a max-heap structure on a 5×5 sparse

matrix: (a) select the node with highest d value; (b) update selected sample

and neighbours; (c) reorder max-heap structure. 40

Figure 3.2 Visualizing the orthogonality of vectors xk+1 − xk and xk+1−x∗. 41

Figure 3.3 Comparison of Kaczmarz selection rules for squared error (left) and distance

to solution (right). 51

Figure 4.1 Visual of the implications shown in Theorem 2 between the various relax-

ations of strong convexity. 57

xiv

Figure 4.2 Example: f(x) = x2 + 3 sin2(x) is an invex but non-convex function that

satisfies the PL inequality. 58

Figure 5.1 Process of partitioning nodes into level sets. For the above graph we have the

following sets: L{1} = {8}, L{2} = {6, 7}, L{3} = {3, 4, 5} and L{4} = {1, 2} . 88

Figure 5.2 Illustration of Step 2 (row-reduction process) of Algorithm 1 for the tree

in Figure 5.4. The matrix represents [Ã|c̃]. The black squares represent

unchanged non-zero values of Ã and the grey squares represent non-zero

values that are updated at some iteration in Step 2. In the final matrix (far

right), the values in the last column are the values assigned to the vector

C in Steps 1 and 2 above, while the remaining columns that form an upper

triangular matrix are the values corresponding to the constructed P matrix.

The backward solve of Step 3 solves the linear system. 89

Figure 5.3 Partitioning strategies for defining forest-structured blocks. 89

Figure 5.4 Comparison of different random and greedy block selection rules on three

different problems when using gradient updates. 93

Figure 5.5 Comparison of different greedy block selection rules on three different prob-

lems when using matrix updates. 94

Figure 5.6 Comparison of different greedy block selection rules on two quadratic graph-

structured problems when using optimal updates. 96

Figure 6.1 Visualization of (a) the proximal gradient update for a non-negatively con-

strained optimization problem (6.3); and (b) the proximal operator (soft-

threshold) used in the proximal gradient update for an `1-regularized opti-

mization problem (6.4). 100

Figure 6.2 Comparison of different updates when using greedy fixed and variable blocks

of different sizes. 112

Figure 6.3 Comparison of different updates when using random fixed and variable blocks

of different sizes. 112

Figure B.1 Comparison of Kaczmarz and Coordinate Descent. 166

Figure B.2 Comparison of MR, MD and Hybrid Method for Very Sparse Dataset. 175

Figure D.1 Comparison of different random and greedy block selection rules on five dif-

ferent problems (rows) with three different blocks (columns) when using gra-

dient updates. 199

Figure D.2 Comparison of different random and greedy block selection rules with gradi-

ent updates and fixed blocks, using two different strategies to estimate Lb. . . 200

Figure D.3 Comparison of different random and greedy block selection rules with gra-

dient updates and fixed blocks, using three different ways to partition the

variables into blocks. 201

xv

Figure D.4 Comparison of different greedy block selection rules when using matrix updates.202

Figure D.5 Comparison of different greedy block selection rules when using Newton up-

dates and a line search. 203

xvi

Acknowledgements

I would first and foremost like to thank my supervisor, Mark Schmidt – thank you for help-

ing me battle the imposter within. Your support, encouragement and mentorship are at the

root of this work, and it has been an absolute pleasure learning from you. To my supervisory

committee, Chen Greif and Will Evans, my external examiner, Stephen Wright, my university

examiners, Bruce Shepherd and Ozgur Yilmaz, and my defence chair, Maurice Queyranne –

thank you for your time, support and helpful feedback. Thank you to Michael Friedlander for

supervising me in the early years of this degree. To my Masters supervisor, Warren Hare –

thank you for encouraging me to pursue my studies further and for sticking by my side long

enough to get another publication (no fairy dust required). Thank you to all of my co-authors

and lab mates, especially Issam Laradji – I have thoroughly enjoyed learning alongside you.

To all of my colleagues here at UBC and at UrtheCast – thank you for crossing your fingers

with me every time my answer was, “I should be done by the end of [insert month here]”.

To all of the support staff at UBC, especially Joyce Poon and Kath Imhiran – thank you for

always making the paper work an easy process. To my family and friends – thank you for

your unwavering support and for providing me with a distraction when needed. And finally,

to my parents, for whom there are no words – this accomplishment is as much yours as it is mine.

This work was partially funded by the Natural Sciences and Engineering Research Council

of Canada, the UBC Faculty of Science, and a UBC Four Year Fellowship.

xvii

To my grandpa – an educator, a family man and a lover of life...

xviii

Chapter 1

Introduction

Machine learning is remodelling the world we live in. Coined by computer gaming and artificial

intelligence pioneer Arthur Samuel in 1959, the term machine learning (ML) has been popularly

defined as the “field of study that gives computers the ability to learn without being explicitly

programmed”, (credited to Samuel [1959]). Elaborating on this elegant definition, ML is the

study of using computers to automatically detect patterns in data and make predictions or

decisions, [Murphy, 2012]. This automation process is useful in the absence of a human expert

skilled at analyzing the data, when a human cannot detect or explain patterns in the data,

or when the complexity of a classification or prediction problem is beyond the capability of a

human. By designing computer systems and optimization algorithms capable of parsing this

data, ML has been integral in the success of several big impact applications recently, such as

epileptic seizure prediction [Mirowski et al., 2008], speech recognition [Mohamed et al., 2009],

music generation [Boulanger-Lewandowski et al., 2012], large-scale video classification [Karpa-

thy et al., 2014] and autonomous vehicles [Teichmann et al., 2016]. It is evident that ML is at

the forefront of technological change in our world.

1.1 Big-Data: A Barrier to Learning?

There is no shortage of data in today’s data driven world. In nearly every daily task we

generate and record data on the order of terabytes to exabytes. Online news articles, blog

posts, Facebook likes, credit card transactions, online purchases, gene expression data, maps,

satellite imagery and user interactions are a fractional sample of the day to day activities for

which we record data. Fitting most ML models involves solving an optimization problem, and

without methods capable of parsing and analyzing these huge datasets, the learning process

becomes wildly intractable.

This presents us with the crucial task of developing ways to efficiently deal with these massive

data sets. One approach is to create hardware that can handle the computational requirements

of existing algorithms. For example, parallel computing using multi-core machines, outsourcing

computational work to cloud computing platforms and faster GPUs have had a huge impact

on the ability of the ML field to keep up with the ever-growing amount of data. However, the

development of hardware is restricted by what is known as Moore’s Law, the observation that

the processing speed of computers only doubles every two years. With the rate at which we are

collecting data, we cannot rely on hardware advances to keep up.

1

A different approach to dealing with these large datasets is to design methods that are

scalable with problem size. That is, for large-scale data sets we want methods whose cost scales

at most linearly (or almost linearly) with the data size. The best method for a given problem

is often dictated by the size of the problem; the larger the problem, the greater the restrictions

on what mathematical operations are feasible.

In general, optimization algorithms can be classified according to two properties:

1. Convergence rate: the number of iterations required to reach a solution of accuracy ε.

2. Iteration cost: the amount of computation each iteration requires.

Often times these two properties work in opposition to each other. For example, a second order

method like Newton’s method achieves a superlinear convergence rate but requires a quadratic-

or-worse iteration cost. Alternatively, a first order method like gradient descent has a cheaper

iteration cost but only achieves a linear convergence rate. If the data size is large enough, it is

possible that gradient descent will find an epsilon-optimal solution in a shorter amount of total

computation time compared to Newton’s method (even though the number of iterations may

be much higher).

For some big datasets the cost of first-order gradient methods is still infeasible. As a result,

there has been a recent trend of proposing/reviving methods with even cheaper iteration costs.

Generally speaking, this indicates a shift in focus from developing a robust algorithm that is

scalable for all types of problems to developing algorithms that exploit problem structure to

deal with scalability. By exploiting problem structure we are able to develop faster optimization

methods that still maintain cheap iteration costs.

Before we discuss the details of these methods, we first need to describe the problem struc-

ture that these large-scale methods are designed to exploit. In the next section, we define

the supervised learning problem that is solved in many machine learning tasks. Formally this

problem is known as expected risk minimization.

1.2 The Learning Problem/Algorithm

Optimization is used to formalize the learning process, where the goal is to determine a mapping

such that for any observed input feature vector ai ∈ IRn and corresponding output classification

or prediction vector bi ∈ IR, the mapping yields the true output bi. We use optimization to learn

the parameterization of this mapping such that some difference measure between the output of

the learned mapping and the true output is minimized.1

The mapping is known formally as a prediction function. There are several families of

prediction functions and an optimization process can be done over entire families to select the

optimal form the prediction function should take. However for the purpose of this work we

assume that we have a fixed prediction function with an unknown parameterization. That is

1The description of the ERM problem in this section largely follows the presentation of Bottou et al. [2016].

2

we are given a prediction function h(·;x) : IRn× IRn → IR parameterized by an unknown vector

x ∈ IRn. For example, a general linear prediction function is define by

h(ai;x) = xTai, (1.1)

where i is the index of a data sample and the ai could potentially be non-linear transformations

of some original measurements. The goal is to learn a parameter vector x such that for any

feature vector ai ∈ IRn, the output of h(ai;x), say b̂i, matches the known output bi.

To carry out this learning process, we require a measure of difference between b̂i and bi.

We define a loss function as some function fi : IR × IR → IR that computes a measure

of difference between these two values. This loss function is usually a continuous (and often

convex) approximation to the “true” loss function (see Section 1.2.1). Indeed, this loss function

is often strongly-convex, an important property that will be discussed in this work and that we

define in Section 1.3.

Given a prediction function h and a loss function fi, we define the objective function of the

ML optimization known as the expected risk function, which is defined by

f̂(x) =

∫
IRn×IR

fi(bi, h(ai;x)) dP (ai, bi) = E [fi(bi, h(ai;x))] , (1.2)

where P (ai, bi) is a joint probability distribution from which the observation pair (ai, bi) was

sampled. Clearly, the function in (1.2) is impractical to evaluate as it is an expectation over

the entire (infinite) distribution of possible data examples. Thus, in practice we approximate

it using an empirical risk function. Given m independently and identically distributed random

observations (ai, bi) ∈ IRn×IR for i = 1, 2, . . . ,m, we evaluate the empirical risk function, which

is defined by

f(x) =
1

m

m∑
i=1

fi(bi, h(ai;x)),

where fi(x) is commonly used as short form notation for fi(bi, h(ai;x)). Thus, the ML opti-

mization problem is to find x such that empirical risk of misclassification is minimized,

min
x∈IRn

f(x) ≡ min
x∈IRn

1

m

m∑
i=1

fi(x).

In general, this problem is known as empirical risk minimization (ERM). Often we use regu-

larization to decrease the variance in the learned estimator so that it is less sensitive to the

data it is trained on. This typically improves test error but assumes some prior belief over the

smoothness of the desired model. We define the regularized empirical risk minimization by

min
x∈IRn

1

m

m∑
i=1

fi(x) + λg(x),

3

for some regularization function g : IRn → IR and regularization parameter λ > 0. The most

common regularizers used in ML are:

• ‖·‖2: The `2-norm is differentiable and acts as a smoothing regularizer that when added to

a convex loss function results in a strongly convex loss function. This type of regularization

is a special case of Tikhonov regularization, where the Tikhonov matrix is the identity

matrix. The influence of the `2-regularization encourages the entries of the parameter

vector w to be small in magnitude.

• ‖ · ‖1: The `1-norm promotes sparsity in the parameter vector w. The resulting non-zero

entires in w correspond to the most important features needed for classification and it

has been shown that this type of regularization can help with the curse of dimensionality

[Ng, 2004]. Otherwise, when there is enough data the `1-norm has a denoising effect on

the solution (e.g., the basis pursuit denoising problem in signal reconstruction applica-

tions [Chen and Donoho, 1994, Chen et al., 2001]).

Using either the regularized or non-regularized ERM objective, the learning process then

uses data to train, validate and test the model. Usually the dataset is separated into a training

set and a testing set. Although not the topic of this work, the variability of a training dataset has

a direct influence on the accuracy of the model learned. Validation includes deciding/choosing

between several prediction/loss functions to determine the one that yields the lowest percentage

of error in predictions. This generated model is then used to test on a given dataset. In

summary, the choice of loss function is made via empirical observation and experimentation,

using training data, validation and testing datasets. The selected loss function usually has the

best performance on the validation set and we explore several common loss functions used in ML

in the next section. (For more details on the use of different regularization/penalty functions

used in statistical learning, see [Hastie et al., 2001, Wainwright, 2014].)

1.2.1 Loss Functions

In this work we focus on methods that can be used to solve ERM and regularized ERM with

convex loss functions. Convex loss functions are commonly used in ML because they are well-

behaved and have a well-defined unique solution. We define the convex loss functions that are

most regularly used in ML problems next (see [Rosasco et al., 2004] for a thorough comparison

of the most common convex loss functions used in the machine learning).

Least-Squares Loss

The least-squares loss is defined as taking the squared error between the linear prediction

function defined in (1.1) evaluated at a sample ai ∈ IRd and the corresponding true output

bi ∈ IR,

fi(x) =
1

2
(bi − xTai)2.

4

As an optimization problem this is known as least-squares linear regression and is the mini-

mization of the squared error over a set of samples ai ∈ IRn, i = 1, . . . ,m,

min
x∈IRn

1

2

m∑
i=1

(bi − xTai)2.

Least-squares loss is twice-differentiable and convex, but not strongly convex. In order to

make the objective strongly convex to ensure a unique solution, we can add a strongly convex

regularizer. For example, using a set of samples A = [a1, a2, . . . , am]T ∈ IRm×n and a set of

outputs b ∈ IRm, the ridge regression problem uses `2-regularization,

min
x∈IRn

1

2
‖Ax− b‖22 + λ‖x‖22.

Alternatively, the LASSO problem uses `1-regularization,

min
x∈IRn

1

2
‖Ax− b‖22 + λ‖x‖1.

We note, however, that this choice of regularization does not ensure a unique solution.

Logistic Loss

For problems of binary classification with bi ∈ {−1, 1}, we consider the function

max(0,−bi sign(xTai)), (1.3)

where sign(·) is equal to −1 if the argument is negative and +1 if the argument is positive.

Using this as our loss function, if bi sign(xTai) > 1, then our model predicted the correct

classification for example i and (1.3) would be equal to 0. That is, in the standard binary case

b̂i = sign(xTai) and (1.3) is a “measure of difference” between b̂i and bi. However, (1.3) is

a nonsmooth problem and suffers from a degenerate solution when x = 0. Thus, we use the

logistic loss function, which is a smooth approximation of (1.3),

max(0,−bi sign(xTai)) ≈ log(exp(0) + exp(−bixTai)).

As an optimization problem, this translates to minimizing the penalization of the predictions

made by the model over some training sample set,

min
x∈IRn

m∑
i=1

log(1 + exp(−bixTai)).

The logistic loss function is smooth and convex, and we can add an `2-regularizer to make the

objective strongly convex. For a regularized logistic loss function, Ng [2004] shows that when

learning in the presence of many irrelevant features, while the worst case sample complexity for

5

an `2-regularized logistic loss problem grows linearly in the number of irrelevant features, the

number of training examples required for learning with `1-regularization grows only logarith-

mically in the number of irrelevant features. Thus, `1-regularization can be used to counteract

the curse of dimensionality.

Hinge Loss

For problems of classification, where bi takes on a fixed integer value from a finite set, e.g.,

bi ∈ {1,−1}, we have the hinge loss function,

fi(x) := max{1− bixTai, 0}.

This loss function is the tightest convex upper bound (on [−1, 1]) of the 0-1 indicator function,

or the true loss function

1bixTai<0.

The regularized empirical risk minimization problem using this loss is better known as the

classic linear Support Vector Machine (SVM) primal problem [Cortes and Vapnik, 1995], and

can equivalently be written as the hinge-loss function plus `2-regularization,

min
x∈IRn

1

m

m∑
i=1

max{1− bixTai, 0}+ λ‖x‖22.

Points that are correctly classified are not penalized, while points that are misclassified (on

the wrong side of the separating hyperplane) are penalized linearly with respect to the dis-

tance to the correct boundary. This problem is differentiable but non-smooth, and unlike

`1-regularization, this non-smoothness is not separable. As a result, we often consider solv-

ing the Fenchel dual of the primal problem, which reduces to a linearly constrained quadratic

problem,

min
z∈[0,U]

1

2
zTMz −

∑
i

zi,

where U ∈ IR+ is a constant and M is a particular positive semi-definite matrix. In [Rosasco

et al., 2004], the authors use a probabilistic bound on the estimation error for the classification

problem and show the convergence rate of the hinge-loss is almost identical to the logistic loss

rate, and far superior to the quadratic loss rate.

1.3 First-Order Methods

The popularity of convex optimization in ML has grown significantly in recent years. There

are numerous efficient convex optimization algorithms that have been proven to find globally

optimal solutions and use convex geometry to prove rates of convergence for large-scale problems

(see [Bertsekas, 2015, Cevher et al., 2014, Nesterov, 2004]).

6

In this section we consider several commonly used first-order methods for solving the un-

constrained convex optimization problem,

min
x∈IRn

f(x). (1.4)

We assume that f is a convex and differentiable function, and that it satisfies a smoothness

assumption. That is, we assume the gradient of f is L-Lipschitz continuous such that for all

x, y ∈ Rn we have

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖. (1.5)

This smoothness assumption is standard in convex optimization [Nesterov, 2004, § 2.1.1]. For

twice differentiable functions, this condition implies that the maximum eigenvalue of the Hessian

of f , ∇2f(x), is bounded above by L, [Nesterov, 2004, Lem. 1.2.2].

In some cases we also assume that f is µ-strongly convex [Nesterov, 2004, § 2.1.3], that is

for all x, y ∈ IRn we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2,

where µ > 0 is the strong convexity constant. If µ = 0, then this is equivalent to assuming f is

simply convex. For twice differentiable functions, strong convexity implies that the minimum

eigenvalue of the Hessian is bounded below by µ, [Nesterov, 2004, Thm. 2.1.11].

Under these assumptions (Lipschitz continuity and strong convexity), we can obtain a q-

linear convergence rate for first-order methods,

lim
k→∞

|f(xk+1)− f(x∗)|
|f(xk)− f(x∗)| = ρ, (1.6)

where 1 > ρ > 0 is known as the rate of convergence. This means that the function evaluated

at the iterates xk will converge asymptotically to the solution f(x∗) at a constant rate of ρ.

This is the classic version of linear convergence used in optimization. However, in this work we

say a method achieves a linear convergence rate if

f(xk)− f∗ ≤ γρk, (1.7)

where we explicitly know the constants ρ and γ ∈ IR. We can express both these conditions

as O(ρk), but the condition (1.7) is a stronger condition than (1.6) and more relevant for

machine learning, since it focuses on performance in the finite time (non-asymptotic) case. In

Section 1.8 we discuss how several conditions have been proposed in the literature to relax

the strong convexity assumption while still maintaining a linear convergence rate for first-order

methods.

In this work we focus on upper bounding the convergence rates of certain first-order meth-

ods. We note that lower bounds on the convergence rate of any first-order method under the

7

assumptions of Lipschitz continuity and strong convexity have been analyzed, showing that the

best lower bound we can obtain is linear [Nesterov, 2004, §2.1.4]. This proves that all first-order

methods will converge with at least a linear rate in this setting.

1.4 Gradient Descent

The most classic first-order optimization algorithm is the gradient descent (GD) method. At

each iteration a step is taken in the direction of the negative gradient evaluated at the current

iteration, yielding the update

xk+1 = xk − αk∇f(xk),

where k is the iteration counter, xk is the current iterate, ∇f is the gradient of f and αk > 0 is

a per iteration step-size. The step-size αk can either be a fixed value defined by some continuity

constant of the function f or can be determined using a line search technique at each iteration.

If we assume the function f is convex and has Lipschitz continuous gradient, then using a

fixed step-size of αk = 1/L we can achieve a O(1/k) sublinear convergence rate [Nesterov, 2004,

Cor. 2.1.2],

f(xk)− f∗ ≤ 2L

k + 4
‖x0 − x∗‖2.

Thus, it requires O(1/ε) iterations to achieve an ε-accurate solution. However, under these

assumptions there is no guaranteed convergence of the iterates.

If we also assume µ-strong convexity of f , then the derived linear rate for GD is given

by [Nesterov, 2004, Thm. 2.2.8],

f(xk)− f(x∗) ≤
(

1− µ

L

)k [
f(x0)− f(x∗)

]
,

so that the rate of convergence is O(
(
1− µ

L

)k
), where µ ≤ L follows directly from Lipschitz

continuity and strong convexity using the results in Nesterov [2004, Thm. 2.1.5 and Thm.

2.1.10]). Under these assumptions, we guarantee convergence of both the iterates and the

function values.

1.5 Stochastic Gradient Descent

As mentioned at the end of Section 1.1, there has been a recent trend towards using meth-

ods with very cheap iteration costs. One method that reduces the iteration cost of classic

GD methods for large-scale problems with specific structures and that has become an impor-

tant tool for modern high-dimensional ML problems is the stochastic gradient descent (SGD)

method [Robbins and Monro, 1951].

8

Consider problems that have the following finite sum form,

f(x) =
1

m

m∑
i=1

fi(x),

where m is very large. At each iteration of the SGD method we randomly select an index

i ∈ {1, 2, . . . ,m}, and update according to

xk+1 = xk − αkf ′i(xk).

In this update, if fi is differentiable (smooth) then f ′i is the gradient, ∇fi, and if fi is non-

differentiable (non-smooth), then f ′i is a subgradient, i.e., an element of the subdifferential of

fi, ∂fi, where

∂fi(x) = {v : fi(y) ≥ fi(x) + 〈v, y − x〉 for all x, y ∈ IR}.

This update gives an unbiased estimate of the true gradient,

E[f ′i(x)] =
1

m

m∑
i=1

∇fi(x) = ∇f(x).

In SGD we require that the step-size αk converges asymptotically to 0 due to the variance of

the gradients,

1

n

n∑
i=1

‖∇fi(xk)−∇f(xk)‖2.

If the variance is zero, then we have an exact gradient and every step is a descent step. If the

variance is large, then many of the steps will be in the wrong direction. Therefore, the effects

of variance in SGD methods can be reduced by using an appropriate step-size that “scales”

this variance. The classic choice of step-size is αk = O(1/k) and Bach et al. showed using

αk = O(1/kα) for α ∈ (0, 1/2) is more robust [Bach and Moulines, 2011] (encourages larger

step-sizes).

Deterministic gradient methods [Cauchy, 1847] for this problem have an update cost linear

in m, where as the cost of stochastic iterations are independent of m, i.e., m times faster than

deterministic. Furthermore, they have the same rates for non-smooth problems, meaning we

can solve non-smooth problems m times faster using stochastic methods. The achievable rates

are sublinear for convex O(1/
√
k) and strongly convex O(1/k) [Nemirovski et al., 2009]. This is

an example of sacrificing convergence rate for cheaper iteration costs, as these rates are clearly

slower than the rates obtained by the GD method for smooth problems.

A popular method that improves convergence and also battles the variance introduced by

randomness in SGD methods is the stochastic average gradient (SAG) method proposed by Le

Roux et al. [2012]. The SAG method still only requires one gradient evaluation at each iteration,

9

but unlike SGD it achieves a linear convergence rate. The iteration update is given by

xk+1 = xk − αk
m

m∑
i=1

yki

where a memory of yki = ∇fi(xk) from the last k where i was selected. For L-smooth, convex

functions fi, Schmidt et al. [2017] showed that with a constant step-size of αk = 1/16L, the

SAG iterations achieve a rate of

E
[
f(x̄k)− f(x∗)

]
≤ 32n

k
C0,

where x̄k = 1
k

∑k−1
i=0 x

i is the average iterate and C0 is a constant dependent on the initialization

of the method. Schmidt et al. [2017] also show a linear rate of convergence when f is µ-strongly

convex,

E
[
f(xk)− f(x∗)

]
≤
(

1−min

{
µ

16L
,

1

8n

})k
C0.

These are similar rates compared to GD, but each iteration is m times cheaper.

Alternative methods, such as the Stochastic Variance Reduced Gradient (SVRG) method

[Johnson and Zhang, 2013], have also been proposed. Although SVRG is not faster, it does

not have the memory requirements of SAG. However, the major challenge of the classic and

variance reduced stochastic gradient methods is still choosing the step-size, as a line search is

not practical given that there is no guarantee for function value decrease.

1.6 Coordinate Descent Methods

An alternative way to deal with the size of large-scale optimization problems is instead of

updating all n variables at each iteration, we can select a single variable (or “block” of variables)

to update. We call these methods (block) coordinate descent methods. Each iteration of a

coordinate descent (CD) method carries out an approximate update along a single coordinate

direction or coordinate hyperplane. In the single coordinate case, the update is given by

xk+1 = xk − αk∇ikf(xk)eik ,

where eik is a vector with a one in position ik and zeros in all other positions.

Since CD methods only update one coordinate at each iteration, or in the case of block CD

methods, a subset of coordinates at each iteration, this yields a low iteration cost for problems

with certain structure. Nesterov [2010, 2012] brought clarity to the true power of CD methods

in his seminal research on CD methods. He showed that coordinate descent can be faster

than gradient descent in cases where, if we are optimizing n variables, the cost of performing

one full gradient iteration is similar to the cost of performing n single coordinate updates.

Essentially, this says that CD methods are highly efficient for numerous popular ML problems

10

Figure 1.1: Visualization of several iterations of cyclic coordinate descent on the level curves of
a quadratic function. The steps alternate between updating x1 and x2, and converge towards
the minimum value.

like least-squares, logistic regression, LASSO, SVMs, quadratics, graph-based label propagation

algorithms for semi-supervised learning and other sparse graph problems.

Like SGD, these methods have become an important tool for modern high-dimensional ML

problems. However, CD methods are appealing over SGD methods because each iteration

updates a single variable for all fi whereas SGD updates all variables but only observes one fi.

Thus, we can do a line search to determine αk at each iteration with CD methods. Further,

with CD methods we can improve performance by adapting the algorithmic building blocks to

exploit problem structure, which is the main focus of this work.

At each iteration a coordinate ik (or block of coordinates bk) is chosen to be updated using

a certain selection rule. Most commonly this selection is done in a cyclic (see Figure 1.1) or

random fashion. Numerous works have recently been publish on randomized coordinate descent

methods and for a comprehensive overview of CD methods and their variations/extensions, see

these summary papers [Shi et al., 2016, Wright, 2015].

Assuming smoothness of f and constant step-size 1/L, randomized CD methods can be

shown to achieve a convergence rate of O(1/k). If we further assume strong convexity of f , it

has been shown that randomized CD methods achieve a linear convergence rate in expectation,

E[f(xk+1)]− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)].

This is a special of case of Nesterov [2012, Theorem 2] with α = 0 in his notation. Nesterov

[2012] also showed that greedy CD methods (selection of i so as to maximize progress at each

iteration) achieves this same bound (not in expectation).

We note that in the above rate, L is the coordinate-wise Lipschitz constant, that is, for each

11

i = 1, . . . , n,

|∇if(x+ αei)−∇if(x)| ≤ L|α|, ∀x ∈ Rn and α ∈ R,

where ei is a vector with a one in position i and zero in all other positions. For gradient methods,

the Lipschitz condition in (1.5) is usually assumed to hold for some Lipschitz constant Lf , where

the relationship between these constants is L/n ≤ Lf . Thus, the above rate is faster.

1.7 Linear Systems and Kaczmarz Methods

Closely-related to CD and SGD methods is the Kaczmarz method [Kaczmarz, 1937], which is

designed to solve large-scale consistent (a solution exists) systems of linear equations,

Ax = b,

where A ∈ IRm×n and b ∈ IRm. This is a fundamental problem in machine learning. At each

iteration of the Kaczmarz algorithm, a row ik is selected and the current iterate xk is projected

onto the hyperplane defined by aTikx
k = bik . This gives the iteration

xk+1 = xk +
bik − aTikxk
‖aik‖2

aik ,

and it has been proven that this algorithm converges linearly to a solution x∗ under weak

conditions (e.g., each i is visited infinitely often) using cyclic [Deutsch, 1985, Deutsch and

Hundal, 1997, Galántai, 2005] or random Strohmer and Vershynin [2009] selection.

The Kaczmarz method projects onto a single hyperplane at each iteration, and thus, has

a low-iteration cost like SGD and CD. In fact, the Kaczmarz method can be expressed as an

instance of weighted SGD [Needell et al., 2013] when solving the least-squares problem. However

a benefit of using Kaczmarz methods over SGD methods for these types of problems is that

Kaczmarz methods use a step-size of αk = 1 for all iterations, and thus, avoiding the step-size

selection issue of SGD methods.

Further, as discussed by Wright [2015], Kaczmarz methods applied to a linear system can

also be interpreted as CD methods on the dual problem,

min
y

1

2
‖AT y‖2 − bT y,

where x = AT y∗, so that Ax = AAT y∗ = b. As discussed by Ma et al. [2015a] there are several

connections/differences between cyclic CD (also known as the Gauss-Seidel method [Seidel,

1874]) and Kaczmarz methods.

12

1.8 Relaxing Strong Convexity

To prove linear convergence rates for GD and CD, we assume strong convexity of f . This is a

reasonable assumption as an `2-norm regularizer can be added to make any convex objective

strongly convex. Nevertheless, there have been various conditions proposed over the years, all

with the goal of replacing or weakening the assumption of strong convexity while still guaran-

teeing linear convergence for problems like least-squares and logistic regression [Anitescu, 2000,

Liu and Wright, 2015, Liu et al., 2014, Lojasiewicz, 1963, Luo and Tseng, 1993, Ma et al.,

2015b, Necoara et al., 2015, Polyak, 1963, Zhang and Yin, 2013].

The oldest one of these conditions is the Polyak- Lojasiewicz (PL) inequality [Lojasiewicz,

1963, Polyak, 1963], which requires that for all x, we have

1

2
‖∇f(x)‖2 ≥ µ (f(x)− f∗) .

The PL inequality was proposed in 1963 by Polyak [1963] and is a special case of the Lojasiewicz

[1963] inequality proposed in the same year. This condition implies that the gradient grows

faster than a quadratic function as we move away from the optimal function value. The PL

inequality is sufficient to show a global linear convergence rate for gradient descent without

requiring strong convexity (or even convexity). Further, this inequality implies that every

stationary point is a global minimum. However, unlike the guarantees of strong convexity, the

global minimum need not be unique.

Despite the PL inequality being the oldest of the existing conditions to relaxing strong

convexity, it remained relatively unknown in the literature until our recent work [Karimi et al.,

2016].

1.9 Proximal First-Order Methods

Several of the first-order methods mentioned in the previous sections have variants that can be

used to solve the nonsmooth problem,

min
x∈IRn

f(x) + g(x), (1.8)

where f is smooth and convex, and g is convex but not necessarily smooth. A classic example

of this problem is optimization subject to non-negative constraints,

argmin
x≥0

f(x),

13

where in this case gi is the indicator function on the non-negative orthant,

gi(xi) =

0 if xi ≥ 0,

∞ if xi < 0.

Another example that has received significant recent attention is the case of an `1-regularizer,

argmin
x∈IRn

f(x) + λ‖x‖1,

where in this case gi = λ|xi|. Here, the `1-norm regularizer is used to encourage sparsity in the

solution. It is possible to generalize GD methods to the nonsmooth problem (1.8) by simply

considering subgradients instead of gradients. However, these methods only achieve sublinear

rates.

One of most widely-used methods for minimizing functions of the form (1.8) is the proximal

gradient (PG) method [Beck and Teboulle, 2009, Bertsekas, 2015, Levitin and Polyak, 1966,

Nesterov, 2013], which uses an iteration update given by applying the proximal operator to a

standard GD update,

xk+1 = proxαkg

[
xk − αk∇f(xk)

]
,

where the proximal operator is given by

proxαg[y] = argmin
x∈Rn

1

2
‖x− y‖2 + αg(x).

The proximal versions of the gradient based methods presented in the previous section all

achieve the same worst-case convergence rate bounds as regular versions when f is assumed

to be smooth. In this work we consider both the smooth problem (1.4) and the nonsmooth

problem (1.8).

We also note here that accelerated variants of the methods presented in this chapter exist.

For example, it is well-known that the accelerated gradient method achieves the optimal rate of

convergence when f is only smooth and convex (not strongly convex) [Nesterov, 1983] (as does

proximal gradient descent when f is non-smooth and convex [Nesterov, 2013]). Also, recently

an accelerated SGD method was proposed that is robust to noise and variance [Jain et al., 2017].

These methods are not the focus of this work but we expect that all contributions presented in

this work should carry over to the accelerated setting.

1.10 Summary of Contributions

In this work we focus on greedy (block) coordinate descent methods and greedy Kaczmarz

methods, where for greedy (block) coordinate descent methods, we consider relaxing the strong

convexity assumption normally used to show linear convergence. Specifically, we focus on

14

exploiting the cheap iteration costs of these methods, showing faster rates are achievable when

we exploit problem structure. Our list of contributions is as follows:

• Chapter 2: We show that greedy CD methods are faster than random CD

methods for problems with certain structure. Previous bounds show that ran-

dom and greedy obtain the same convergence rate bounds, but our analysis gives tighter

bounds on greedy methods showing that they can be faster. Our work includes a sum-

mary of two general problem classes for which one coordinate descent iteration is n times

cheaper than a full-gradient update, conditions that ensure efficient implementation of

greedy coordinate selection and an exploration of when greedy selection beats random

selection using a simple separable quadratic problem. We present a new greedy selection

rule that uses Lipschitz gradient information and has a relationship to the nearest neigh-

bour problem. We also present results for approximate and proximal-variants of greedy

selection rules. Finally, we present numerical results to emphasize the efficacy of greedy

selection rules for coordinate descent methods.

• Chapter 3: We show that greedy Kaczmarz methods are faster than random

Kaczmarz methods for problems where A is sparse. Previous bounds show that

random and greedy obtain the same convergence rate bounds, but our analysis gives

tighter bounds on greedy methods showing that they can be faster. Our work includes

efficient ways to calculate the greedy selection rules when the matrix A is sparse, sim-

pler/tighter convergence rate analysis for randomized selection rules and analysis for

greedy selection rules. We present a comparison of general convergence rates for ran-

domized and greedy selection rules, and a comparison of rates for the specific example of

a diagonal A. We also present analysis for approximate greedy selection rules and a faster

randomized method using adaptive selection rules. Finally, we present numerical results

to emphasize the efficiency of greedy selection rules for Kaczmarz methods.

• Chapter 4: We show that of the conditions proposed to relax strong con-

vexity, the PL inequality is the weakest condition that still ensures a global

minimum despite it being much older and less popular than other existing

conditions. Our work includes presenting a formal relationship between several of these

existing bounds, showing that the PL inequality can be used to establish the first lin-

ear convergence rate analysis for sign-based gradient descent methods and establishing

different problem classes for which a proximal extension to the PL inequality holds.

• Chapter 5: We show that by adjusting the algorithmic components of block

coordinate descent methods such that they exploit problem structure, we

are able to obtain significantly faster methods. Our work includes proposing new

greedy block-selection strategies that guarantee more progress per iteration than the clas-

sic greedy rule, exploring previously proposed block update strategies that exploit higher-

order information and proving faster local convergence rates, and exploring the use of

15

message-passing to efficiently compute optimal block updates for problems with a sparse

dependency between variables. We present numerical results to support all of our findings

and establish the efficiency of our greedy block coordinate descent approaches.

• Chapter 6: We show that greedy BCD methods have a finite-time manifold

identification property for problems with separable non-smooth structures.

Our analysis notably leads to bounds on the number of iterations required

to reach the optimal manifold (“active-set complexity”). We show this leads to

superlinear convergence when using greedy rules with variable blocks and updates with

second-order information for problems with sufficiently-sparse solutions. In the special

case of LASSO and SVM problems, we further show that optimal updates are possible.

This leads to finite convergence for SVM and LASSO problems with sufficiently-sparse

solutions when using greedy selection and sufficiently-large variable blocks. We also use

this analysis to show active-set identification and active-set complexity results for the full

proximal gradient method.

We note that Chapters 2- 5 include appendices, which contain extra theoretical and experimen-

tal results. The details in these appendices are for the interested reader and are not required

to understand the main ideas in this dissertation.

In Chapter 7 we discuss the impact some of these contributions have had since publication,

as well as future extensions.

16

Chapter 2

Greedy Coordinate Descent

There has been substantial recent interest in applying coordinate descent methods to solve large-

scale optimization problems because of their cheap iteration costs, low memory requirements

and amenability to parallelization. The seminal work of Nesterov [2012] gave the first global

rate of convergence analysis for coordinate-descent methods for minimizing convex functions.

The analysis in Nesterov’s work suggests that choosing a random coordinate to update gives the

same performance as choosing the “best” coordinate to update via the more expensive Gauss-

Southwell (GS) rule. This result gives a compelling argument to use randomized coordinate

descent in contexts where the GS rule is too expensive. It also suggests that there is no benefit

to using the GS rule in contexts where it is relatively cheap. However, in these contexts, the GS

rule often substantially outperforms randomized coordinate selection in practice. This suggests

that either the analysis of GS in [Nesterov, 2012] is not tight, or that there exists a class of

functions for which the GS rule is as slow as randomized coordinate descent.

In this chapter, we present our work on greedy coordinate descent methods. We first discuss

contexts in which it makes sense to use coordinate descent and the GS rule (Section 2.1). In

Section 2.2 we give the existing analysis for random and greedy coordinate descent methods

presented by Nesterov [2012], and then we give a tighter convergence rate analysis of the GS

rule (under strong convexity and standard smoothness assumptions) that yields the same rate

as the randomized method for a restricted class of functions, but is otherwise faster (and in

some cases substantially faster). We further show that, compared to the usual constant step-

size update of the coordinate, the GS method with varying step-sizes has a provably faster

rate (Section 2.4). Furthermore, in Section 2.5, we propose a variant of the GS rule that,

similar to Nesterov’s more clever randomized sampling scheme proposed in [Nesterov, 2012],

uses knowledge of the Lipschitz constants of the coordinate-wise gradients to obtain a faster

rate. We also analyze approximate GS rules (Section 2.6), which provide an intermediate

strategy between randomized methods and the exact GS rule. Finally, we analyze proximal

gradient variants of the GS rule (Section 2.7) for optimizing problems that include a separable

non-smooth term. All our findings are supported by empirical results on some classic machine

learning problems (Section 2.8).

17

2.1 Problems of Interest

The rates of Nesterov show that coordinate descent can be faster than gradient descent in cases

where, if we are optimizing n variables, the cost of performing n coordinate updates is similar

to the cost of performing one full gradient iteration. Two common problem structures that

satisfy this characterization and therefore are amenable to coordinate descent are:

h1(x) :=

n∑
i=1

gi(xi) + f(Ax), h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where xi is element i of x, f is smooth and cheap, the fij are smooth, G = {V,E} is a graph,

and A is a matrix. (It is assumed that all functions are convex.)2 The family of functions h1

includes core machine-learning problems such as least squares, logistic regression, LASSO, and

SVMs (when solved in dual form) [Hsieh et al., 2008]. Family h2 includes quadratic functions,

graph-based label propagation algorithms for semi-supervised learning [Bengio et al., 2006],

and finding the most likely assignments in continuous pairwise graphical models [Rue and

Held, 2005].

In general, the GS rule for problem h2 is as expensive as a full gradient evaluation. However,

the structure of G often allows efficient implementation of the GS rule. For example, if each

node has at most d neighbours, we can track the gradients of all the variables and use a max-

heap structure to implement the GS rule in O(d log n) time [Meshi et al., 2012]. This is similar

to the cost of the randomized algorithm if d ≈ |E|/n (since the average cost of the randomized

method depends on the average degree). This condition is true in a variety of applications. For

example, in spatial statistics we often use two-dimensional grid-structured graphs, where the

maximum degree is four and the average degree is slightly less than 4. As another example,

for applying graph-based label propagation on the Facebook graph (to detect the spread of

diseases, for example), the average number of friends is around 200 but no user has more than

seven thousand friends.3 The maximum number of friends would be even smaller if we removed

edges based on proximity. A non-sparse example where GS is efficient is complete graphs, since

here the average degree and maximum degree are both (n − 1). Thus, the GS rule is efficient

for optimizing dense quadratic functions. On the other hand, GS could be very inefficient for

star graphs.

If each column of A has at most c non-zeroes and each row has at most r non-zeroes, then

for many notable instances of problem h1 we can implement the GS rule in O(cr log n) time

by maintaining Ax as well as the gradient and again using a max-heap (see Appendix A.1).

Thus, GS will be efficient if cr is similar to the number of non-zeroes in A divided by n.

Otherwise, Dhillon et al. [2011] show that we can approximate the GS rule for problem h1 with

2We could also consider slightly more general cases like functions that are defined on hyper-edges [Richtárik
and Takáč, 2016], provided that we can still perform n coordinate updates for a similar cost to one gradient
evaluation.

3https://recordsetter.com/world-record/facebook-friends

18

https://recordsetter.com/world-record/facebook-friends

no gi functions by solving a nearest-neighbour problem. Their analysis of the GS rule in the

convex case, however, gives the same convergence rate that is obtained by random selection

(although the constant factor can be smaller by a factor of up to n). More recently, Shrivastava

and Li [2014] give a general method for approximating the GS rule for problem h1 with no gi

functions by writing it as a maximum inner-product search problem.

2.2 Analysis of Convergence Rates

We are interested in solving the convex optimization problem

min
x∈Rn

f(x), (2.1)

where ∇f is coordinate-wise L-Lipschitz continuous, i.e., for i = 1, . . . , n,

|∇if(x+ αei)−∇if(x)| ≤ L|α|, ∀x ∈ Rn and α ∈ R,

where ei is a vector with a one in position i and zero in all other positions. For twice-

differentiable functions, this is equivalent to the assumption that the diagonal elements of the

Hessian are bounded in magnitude by L. In contrast, the typical assumption used for gradient

methods is that ∇f is Lf -Lipschitz continuous (note that L ≤ Lf ≤ Ln). The coordinate-

descent method with constant step-size is based on the iteration

xk+1 = xk − 1

L
∇ikf(xk)eik .

The randomized coordinate-selection rule chooses ik uniformly from the set {1, 2, . . . , n}. Al-

ternatively, the GS rule

ik ∈ argmax
i

|∇if(xk)|,

chooses the coordinate with the largest directional derivative (see Figure 2.1). Under either

rule, because f is coordinate-wise Lipschitz continuous, we obtain the following bound on the

progress made by each iteration:

f(xk+1) ≤ f(xk) +∇ikf(xk)(xk+1 − xk)ik +
L

2
(xk+1 − xk)2

ik

= f(xk)− 1

L
(∇ikf(xk))2 +

L

2

[
1

L
∇ikf(xk)

]2

= f(xk)− 1

2L
[∇ikf(xk)]2.

(2.2)

We focus on the case where f is µ-strongly convex, meaning that, for some positive µ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2, ∀x, y ∈ Rn, (2.3)

19

x1 x2 x3
Gauss-Southwell

Figure 2.1: Visualization of the Gauss-Southwell selection rule. Shown here are three differ-
ent projections of a function onto individual coordinates given the corresponding values of
x = [x1, x2, x3]. The dotted green lines are the individual gradient values (tangent lines) at x.
We see that the Gauss-Southwell rule selects the coordinate corresponding to the largest (steep-
est) individual gradient value (in magnitude).

which implies that

f(x∗) ≥ f(xk)− 1

2µ
‖∇f(xk)‖2, (2.4)

where x∗ is the optimal solution of (2.1). This bound is obtained by minimizing both sides

of (2.3) with respect to y.

2.2.1 Randomized Coordinate Descent

Conditioning on the σ-field Fk−1 generated by the sequence {x0, x1, . . . , xk−1}, and taking

expectations of both sides of (2.2), when ik is chosen with uniform sampling we obtain

E[f(xk+1)] ≤ E
[
f(xk)− 1

2L

(
∇ikf(xk)

)2]
= f(xk)− 1

2L

n∑
i=1

1

n

(
∇if(xk)

)2
= f(xk)− 1

2Ln
‖∇f(xk)‖2.

Using (2.4) and subtracting f(x∗) from both sides, we get

E[f(xk+1)]− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)]. (2.5)

This is a special of case of Nesterov [2012, Theorem 2] with α = 0 in his notation.

2.2.2 Gauss-Southwell

We now consider the progress implied by the GS rule. By the definition of ik,

(∇ikf(xk))2 = ‖∇f(xk)‖2∞ ≥ (1/n)‖∇f(xk)‖2. (2.6)

20

Applying this inequality to (2.2), we obtain

f(xk+1) ≤ f(xk)− 1

2Ln
‖∇f(xk)‖2,

which together with (2.4), implies that

f(xk+1)− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)]. (2.7)

This is a special case of Boyd and Vandenberghe [2004, §9.4.3], viewing the GS rule as perform-

ing steepest descent in the 1-norm. While this is faster than known rates for cyclic coordinate

selection [Beck and Tetruashvili, 2013] and holds deterministically rather than in expectation,

this rate is the same as the randomized rate given in (2.5).

2.2.3 Refined Gauss-Southwell Analysis

The deficiency of the existing GS analysis is that too much is lost when we use the inequality

in (2.6). To avoid the need to use this inequality we propose measuring strong convexity in the

1-norm, i.e.,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21,

which is the analogue of (2.3). Minimizing both sides with respect to y, we obtain

f(x∗) ≥ f(x)− sup
y
{〈−∇f(x), y − x〉 − µ1

2
‖y − x‖21}

= f(x)−
(µ1

2
‖ · ‖21

)∗
(−∇f(x))

= f(x)− 1

2µ1
‖∇f(x)‖2∞,

(2.8)

which makes use of the convex conjugate (µ12 ‖ ·‖21)∗ = 1
2µ1
‖ ·‖2∞ [Boyd and Vandenberghe, 2004,

§3.3]. Using (2.8) in (2.2), and the fact that (∇ikf(xk))2 = ‖∇f(xk)‖2∞ for the GS rule, we

obtain

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)
[f(xk)− f(x∗)]. (2.9)

It is evident that if µ1 = µ/n, then the rates implied by (2.5) and (2.9) are identical,

but (2.9) is faster if µ1 > µ/n. In Appendix A.2, we show that the relationship between µ and

µ1 can be obtained through the relationship between the squared norms || · ||2 and || · ||21. In

particular, we have
µ

n
≤ µ1 ≤ µ.

Thus, at one extreme the GS rule obtains the same rate as uniform selection (µ1 ≈ µ/n).

However, at the other extreme, it could be faster than uniform selection by a factor of n

(µ1 ≈ µ). This analysis, that the GS rule only obtains the same bound as random selection in

an extreme case, supports the better practical behaviour of GS.

21

2.3 Comparison for Separable Quadratic

We illustrate these two extremes with the simple example of a quadratic function with a diagonal

Hessian ∇2f(x) = diag(λ1, . . . , λn). In this case,

µ = min
i

λi, and µ1 =

(
n∑
i=1

1

λi

)−1

.

We prove the correctness of this formula for µ1 in Appendix A.3. The parameter µ1 achieves

its lower bound when all λi are equal, λ1 = · · · = λn = α > 0, in which case

µ = α and µ1 = α/n.

Thus, uniform selection does as well as the GS rule if all elements of the gradient change at

exactly the same rate. This is reasonable: under this condition, there is no apparent advantage

in selecting the coordinate to update in a clever way. Intuitively, one might expect that the

favourable case for the Gauss-Southwell rule would be where one λi is much larger than the

others. However, in this case, µ1 is again similar to µ/n. To achieve the other extreme, suppose

that λ1 = β and λ2 = λ3 = · · · = λn = α with α ≥ β. In this case, we have µ = β and

µ1 =
βαn−1

αn−1 + (n− 1)βαn−2
=

βα

α+ (n− 1)β
.

If we take α → ∞, then we have µ1 → β, so µ1 → µ. This case is much less intuitive; GS is

n times faster than random coordinate selection if one element of the gradient changes much

more slowly than the others.

2.3.1 ‘Working Together’ Interpretation

In the separable quadratic case above, µ1 is given by the harmonic mean of the eigenvalues

of the Hessian divided by n. The harmonic mean is dominated by its smallest values, and

this is why having one small value is a notable case. Furthermore, the harmonic mean divided

by n has an interpretation in terms of processes ‘working together’ [Ferger, 1931]. If each λi

represents the time taken by each process to finish a task (e.g., large values of λi correspond

to slow workers), then µ is the time needed by the fastest worker to complete the task, and µ1

is the time needed to complete the task if all processes work together (and have independent

effects). Using this interpretation, the GS rule provides the most benefit over random selection

when working together is not efficient, meaning that if the n processes work together, then the

task is not solved much faster than if the fastest worker performed the task alone. This gives an

interpretation of the non-intuitive scenario where GS provides the most benefit: if all workers

have the same efficiency, then working together solves the problem n times faster. Similarly, if

there is one slow worker (large λi), then the problem is solved roughly n times faster by working

22

together. On the other hand, if most workers are slow (many large λi), then working together

has little benefit and we should be greedy in our selection of the workers.

2.3.2 Fast Convergence with Bias Term

Consider the standard linear-prediction framework,

argmin
x,β

m∑
i=1

f(aTi x+ β) +
λ

2
‖x‖2 +

σ

2
β2,

where we have included a bias variable β (an example of problem h1). Typically, the regulariza-

tion parameter σ of the bias variable is set to be much smaller than the regularization parameter

λ of the other covariates, to avoid biasing against a global shift in the predictor. Assuming that

there is no hidden strong convexity in the sum, this problem has the structure described in the

previous section (µ1 ≈ µ) where GS has the most benefit over random selection.

2.4 Rates with Different Lipschitz Constants

Consider the more general scenario where we have a Lipschitz constant Li for the partial

derivative of f with respect to each coordinate i,

|∇if(x+ αei)−∇if(x)| ≤ Li|α|, ∀x ∈ Rn and α ∈ R,

and we use a coordinate-dependent step-size at each iteration:

xk+1 = xk − 1

Lik
∇ikf(xk)eik . (2.10)

By the logic of (2.2), in this setting we have

f(xk+1) ≤ f(xk)− 1

2Lik
[∇ikf(xk)]2, (2.11)

and thus a convergence rate of

f(xk)− f(x∗) ≤

 k∏
j=1

(
1− µ1

Lij

) [f(x0)− f(x∗)]. (2.12)

Noting that L = maxi{Li}, we have

k∏
j=1

(
1− µ1

Lij

)
≤
(

1− µ1

L

)k
. (2.13)

23

Thus, the convergence rate based on the Li will be faster, provided that at least one iteration

chooses an ik with Lik < L. In the worst case, however, (2.13) holds with equality even if the

Li are distinct, as we might need to update a coordinate with Li = L on every iteration. (For

example, consider a separable function where all but one coordinate is initialized at its optimal

value, and the remaining coordinate has Li = L.) In Section 2.5, we discuss selection rules that

incorporate the Li to achieve faster rates whenever the Li are distinct.

2.5 Rules Depending on Lipschitz Constants

If the Li are known, Nesterov [2012] showed that we can obtain a faster convergence rate by

sampling proportional to the Li. We review this result below and compare it to the GS rule, and

then propose an improved GS rule for this scenario. Although in this section we will assume that

the Li are known, this assumption can be relaxed using a backtracking procedure [Nesterov,

2012, §6.1].

2.5.1 Lipschitz Sampling

Taking the expectation of (2.11) under the distribution pi = Li/
∑n

j=1 Lj and proceeding as

before, we obtain

E[f(xk+1)]− f(x∗) ≤
(

1− µ

nL̄

)
[f(xk)− f(x∗)],

where L̄ = 1
n

∑n
j=1 Lj is the average of the Lipschitz constants. This was shown by Leventhal

and Lewis [2010] and is a special case of Nesterov [2012, Theorem 2] with α = 1 in his notation.

This rate is faster than (2.5) for uniform sampling if any Li differ.

Under our analysis, this rate may or may not be faster than (2.9) for the GS rule. On the

one extreme, if µ1 = µ/n and any Li differ, then this Lipschitz sampling scheme is faster than

our rate for GS. Indeed, in the context of the problem from Section 2.3, we can make Lipschitz

sampling faster than GS by a factor of nearly n by making one λi much larger than all the others

(recall that our analysis shows no benefit to the GS rule over randomized selection when only

one λi is much larger than the others). At the other extreme, in our example from Section 2.3

with many large α and one small β, the GS and Lipschitz sampling rates are the same when

n = 2, with a rate of (1 − β/(α + β)). However, the GS rate will be faster than the Lipschitz

sampling rate for any α > β when n > 2, as the Lipschitz sampling rate is (1−β/((n−1)α+β)),

which is slower than the GS rate of (1− β/(α+ (n− 1)β)).

2.5.2 Gauss-Southwell-Lipschitz Rule

Since neither Lipschitz sampling nor GS dominates the other in general, we are motivated to

consider if faster rules are possible by combining the two approaches. Indeed, we obtain a faster

24

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

Figure 2.2: Visualization of the Gauss-Southwell-Lipschitz selection rule compared to the Gauss-
Southwell selection rule. When the slopes of the tangent lines (gradient values) are similar, the
GSL will make more progress by selecting the coordinate with the slower changing derivative
(smaller Li).

rate by choosing the ik that minimizes (2.11), leading to the rule

ik ∈ argmax
i

|∇if(xk)|√
Li

,

which we call the Gauss-Southwell-Lipschitz (GSL) rule. We see in Figure 2.2 that if the

directional derivative between two coordinates is equal, then compared to the GS rule, the GSL

rule will select the coordinate that leads to more function value progress (smaller Li).

Following a similar argument to Section 2.2.3, but using (2.11) in place of (2.2), the GSL

rule obtains a convergence rate of

f(xk+1)− f(x∗) ≤ (1− µL)[f(xk)− f(x∗)],

where µL is the strong convexity constant with respect to the norm ‖x‖L =
∑n

i=1

√
Li|xi|. This

is shown in Appendix A.4, and in Appendix A.5 we show that

max
{ µ

nL̄
,
µ1

L

}
≤ µL ≤

µ1

mini{Li}
.

Thus, the GSL rule is always at least as fast as the fastest of the GS rule and Lipschitz sampling.

Indeed, it can be more than a factor of n faster than using Lipschitz sampling, while it can

obtain a rate closer to the minimum Li, instead of the maximum Li that the classic GS rule

depends on.

An interesting property of the GSL rule for quadratic functions is that it is the optimal

myopic coordinate update. That is, if we have an oracle that can choose the coordinate and

the step-size that decreases f by the largest amount, i.e.,

f(xk+1) ≡ argmin
i,α

{f(xk + αei)}, (2.14)

25

this is equivalent to using the GSL rule and the update in (2.10). This follows because (2.11)

holds with equality in the quadratic case, and the choice αk = 1/Lik yields the optimal step-

size. Thus, although faster schemes could be possible with non-myopic strategies that cleverly

choose the sequence of coordinates or step-sizes, if we can only perform one iteration, then the

GSL rule cannot be improved.

For general f , (2.14) is known as the maximum improvement (MI) rule. This rule has been

used in the context of boosting [Rätsch et al., 2001], graphical models [Della Pietra et al., 1997,

Lee et al., 2006, Scheinberg and Rish, 2009], Gaussian processes [Bo and Sminchisescu, 2012],

and low-rank tensor approximations [Li et al., 2015]. By the argument

f(xk+1) = min
α
{f(xk + αeik)}

≤ f
(
xk − 1

Lik
∇iif(xk)eik

)
≤ f(xk)− 1

2

[∇ikf(xk)]2

Lik
,

(2.15)

our GSL rate also applies to the MI rule, improving existing bounds on this strategy. However,

the GSL rule is much cheaper and does not require any special structure (recall that we can

estimate Li as we go).

2.5.3 Connection between GSL Rule and Normalized Nearest Neighbour

Search

Dhillon et al. [2011] discuss an interesting connection between the GS rule and the nearest-

neighbour-search (NNS) problem for objectives of the form

min
x∈IRn

F (x) = f(Ax), (2.16)

This is a special case of h1 with no gi functions, and its gradient has the special form

∇F (x) = AT r(x),

where r(x) = ∇f(Ax). We use the symbol r because it is the residual vector (Ax − b) in the

special case of least squares. For this problem structure the GS rule has the form

ik ∈ argmax
i
|∇if(xk)|

≡ argmax
i
|r(xk)Tai|,

where ai denotes column i of A for i = 1, . . . , n. Dhillon et al. [2011] propose to approximate

26

Figure 2.3: Visualization of the GS rule as a nearest neighbour problem. The “nearest neigh-
bour” corresponds to the vector that is the closest (in distance) to r(x), i.e., we want to minimize
the distance between two vectors. Alternatively, the GS rule is evaluated as a maximization of
an inner product. This makes sense as the smaller the angle between two vectors, the larger
the cosine of that angle and in turn, the larger the inner product.

the above argmax by solving the following NNS problem (see Figure 2.3)

ik ∈ argmin
i∈[2n]

‖r(xk)− ai‖,

where i in the range (n + 1) through 2n refers to the negation −(ai−n) of column (i − n) and

if the selected ik is greater than n we return (i − n). We can justify this approximation using

the logic

ik ∈ argmin
i∈[2n]

‖r(xk)− ai‖

≡ argmin
i∈[2n]

1

2
‖r(xk)− ai‖2

≡ argmin
i∈[2n]

1

2
‖r(xk)‖2︸ ︷︷ ︸
constant

−r(xk)Tai +
1

2
‖ai‖2

≡ argmax
i∈[n]

|r(xk)Tai| −
1

2
‖ai‖2

≡ argmax
i∈[n]

|∇if(xk)| − 1

2
‖ai‖2.

Thus, the NNS computes an approximation to the GS rule that is biased towards coordinates

where ‖ai‖ is small. Note that this formulation is equivalent to the GS rule in the special case

that ‖ai‖ = 1 (or any other constant) for all i. Shrivastava and Li [2014] have more recently

considered the case where ‖ai‖ ≤ 1 and incorporate powers of ‖ai‖ in the NNS to yield a better

approximation.

A further interesting property of the GSL rule is that we can often formulate the exact GSL

27

rule as a normalized NNS problem. In particular, for problem (2.16) the Lipschitz constants

will often have the form Li = γ‖ai‖2 for a some positive scalar γ. For example, least squares

has γ = 1 and logistic regression has γ = 0.25. When the Lipschitz constants have this form,

we can compute the exact GSL rule by solving a normalized NNS problem,

ik ∈ argmin
i∈[2n]

∣∣∣∣∣∣∣∣r(xk)− ai
‖ai‖

∣∣∣∣∣∣∣∣ . (2.17)

The exactness of this formula follows because

ik ∈ argmin
i∈[2n]

∣∣∣∣∣∣∣∣r(xk)− ai
‖ai‖

∣∣∣∣∣∣∣∣
≡ argmin

i∈[2n]

1

2
‖r(xk)− ai/‖ai‖‖2

≡ argmin
i∈[2n]

1

2
‖r(xk)‖2︸ ︷︷ ︸
constant

−r(x
k)Tai
‖ai‖

+
1

2

‖ai‖2
‖ai‖2︸ ︷︷ ︸

constant

≡ argmax
i∈[n]

|r(xk)Tai|
‖ai‖

≡ argmax
i∈[n]

|r(xk)Tai|√
γ‖ai‖

≡ argmax
i∈[n]

|∇if(xk)|√
Li

.

Thus, the form of the Lipschitz constant conveniently removes the bias towards smaller values

of ‖ai‖ that gets introduced when we try to formulate the classic GS rule as a NNS problem.

Interestingly, in this setting we do not need to know γ to implement the GSL rule as a NNS

problem.

2.6 Approximate Gauss-Southwell

In many applications, computing the exact GS rule is too inefficient to be of any practical use.

However, a computationally cheaper approximate GS rule might be available. Approximate GS

rules under multiplicative and additive errors were considered by Dhillon et al. [2011] in the

convex case, but in this setting the convergence rate is similar to the rate achieved by random

selection. In this section, we give rates depending on µ1 for approximate GS rules.

2.6.1 Multiplicative Errors

In the multiplicative error regime, the approximate GS rule chooses an ik satisfying

|∇ikf(xk)| ≥ ‖∇f(xk)‖∞(1− εk),

28

for some εk ∈ [0, 1). In this regime, our basic bound on the progress (2.2) still holds, as it was

defined for any ik. We can incorporate this type of error into our lower bound (2.8) to obtain

f(x∗) ≥ f(xk)− 1

2µ1
‖∇f(xk)‖2∞

≥ f(xk)− 1

2µ1(1− εk)2
|∇ikf(xk)|2.

This implies a convergence rate of

f(xk+1)− f(x∗) ≤
(

1− µ1(1− εk)2

L

)
[f(xk)− f(x∗)].

Thus, the convergence rate of the method is nearly identical to using the exact GS rule for

small εk (and it degrades gracefully with εk). This is in contrast to having an error in the

gradient [Friedlander and Schmidt, 2012], where the error ε must decrease to zero over time.

2.6.2 Additive Errors

In the additive error regime, the approximate GS rule chooses an ik satisfying

|∇ikf(xk)| ≥ ‖∇f(xk)‖∞ − εk,

for some εk ≥ 0. In Appendix A.6, we show that under this rule, we have

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)k [
f(x0)− f(x∗) +Ak

]
,

where

Ak ≤min

{
k∑
i=1

(
1− µ1

L

)−i
εi

√
2L1

L

√
f(x0)− f(x∗),

k∑
i=1

(
1− µ1

L

)−i(
εi

√
2

L

√
f(x0)− f(x∗) +

ε2i
2L

)}
,

where L1 is the Lipschitz constant of ∇f with respect to the 1-norm. Note that L1 could be

substantially larger than L, so the second part of the minimum in Ak is likely to be the smaller

part unless the εi are large. This regime is closer to the case of having an error in the gradient,

as to obtain convergence the εk must decrease to zero. This result implies that a sufficient

condition for the algorithm to obtain a linear convergence rate is that the errors εk converge to

zero at a linear rate. Further, if the errors satisfy εk = O(ρk) for some ρ < (1−µ1/L), then the

convergence rate of the method is the same as if we used an exact GS rule. On the other hand,

if εk does not decrease to zero, we may end up repeatedly updating the same wrong coordinate

and the algorithm will not converge (though we could switch to the randomized method if this

29

is detected).

2.7 Proximal Gradient Gauss-Southwell

One of the key motivations for the resurgence of interest in coordinate descent methods is their

performance on problems of the form

min
x∈Rn

F (x) ≡ f(x) +
n∑
i=1

gi(xi),

where f is smooth and convex and the gi are convex, but possibly non-smooth. This includes

problems with `1-regularization, and optimization with lower and/or upper bounds on the

variables. Similar to proximal gradient methods, we can apply the proximal operator to the

coordinate update,

xk+1 = prox 1
L
gik

[
xk − 1

L
∇ikf(xk)eik

]
,

where

proxαgi [y] = argmin
x∈Rn

1

2
‖x− y‖2 + αgi(xi).

We note that all variables other than the selected xi stay at their existing values in the optimal

solution to this problem. With random coordinate selection, Richtárik and Takáč [2014] show

that this method has a convergence rate of

E[F (xk+1)− F (x∗)] ≤
(

1− µ

nL

)
[F (xk)− F (x∗)],

similar to the unconstrained/smooth case.

There are several generalizations of the GS rule to this scenario. Here we consider three

possibilities, all of which are equivalent to the GS rule if the gi are not present. First, the

GS-s rule chooses the coordinate with the most negative directional derivative. This strategy is

popular for `1-regularization [Li and Osher, 2009, Shevade and Keerthi, 2003, Wu and Lange,

2008] and in general is given by [see Bertsekas, 2016, §8.4]

ik ∈ argmax
i

{
min
s∈∂gi

|∇if(xk) + s|
}
.

However, the length of the step (‖xk+1 − xk‖) could be arbitrarily small under this choice. In

contrast, the GS-r rule chooses the coordinate that maximizes the length of the step [Dhillon

et al., 2011, Tseng and Yun, 2009b],

ik ∈ argmax
i

{∣∣∣∣xki − prox 1
L
gi

[
xki −

1

L
∇if(xk)

]∣∣∣∣} .
This rule is effective for bound-constrained problems, but it ignores the change in the non-

30

smooth term (gi(x
k+1
i)−gi(xkk)). Finally, the GS-q rule maximizes progress assuming a quadratic

upper bound on f [Tseng and Yun, 2009b],

ik ∈ argmin
i

{
min
d

{
f(xk) +∇if(xk)d+

L

2
d2 + gi(x

k
i + d)− gi(xki)

}}
.

While the least intuitive rule, the GS-q rule seems to have the best theoretical properties.

Further, if we use Li in place of L in the GS-q rule (which we call the GSL-q strategy), then we

obtain the GSL rule if the gi are not present. In contrast, using Li in place of L in the GS-r

rule (which we call the GSL-r strategy) does not yield the GSL rule as a special case.

In Appendix A.7, we show that using the GS-q rule yields a convergence rate of

F (xk+1)− F (x∗) ≤ min

{(
1− µ

Ln

)
[f(xk)− f(x∗)],

(
1− µ1

L

)
[f(xk)− f(x∗)] + εk

}
, (2.18)

where εk is bounded above by a measure of the non-linearity of the gi along the possible

coordinate updates times the inverse condition number µ1/L. Note that εk goes to zero as k

increases. In contrast, in Appendix A.7 we also give counter-examples showing that the rate

in (2.18) does not hold with εk = 0 for the GS-s or GS-r rule, even if the minimum is replaced

by a maximum. Thus, any bound for the GS-s or GS-r rule would be slower than the expected

rate under random selection, while the GS-q rule leads to a better bound.

Recently, Song et al. [2017] proposed an alternative GS-q rule for `1-regularized problems

(g(x) := ‖x‖1) that uses an `1-norm square approximation. A generalized version of this update

rule is given by

dk ∈ min
d∈IRn

{
〈∇f(xk), d〉+

L

2
‖d‖21 + g(xk + d)

}
xk+1 = xk + dk,

which is equivalent to the GS rule in the smooth case [Boyd and Vandenberghe, 2004, §9.4.2].

Song et al. [2017] show that this version of the GS-q rule improves the convergence rate by

a constant factor over random in the convex, `1-regularized ERM setting. In Appendix A.8

we show that the εk term in (2.18) is zero when using this update and assuming L1-Lipschitz

continuity. However, unlike the other non-smooth generalizations of the GS rule, this general-

ization may select more than one variable to update at each iteration (update all coordinates

corresponding to non-zero entries in dk) making this method more like block coordinate descent.

31

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
`2 -regularized sparse least squares

Epochs

O
b

je
c

ti
v

e

Cyclic

Random

Lipschitz

GS

GSL

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
`2 -regularized sparse logistic regression

Epochs

O
b

je
c

ti
v
e

Cyclic−constant Cyclic−exact
Lipschitz−constant

Lipschitz−exact

Random−constant

Random−exact

GS−constant

GS−exact

GSL−constant
GSL−exact

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Over-determined dense least squares

Epochs

O
b

je
c

ti
v

e

Lipschitz

Cyclic

Random

GS

Approximated−GS
Approximated−GSL

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
`1 -regularized underdetermined sparse least squares

Epochs

O
b

je
c

ti
v

e

Random Cyclic
Lipschitz

GS−q
GS−r

G
S

−s

GSL−q

GSL−r

Figure 2.4: Comparison of coordinate selection rules for 4 instances of problem h1.

32

2.8 Experiments

We first compare the efficacy of different coordinate selection rules on the following simple in-

stances of h1.

`2-regularized sparse least squares: Here we consider the problem

min
x

1

2m
‖Ax− b‖2 +

λ

2
‖x‖2,

an instance of problem h1. We set A to be an m by n matrix with entries sampled from a

N (0, 1) distribution (with m = 1000 and n = 1000). We then added 1 to each entry (to induce

a dependency between columns), multiplied each column by a sample from N (0, 1) multiplied

by ten (to induce different Lipschitz constants across the coordinates), and only kept each entry

of A non-zero with probability 10 log(n)/n (a sparsity level that allows the Gauss-Southwell rule

to be applied with cost O(log3(n)). We set λ = 1 and b = Ax + e, where the entries of x and

e were drawn from a N (0, 1) distribution. In this setting, we used a step-size of 1/Li for each

coordinate i, which corresponds to exact coordinate optimization.

`2-regularized sparse logistic regression: Here we consider the problem

min
x

1

m

m∑
i=1

log(1 + exp(−biaTi x)) +
λ

2
‖x‖2.

We set the aTi to be the rows of A from the previous problem, and set b = sign(Ax), but

randomly flipping each bi with probability 0.1. In this setting, we compared using a step-size

of 1/Li to using exact coordinate optimization.

Over-determined dense least squares: Here we consider the problem

min
x

1

2m
‖Ax− b‖2,

but, unlike the previous case, we do not set elements of A to zero and we make A have dimen-

sion 1000 by 100. Because the system is over-determined, it does not need an explicit strongly

convex regularizer to induce global strong convexity. In this case, the density level means that

the exact GS rule is not efficient. Hence, we use a balltree structure [Omohundro, 1989] to

implement an efficient approximate GS rule based on the connection to the NNS problem dis-

covered by Dhillon et al. [2011]. On the other hand, we can compute the exact GSL rule for

this problem as a NNS problem as discussed in Section 2.5.3.

`1-regularized underdetermined sparse least squares: Here we consider the non-smooth

33

problem

min
x

1

2m
‖Ax− b‖2 + λ‖x‖1.

We generate A as we did for the `2-regularized sparse least squares problem, except with the

dimension 1000 by 10000. This problem is not globally strongly convex, but will be strongly

convex along the dimensions that are non-zero in the optimal solution.

We plot the objective function (divided by its initial value) of coordinate descent under dif-

ferent selection rules in Figure 2.4. Even on these simple datasets, we see dramatic differences

in performance between the different strategies. In particular, the GS rule outperforms random

coordinate selection (as well as cyclic selection) by a substantial margin in all cases. The Lips-

chitz sampling strategy can narrow this gap, but it remains large (even when an approximate

GS rule is used). The difference between GS and randomized selection seems to be most dra-

matic for the `1-regularized problem; the GS rules tend to focus on the non-zero variables while

most randomized/cyclic updates focus on the zero variables, which tend not to move away from

zero.4 Exact coordinate optimization and using the GSL rule seem to give modest but consis-

tent improvements. The three non-smooth GS-∗ rules had nearly identical performance despite

their different theoretical properties. The GSL-q rule gave better performance than the GS-∗
rules, while the GSL-r variant performed worse than even cyclic and random strategies. We

found it was also possible to make the GS-s rule perform poorly by perturbing the initialization

away from zero.

While the results in this section are in terms of epochs, we direct the reader to Nutini et al.

[2015, Appendix I] for runtime experiments for the `2-regularized sparse least squares problem

defined above. The authors use the efficient max-heap implementation in scikit-learn [Pe-

dregosa et al., 2011] and show that the GS and GSL rules also offer benefits in terms of runtime

over cyclic, random and Lipschitz sampling.

We next consider an instance of problem h2, that is, performing label propagation for semi-

supervised learning in the ‘two moons’ dataset [Zhou et al., 2003]. We generate 500 samples

from this dataset, randomly label five points in the data, and connect each node to its five

nearest neighbours. This high level of sparsity is typical of graph-based methods for semi-

supervised learning, and allows the exact Gauss-Southwell rule to be implemented efficiently.

We use the quadratic labeling criterion of Bengio et al. [2006], which allows exact coordinate

optimization and is normally optimized with cyclic coordinate descent. We plot the performance

under different selection rules in Figure 2.5. Here, we see that even cyclic coordinate descent

outperforms randomized coordinate descent, but that the GS and GSL rules give even better

performance. We note that the GS and GSL rules perform similarly on this problem since the

Lipschitz constants do not vary much.

4To reduce the cost of the GS-s method in this context, Shevade and Keerthi [2003] consider a variant where
we first compute the GS-s rule for the non-zero variables and if an element is sufficiently large then they do not
consider the zero variables.

34

Epochs
0 5 10 15 20 25 30

O
b
j
e
c
t
i
v
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cyclic

Random

Lipschitz

G
S

G
SL

Graph-based label propagation

Figure 2.5: Comparison of coordinate selection rules for graph-based semi-supervised learning.

2.9 Discussion

It is clear that the GS rule is not practical for every problem where randomized methods are

applicable. Nevertheless, we have shown that even approximate GS rules can obtain better

convergence rate bounds than fully-randomized methods. We have given a similar justification

for the use of exact coordinate optimization, and we note that our argument could also be

used to justify the use of exact coordinate optimization within randomized coordinate descent

methods (as used in our experiments). We have also proposed the improved GSL rule, and

considered approximate/proximal variants. In Chapter 4 we show that our analysis can be

used for scenarios without strong convexity and in Chapter 5 we show it also applies to block

updates. We expect it could also be used for accelerated/parallel methods [Fercoq and Richtárik,

2015], for primal-dual rates of dual coordinate ascent [Shalev-Shwartz and Zhang, 2013], for

successive projection methods [Leventhal and Lewis, 2010] and for boosting algorithms [Rätsch

et al., 2001].

35

Chapter 3

Greedy Kaczmarz

Solving large linear systems is a fundamental problem in machine learning. Applications range

from least-squares problems to Gaussian processes to graph-based semi-supervised learning.

All of these applications (and many others) benefit from advances in solving large-scale linear

systems. The Kaczmarz method is a particular iterative algorithm suited for solving consistent

linear systems of the form Ax = b. This method as we know it today was originally proposed

by Polish mathematician Stefan Kaczmarz [1937] and later re-invented by Gordon et al. [1970]

under the name algebraic reconstruction technique (ART). However, this method is closely re-

lated to the method of alternating projections, which was proposed by von Neumann in 1933 for

the case of 2 subspaces (published in 1950, von Neumann [1950]). It has been used in numerous

applications including image reconstruction and digital signal processing, and belongs to sev-

eral general categories of methods including row-action, component-solution, cyclic projection,

successive projection methods [Censor, 1981] and stochastic gradient descent (when applied to

a least-squares problem [Needell et al., 2013]).

At each iteration k, the Kaczmarz method uses a selection rule to choose some row ik of

A and then projects the current iterate xk onto the corresponding hyperplane aTikx
k = bik .

Classically, the two categories of selection rules are cyclic and random. Cyclic selection repeat-

edly cycles through the coordinates in sequential order, making it simple to implement and

computationally inexpensive. There are various linear convergence rates for cyclic selection [see

Deutsch, 1985, Deutsch and Hundal, 1997, Galántai, 2005], but these rates are in terms of cycles

through the entire dataset and involve constants that are not easily interpreted. Further, the

performance of cyclic selection worsens if we have an undesirable ordering of the rows of A.

Randomized selection has recently become the default selection rule in the literature on

Kaczmarz-type methods. Empirically, selecting ik randomly often performs substantially better

in practice than cyclic selection [Feichtinger et al., 1992, Herman and Meyer, 1993]. Although a

number of asymptotic convergence rates for randomized selection have been presented [Censor

et al., 1983, Hanke and Niethammer, 1990, Tanabe, 1971, Whitney and Meany, 1967], the pivotal

theoretical result supporting the use of randomized selection for the Kaczmarz method was given

by Strohmer and Vershynin [2009]. They proved a simple non-asymptotic linear convergence

rate (in expectation) in terms of the number of iterations, when rows are selected proportional

to their squared norms. This work spurred numerous extensions and generalizations of the

randomized Kaczmarz method [Lee and Sidford, 2013, Leventhal and Lewis, 2010, Liu and

Wright, 2014, Ma et al., 2015a, Needell, 2010, Zouzias and Freris, 2013], including similar rates

36

when we replace the equality constraints with inequality constraints.

Rather than cyclic or randomized, in this chapter we consider greedy selection rules. There

are very few results in the literature that explore the use of greedy selection rules for Kaczmarz-

type methods. Griebel and Oswald [2012] present the maximum residual rule for multiplicative

Schwarz methods, for which the randomized Kaczmarz iteration is a special case. Their theo-

retical results show similar convergence rate estimates for both greedy and random methods,

suggesting there is no advantage of greedy selection over randomized selection (since greedy

selection has additional computational costs). Eldar and Needell [2011] propose a greedy maxi-

mum distance rule, which they approximate using the Johnson-Lindenstrauss [1984] transform

to reduce the computation cost. They show that this leads to a faster algorithm in practice,

and show that this rule may achieve more progress than random selection on certain iterations.

In the next section, we define several relevant problems of interest in machine learning that

can be solved via Kaczmarz methods. Subsequently, we define the greedy selection rules and dis-

cuss cases where they can be computed efficiently. In Section 3.3 we give faster convergence rate

analyses for both the maximum residual rule and the maximum distance rule, which clarify the

relationship of these rules to random selection and show that greedy methods will typically have

better convergence rates than randomized selection. Section 3.4 contrasts Kaczmarz methods

with coordinate descent methods, Section 3.5 considers a simplified setting where we explicitly

compute the constants in the convergence rates, Section 3.6 considers how these convergence

rates are changed under approximations to the greedy rules, and Section 3.7 discusses the case

of inequality constraints. We also propose provably-faster randomized selection rules for matri-

ces A with pairwise-orthogonal rows by using the so-called “orthogonality graph” (Section 3.8).

Finally, in Section 3.9 we present numerical experiments evaluating greedy Kaczmarz methods.

3.1 Problems of Interest

We first consider systems of linear equations,

Ax = b, (3.1)

where A is an m × n matrix and b ∈ IRm. We assume the system is consistent, meaning a

solution x∗ exists. We denote the rows of A by a>1 , . . . , a
>
m, where each ai ∈ Rn and all rows

have at least one non-zero entry, and use b = (b1, . . . , bm)>, where each bi ∈ IR. One of the

most important examples of a consistent linear system, and a fundamental model in machine

learning, is the least squares problem,

min
x∈IRn

1

2
‖Ax− b‖2.

37

An appealing way to write a least squares problem as a linear system is to solve the (n + m)-

variable consistent system [see also Zouzias and Freris, 2013](
A −I
0 AT

)(
x

y

)
=

(
b

0

)
.

Other applications in machine learning that involve solving consistent linear systems include:

least-squares support vector machines, Gaussian processes, fitting the final layer of a neural

network (using squared-error), graph-based semi-supervised learning or other graph-Laplacian

problems [Bengio et al., 2006], and finding the optimal configuration in Gaussian Markov ran-

dom fields [Rue and Held, 2005].

Kaczmarz methods can also be applied to solve consistent systems of linear inequalities,

Ax ≤ b,

or combinations of linear equalities and inequalities. We believe there is a lot potential to

use this application of Kaczmarz methods in machine learning. Indeed, a classic example

of solving linear inequalities is finding a linear separator for a binary classification problem.

The classic perceptron algorithm is a generalization of the Kaczmarz method, but unlike the

classic sublinear rates of perceptron methods [Novikoff, 1962] we can show a linear rate for the

Kaczmarz method.

Kaczmarz methods could also be used to solve the `1-regularized robust regression problem,

min
x
f(x) := ‖Ax− b‖1 + λ‖x‖1,

for λ ≥ 0. We can formulate finding an x with f(x) ≤ τ for some constant τ as a set of linear

inequalities. By doing a binary search for τ and using warm-starting, this can be substantially

faster than existing approaches like stochastic subgradient methods (which have a sublinear

convergence rate) or formulating as a linear program (which is not scaleable due to the super-

linear cost). The above logic applies to many piecewise-linear problems in machine learning like

variants of support vector machines/regression with the `1-norm, regression under the `∞-norm,

and linear programming relaxations for decoding in graphical models.

3.2 Kaczmarz Algorithm and Greedy Selection Rules

The Kaczmarz algorithm for solving linear systems begins from an initial guess x0, and each

iteration k chooses a row ik and projects the current iterate xk onto the hyperplane defined by

aTikx
k = bik . This gives the iteration

xk+1 = xk +
bik − aTikxk
‖aik‖2

aik , (3.2)

38

and the algorithm converges to a solution x∗ under weak conditions (e.g., each i is visited

infinitely often). We consider two greedy selection rules: the maximum residual rule and the

maximum distance rule. The maximum residual (MR) rule selects ik according to

ik ∈ argmax
i

|aTi xk − bi|, (3.3)

which is the equation ik that is ‘furthest’ from being satisfied. The maximum distance (MD)

rule selects ik according to

ik ∈ argmax
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ , (3.4)

which is the rule that maximizes the distance between iterations, ‖xk+1 − xk‖.

3.2.1 Efficient Calculations for Sparse A

In general, computing these greedy selection rules exactly is too computationally expensive,

but in some applications we can compute them efficiently. For example, consider a sparse A

with at most c non-zeros per column and at most r non-zeros per row. In this setting, we

show in Appendix B.1 that using a max-heap structure both rules can be computed exactly in

O(cr logm) time. We show a simple example of this process in Figure 3.1 for a matrix with the

following sparsity pattern,

A =

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

0 ∗ ∗ 0 0

0 0 0 ∗ 0

0 0 0 0 ∗

 .

We exploit the fact that projecting onto row i does not change the residual of row j if ai and

aj do not share a non-zero index.

The above sparsity condition guarantees that row i is orthogonal to row j, and indeed

projecting onto row i will not change the residual of row j under the more general condition

that ai and aj are orthogonal. Consider what we call the orthogonality graph: an undirected

graph on m nodes where we place on edge between nodes i and j if ai is not orthogonal to aj .

Given this graph, to update all residuals after we update a row i we only need to update the

neighbours of node i in this graph. Even if A is dense (r = n and c = m), if the maximum

number of neighbours is g, then tracking the maximum residual costs O(gr + g log(m)). If g

is small, this could still be comparable to the O(r + log(m)) cost of using existing randomized

selection strategies.

3.2.2 Approximate Calculation

Many applications, particularly those arising from graphical models with a simple structure, will

allow efficient calculation of the greedy rules using the method of the previous section. However,

39

i = 2
d = 0.7

i = 3
d = 0.3

i = 4
d = 0.4

i = 1
d = 0.2

i = 5
d = 0.1

i = 2
d′ = 0

i = 3
d′ = 0.6

i = 4
d = 0.4

i = 1
d′ = 0.8

i = 5
d = 0.1

i = 1
d′ = 0.8

i = 2
d′ = 0

i = 3
d′ = 0.6

i = 4
d = 0.4

i = 5
d = 0.1

(a) (b) (c)

Figure 3.1: Example of the updating procedure for a max-heap structure on a 5 × 5 sparse
matrix: (a) select the node with highest d value; (b) update selected sample and neighbours;
(c) reorder max-heap structure.

in other applications it will be too inefficient to calculate the greedy rules. Nevertheless, Eldar

and Needell [2011] show that it is possible to efficiently select an ik that approximates the greedy

rules by making use of the dimensionality reduction technique of Johnson and Lindenstrauss

[1984]. Their experiments show that approximate greedy rules can be sufficiently accurate and

that they still outperform random selection. After first analyzing exact greedy rules in the next

section, we analyze the effect of using approximate rules in Section 3.6.

3.3 Analyzing Selection Rules

All the convergence rates we discuss use a relationship between the terms ‖xk+1 − x∗‖ and

‖xk − x∗‖. To derive this relationship, we consider the following expansion of ‖xk − x∗‖2:

‖xk − x∗‖2 = ‖xk − xk+1 + xk+1 − x∗‖2

= ‖xk − xk+1‖2 + ‖xk+1 − x∗‖2 − 2〈xk+1 − xk, xk+1 − x∗〉.

Rearranging, we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2−‖xk+1 − xk‖2 + 2〈xk+1−xk, xk+1 − x∗〉. (3.5)

40

Given the Kaczmarz update (3.2), we can say that xk+1 − xk = γkaik for some scalar γk and

selected ik. Then the last term in (3.5) equals 0, as shown by the following argument,

(xk+1 − xk)T (xk+1 − x∗) = γaTik(xk+1 − x∗)
= γ(aTikx

k+1 − aTikx
∗)

= γ(bik − bik)

= 0,

where the last equality follows from the fact that both xk+1 and x∗ solve the equality aTik · = bik .

This proves that (xk+1 − xk) is orthogonal to (xk+1−x∗) (see Figure 3.2). Then using the

xk

x∗

xk+1

Figure 3.2: Visualizing the orthogonality of vectors xk+1 − xk and xk+1−x∗.

definition of xk+1 from (3.2) and simplifying (3.5), we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −
(
aTikx

k − bik
)2

‖aik‖2
. (3.6)

3.3.1 Randomized and Maximum Residual

We first give an analysis of the Kaczmarz method with uniform random selection of the row to

update i (which we abbreviate as ‘U’). Conditioning on the σ-field Fk generated by the sequence

{x0, x1, . . . , xk}, and taking expectations of both sides of (3.6), when ik is selected using U we

41

obtain

E[‖xk+1 − x∗‖2] = ‖xk − x∗‖2 − E

[(
aTi x

k − bi
)2

‖ai‖2

]

= ‖xk − x∗‖2 −
m∑
i=1

1

m

(a>i (xk − x∗))2

‖ai‖2

≤ ‖xk − x∗‖2 − 1

m‖A‖2∞,2

m∑
i=1

(a>i (xk − x∗))2

= ‖xk − x∗‖2 − 1

m‖A‖2∞,2
‖A(xk − x∗)‖2

≤
(

1− σ(A, 2)2

m‖A‖2∞,2

)
‖xk − x∗‖2, (3.7)

where ‖A‖2∞,2 := maxi{‖ai‖2} and σ(A, 2) is the Hoffman [1952] constant.5 We have assumed

that xk is not a solution, allowing us to use Hoffman’s bound (the inequality is trivially satisfied

if xk is a solution to Ax = b). When A has independent columns, σ(A, 2) is the nth singular

value of A and in general it is the smallest non-zero singular value.

The argument above is related to the analysis of Vishnoi [2013] but is simpler due to the

use of the Hoffman bound. Further, this simple argument makes it straightforward to derive

bounds on other rules. For example, we can derive the convergence rate bound of Strohmer and

Vershynin [2009] by following the above steps but selecting i non-uniformly with probability

‖ai‖2/‖A‖2F (where ‖A‖F is the Frobenius norm of A). We review these steps in Appendix B.2,

showing that this non-uniform (NU) selection strategy has

E[‖xk+1 − x∗‖2] ≤
(

1− σ(A, 2)2

‖A‖2F

)
‖xk − x∗‖2. (3.8)

This strategy requires prior knowledge of the row norms of A, but this is a one-time computation

and can be reused for any linear system involving A. Because ‖A‖2F ≤ m‖A‖2∞,2, the NU

rate (3.8) is at least as fast as the uniform rate (3.7).

While a trivial analysis shows that the MR rule also satisfies (3.7) in a deterministic sense,

in Appendix B.2 we give a tighter analysis of the MR rule showing it has the convergence rate

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖A‖2∞,2

)
‖xk − x∗‖2, (3.9)

where the Hoffman-like constant σ(A,∞) satisfies the relationship

σ(A, 2)√
m
≤ σ(A,∞) ≤ σ(A, 2).

5In this work, any reference to the Hoffman constant is in fact the inverse of the Hoffman constant defined
by Hoffman [1952].

42

Thus, at one extreme the maximum residual rule obtains the same rate as (3.7) for uniform

selection when σ(A, 2)2/m ≈ σ(A,∞)2. However, at the other extreme the maximum residual

rule could be faster than uniform selection by a factor of m (σ(A,∞)2 ≈ σ(A, 2)2). Thus,

although the uniform and MR bounds are the same in the worst case, the MR rule can be

superior by a large margin.

In contrast to comparing U and MR, the MR rate may be faster or slower than the NU

rate. This is because

‖A‖∞,2 ≤ ‖A‖F ≤
√
m‖A‖∞,2,

so these quantities and the relationship between σ(A, 2) and σ(A,∞) influence which bound is

tighter.

3.3.2 Tighter Uniform and MR Analysis

In our derivations of rates (3.7) and (3.9), we use the inequality

‖ai‖2 ≤ ‖A‖2∞,2 ∀ i, (3.10)

which leads to a simple result but could be very loose if the range of the row norms is large. In

this section, we give tighter analyses of the U and MR rules that are less interpretable but are

tighter because they avoid this inequality.

In order to avoid using this inequality for our analysis of U, we can absorb the row norms of

A into a row weighting matrix D, where D = diag(‖a1‖, ‖a2‖, . . . , ‖am‖). Defining Ā := D−1A,

we show in Appendix B.3 that this results in the following upper bound on the convergence

rate for uniform random selection,

E[‖xk+1 − x∗‖2] ≤
(

1− σ(Ā, 2)2

m

)
‖xk − x∗‖2. (3.11)

A similar result is given by Needell et al. [2013] under the stronger assumption that A has

independent columns. The rate in (3.11) is tighter than (3.7), since σ(A, 2)/‖A‖∞,2 ≤ σ(Ā, 2)

[van der Sluis, 1969]. Further, this rate can be faster than the non-uniform sampling method of

Strohmer and Vershynin [2009]. For example, suppose row i is orthogonal to all other rows but

has a significantly larger row norm than all other row norms. In other words, ‖ai‖ >> ‖aj‖ for

all j 6= i. In this case, NU selection will repeatedly select row i (even though it only needs to

be selected once), whereas U will only select it on each iteration with probability 1/m. It has

been previously pointed out that Strohmer and Vershynin’s method can perform poorly if the

problem has one row norm that is significantly larger than the other row norms [Censor et al.,

2009]. This result theoretically shows that U can have a tighter bound than the NU method of

Strohmer and Vershynin.

In Appendix B.3, we also give a simple modification of our analysis of the MR rule, which

43

leads to the rate

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2. (3.12)

This bound depends on the specific ‖aik‖ corresponding to the ik selected at each iteration k.

This convergence rate will be faster whenever we select an ik with ‖aik‖ < ‖A‖∞,2. However, in

the worst case we repeatedly select ik values with ‖aik‖ = ‖A‖∞,2 so there is no improvement.

This issue is considered in [Sepehry, 2016], where the authors give tighter bounds on the sequence

of ‖aik‖ values for problems with sparse orthogonality graphs.

3.3.3 Maximum Distance Rule

If we can only perform one iteration of the Kaczmarz method, the optimal rule (with respect to

iteration progress) is in fact the MD rule. In Appendix B.4, we show that this strategy achieves

a rate of

‖xk+1 − x∗‖2 ≤
(

1− σ(Ā,∞)2

)
‖xk − x∗‖2, (3.13)

where σ(Ā,∞) satisfies

max

{
σ(Ā, 2)√

m
,
σ(A, 2)

‖A‖F
,
σ(A,∞)

‖A‖∞,2

}
≤σ(Ā,∞)≤σ(Ā, 2).

Thus, the maximum distance rule is at least as fast as the fastest among the U/NU/MR∞ rules,

where MR∞ refers to rate (3.9). Further, in Appendix B.9 we show that this new rate is not

only simpler but is strictly tighter than the rate reported by Eldar and Needell [2011] for the

exact MD rule. In Table 3.1, we summarize the relationships we have discussed in this section

Table 3.1: Comparison of Convergence Rates

U∞ U NU MR∞ MR MD

U∞ = ≤ ≤ ≤ ≤ ≤
U = P P P ≤
NU = P P ≤
MR∞ = ≤ ≤
MR = ≤
MD =

among the different selection rules. We use the following abbreviations: U∞ - uniform (3.7),

U - tight uniform (3.11), NU - non-uniform (3.8), MR∞ - maximum residual (3.9), MR - tight

maximum residual (3.12) and MD - maximum distance (3.13). The inequality sign (≤) indicates

that the bound for the selection rule listed in the row is slower or equal to the rule listed in the

column, while we have written ‘P’ to indicate that the faster method is problem-dependent.

44

3.4 Kaczmarz and Coordinate Descent

With the exception of the tighter U and MR rate, the results of the previous section are

analogous to the results in Chapter 2 for coordinate descent methods. Indeed, if we apply

coordinate descent methods to minimize the squared error between Ax and b then we ob-

tain similar-looking rates and analogous conclusions. With cyclic selection this is called the

Gauss-Seidel method [Seidel, 1874], and as discussed by Ma et al. [2015a] there are several con-

nections/differences between this method and Kaczmarz methods. In this section we highlight

some key differences.

First, the previous work required strong convexity which would require that A has indepen-

dent columns. This is often unrealistic, and our results from the previous section hold for any

A.6 Second, here our results are in terms of the iterates ‖xk−x∗‖, which is the natural measure

for linear systems. The coordinate descent results are in terms of f(xk)− f(x∗) and although

it is possible to use strong convexity to turn this into a rate on ‖xk−x∗‖, this would result in a

looser bound and would again require strong convexity to hold (see Ma et al. [2015a]). On the

other hand, coordinate descent gives the least squares solution for inconsistent systems. How-

ever, this is also true of the Kaczmarz method using the formulation in Section 3.1. Another

subtle issue is that the Kaczmarz rates depend on the row norms of A while the coordinate de-

scent rates depend on the column norms. Thus, there are scenarios where we expect Kaczmarz

methods to be much faster and vice versa. Finally, we note that Kaczmarz methods can be

extended to allow inequality constraints (see Section 3.7).

As discussed by Wright [2015], Kaczmarz methods can also be interpreted as coordinate

descent methods on the dual problem

min
y

1

2
‖AT y‖2 − bT y, (3.14)

where x = AT y∗ so that Ax = AAT y∗ = b. Applying the Gauss-Southwell rule in this set-

ting yields the MR rule while applying the Gauss-Southwell-Lipschitz rule yields the MD rule

(see Appendix B.5 for details and numerical comparisons, indicating that in some cases Kacz-

marz substantially outperforms CD). However, applying the analysis of Chapter 2 to this dual

problem would require that A has independent rows and would only yield a rate on the dual

objective, unlike the convergence rates in terms of ‖xk − x∗‖ that hold for general A from the

previous section. In Chapter 4 we revisit the strong-convexity assumption on CD methods and

show that, in fact, it is not a necessary assumption to guarantee a linear convergence rate.

3.5 Example: Diagonal A

To give a concrete example of these rates, we consider the simple case of a diagonal A. While

such problems are not particularly interesting, this case provides a simple setting to understand

6In Chapter 4 we show that the results of Chapter 2 apply for general least squares problems.

45

these different rates without referring to Hoffman bounds.

Consider a square diagonal matrix A with aii > 0 for all i. In this case, the diagonal entries

are the eigenvalues λi of the linear system. The convergence rate constants for this scenario

are given in Table 3.2. We provide the details in Appendix B.6 of the derivations for σ(A,∞)

Table 3.2: Convergence Rate Constants for Diagonal A

U∞

(
1− λ2

m

mλ2
1

)
U

(
1− 1

m

)
NU

(
1− λ2

m∑
i λ

2
i

)
MR∞

1− 1

λ2
1

[∑
i

1

λ2
i

]−1

MR

1− 1

λ2
ik

[∑
i

1

λ2
i

]−1

MD

(
1− 1

m

)

and σ(Ā,∞), as well as substitutions for the uniform, non-uniform, and uniform tight rates to

yield the above table. We note that the uniform tight rate follows from λ2
m(Ā) being equivalent

to the minimum eigenvalue of the identity matrix.

If we consider the most basic case when all the eigenvalues of A are equal, then all the

selection rules yield the same rate of (1− 1/m) and the method converges in at most m steps

for greedy selection rules and in at most O(m logm) steps (in expectation) for the random rules

(due to the ‘coupon collector’ problem). Further, this is the worst situation for the greedy MR

and MD rules since they satisfy their lower bounds on σ(A,∞) and σ(Ā,∞).

Now consider the extreme case when all the eigenvalues are equal except for one. For

example, consider when λ1 = λ2 = · · · = λm−1 > λm with m > 2. Letting α = λ2
i (A) for any

i = 1, . . . ,m− 1 and β = λ2
m(A), we have

β

mα︸︷︷︸
U∞

<
β

α(m− 1) + β︸ ︷︷ ︸
NU

<
β

α+ β(m− 1)︸ ︷︷ ︸
MR∞

≤ 1

λ2
ik

αβ

α+ β(m− 1)︸ ︷︷ ︸
MR

<
1

m︸︷︷︸
U, MD

.

Thus, Strohmer and Vershynin’s NU rule would actually be the worst rule to use, whereas U

and MD are the best. In this case σ(A,∞)2 is closer to its upper bound (≈ β) so we would

expect greedy rules to perform well.

46

3.6 Approximate Greedy Rules

In many applications computing the exact MR or MD rule will be too inefficient, but we can

always approximate it using a cheaper approximate greedy rule, as in the method of Eldar

and Needell [2011]. In this section we consider methods that compute the greedy rules up to

multiplicative or additive errors.

3.6.1 Multiplicative Error

Suppose we have approximated the MR rule such that there is a multiplicative error in our

selection of ik,

|aTikx
k − bik | ≥ max

i
|aTi xk − bi|(1− εk),

for some εk ∈ [0, 1). In this scenario, using the tight analysis for the MR rule, we show in

Appendix B.7 that

‖xk+1 − x∗‖2 ≤
(

1− (1− εk)2σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2.

Similarly, if we approximate the MD rule up to a multiplicative error,∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣ ≥ max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ (1− ε̄k),
for some ε̄k ∈ [0, 1), then we show in Appendix B.7 that the following rate holds,

‖xk+1 − x∗‖2 ≤
(

1− (1− ε̄k)2σ(Ā,∞)2

)
‖xk − x∗‖2.

These scenarios do not require the error to converge to 0. However, if εk or ε̄k is large, then the

convergence rate will be slow.

3.6.2 Additive Error

Suppose we select ik using the MR rule up to additive error,

|aTikx
k − bik |2 ≥ max

i
|aTi xk − bi|2 − εk,

or similarly for the MD rule,∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≥ max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣2 − ε̄k,

47

for some εk ≥ 0 or ε̄k ≥ 0, respectively. We show in Appendix B.8 that this results in the

following convergence rates for the MR and MD rules with additive error (respectively),

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2 +

εk
‖aik‖2

,

and

‖xk+1 − x∗‖2 ≤
(
1− σ(Ā,∞)2

)
‖xk − x∗‖2 + ε̄k.

With an additive error, we need the errors to go to 0 in order for the algorithm to converge; if

it does go to 0 fast enough, we obtain the same rate as if we were calculating the exact greedy

rule. In the approximate greedy rule used by Eldar and Needell [2011], there is unfortunately

a constant additive error. To address this, they compare the approximate greedy selection

to a randomly selected ik and take the one with the largest distance. This approach can be

substantially faster when far from the solution, but may eventually revert to random selection.

We give details comparing Eldar and Needell’s rate to our above rate in Appendix B.9, but

here we note that the above bounds will typically be much stronger.

3.7 Systems of Linear Inequalities

Kaczmarz methods have been extended to systems of linear inequalities,aTi x ≤ bi (i ∈ I≤)

aTi x = bi (i ∈ I=).
(3.15)

where the disjoint index sets I≤ and I= partition the set {1, 2, . . . ,m} [Leventhal and Lewis,

2010]. In this setting the method takes the form

xk+1 = xk − βk

‖ai‖2
ai, with βk =

(aTi x
k − bi)+ (i ∈ I≤)

aTi x
k − bi (i ∈ I=),

where (γ)+ = max{γ, 0}. In Appendix B.10 we derive analogous greedy rules and convergence

results for this case. The main difference in this setting is that the rates are in terms of the

distance of xk to the feasible set S of (3.15),

d(xk, S) = min
z∈S
‖xk − z‖2 = ‖xk − PS(xk)‖2,

where PS(x) is the projection of x onto S. This generalization is needed because with inequality

constraints the different iterates xk may have different projections onto S.

48

3.8 Faster Randomized Kaczmarz Methods

In this section we use the orthogonality graph presented in Section 3.2.1 to design new selection

rules and derive faster convergence rates for randomized Kaczmarz methods. Similar to the

classic convergence rate analyses of cyclic Kaczmarz algorithms, these new rates/rules depend

in some sense on the ‘angle’ between rows, which is a property that is not captured by existing

randomized/greedy analyses (only depend on the row norms).

If two rows ai and aj are orthogonal, then if the equality aTi x
k = bi holds at iteration xk and

we select ik = j, then we know that aTi x
k+1 = bi. More generally, updating ik makes equality

ik satisfied but could make any equality j unsatisfied where aj is not orthogonal to aik . Thus,

after we have selected row ik, equation ik will remain satisfied for all subsequent iterations until

one of its neighbours is selected in the orthogonality graph.7

Based on this, we call a row i ‘selectable’ if i has never been selected or if a neighbour

of i in the orthogonality graph has been selected since the last time i was selected.8 We use

the notation ski = 1 to denote that row i is ‘selectable’ on iteration k, and otherwise we use

ski = 0 and say that i is ‘not selectable’ at iteration k. There is no reason to ever update a

‘not selectable’ row, because by definition the equality is already satisfied. Based on this, we

propose two simple randomized schemes:

1. Adaptive Uniform: select ik uniformly from the selectable rows.

2. Adaptive Non-Uniform: select ik proportional to ‖ai‖2 among the selectable rows.

Let Ak/Āk denote the sub-matrix of A/Ā formed by concatenating the selectable rows on

iteration k, and let mk denote the number of selectable rows. If we are given the set of

selectable nodes at iteration k, then for adaptive uniform we obtain the bound

E[‖xk+1 − x∗‖2] ≤
(

1− σ(Āk, 2)2

mk

)
‖xk − x∗‖2,

while for adaptive non-uniform we obtain the bound

E[‖xk+1 − x∗‖2] ≤
(

1− σ(Ak, 2)2

‖Ak‖2F

)
‖xk − x∗‖2.

If we are not on the first iteration, then at least one node is not selectable and these are strictly

faster than the previous bounds. The gain will be small if most nodes are selectable (which

would be typical of dense orthogonality graphs), but the gain can be very large if only a few

nodes are selectable (which would be typical of sparse orthogonality graphs).

Practical Issues: In order for the adaptive methods to be efficient, we must be able to

efficiently form the orthogonality graph and update the set of selectable nodes. If each node

7Although we only consider randomized Kaczmarz methods in this section, [Sepehry, 2016] uses the orthog-
onality graph to derive a tighter multi-step analysis for the MR rule.

8If we initialize with x0 = 0, then instead of considering all nodes as initially selectable we can restrict to the
nodes i with bi 6= 0 since otherwise we have aTi x

0 = bi already.

49

has at most g neighbours in the orthogonality graph, then the cost of updating the set of

selectable nodes and then sampling from the set of selectable nodes is O(g log(m)) (we give

details in Appendix B.11). In order for this to not increase the iteration cost compared to the

NU method, we only require the very-reasonable assumption that g log(m) = O(n + log(m)).

In many applications where orthogonality is present, g will be far smaller than this.

However, forming the orthogonality graph at the start may be prohibitive: it would cost

O(m2n) in the worst case to test pairwise orthogonality of all nodes. In the sparse case where

each column has at most c non-zeros, we can find an approximation to the orthogonality graph

in O(c2n) by assuming that all rows which share a non-zero are non-orthogonal. Alternately, in

many applications the orthogonality graph is easily derived from the structure of the problem.

For example, in graph-based semi-supervised learning where the graph is constructed based on

the k-nearest neighbours, the orthogonality graph will simply be the given k-nearest neighbour

graph as these correspond to the columns that will be mutually non-zero in A.

3.9 Experiments

Eldar and Needell [2011] have already shown that approximate greedy rules can outperform

randomized rules for dense problems. Thus, in our experiments we focus on comparing the

effectiveness of different rules on very sparse problems where our max-heap strategy allows us

to efficiently compute the exact greedy rules. The first problem we consider is generating a

dataset A with a 50 by 50 lattice-structured dependency (giving n = 2500). The corresponding

A has the following non-zero elements: the diagonal elements Ai,i, the upper/lower diagonal

elements Ai,i+1 and Ai+1,i when i is not a multiple of 50 (horizontal edges), and the diagonal

bands Ai,i+50 and Ai+50,i (vertical edges). We generate these non-zero elements from a N (0, 1)

distribution and generate the target vector b = Az using z ∼ N (0, I). Each row in this

problem has at most four neighbours, and this type of sparsity structure is typical of spatial

Gaussian graphical models and linear systems that arise from discretizing two-dimensional

partial differential equations.

The second problem we consider is solving an overdetermined consistent linear system with

a very sparse A of size 2500× 1000. We generate each row of A independently such that there

are log(m)/2m non-zero entries per row drawn from a uniform distribution between 0 and 1.

To explore how having different row norms affects the performance of the selection rules, we

randomly multiply one out of every 11 rows by a factor of 10,000.

For the third problem, we solve a label propagation problem for semi-supervised learning in

the ‘two moons’ dataset [Zhou et al., 2003]. From this dataset, we generate 2000 samples and

randomly label 100 points in the data. We then connect each node to its 5 nearest neighbours.

Constructing a data set with such a high sparsity level is typical of graph-based methods for

semi-supervised learning. We use a variant of the quadratic labelling criterion of Bengio et al.

50

0 2000 4000 6000 8000 10000 12000

Iteration

−6

−5

−4

−3

−2

−1

0

Lo
g

S
qu

ar
ed

E
rr

or

U

MD

MR

C

RP
NU

A(u)

A(Nu)

Ising model

0 2000 4000 6000 8000 10000 12000

Iteration

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g

D
is

ta
nc

e

U

MD
M

R

C

RP NU

A(u)

A(Nu)

Ising model

0 2000 4000 6000 8000 10000 12000

Iteration

−50

−40

−30

−20

−10

0

Lo
g

S
qu

ar
ed

E
rr

or

U

MD

MR

C

RP

NU A(u
)

A(Nu)

Very Sparse Overdetermined Linear-System

0 2000 4000 6000 8000 10000 12000

Iteration

−12

−10

−8

−6

−4

−2

0

Lo
g

D
is

ta
nc

e

U

M
D

MR

C

RP

NU

A(u)

A(Nu)
Very Sparse Overdetermined Linear-System

0 2000 4000 6000 8000 10000

Iteration

−1.5

−1.0

−0.5

0.0

Lo
g

S
qu

ar
ed

E
rr

or

U

MD

MR C

RP

NU

A(u)

A(Nu)

Label Propagation

0 2000 4000 6000 8000 10000

Iteration

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Lo
g

D
is

ta
nc

e

U

MD

MR
C

RP

NU

A(u)

A(Nu)

Label Propagation

Figure 3.3: Comparison of Kaczmarz selection rules for squared error (left) and distance to
solution (right).

51

[2006],

min
yi|i 6∈S

1

2

n∑
i=1

n∑
j=1

wij(yi − yj)2,

where y is our label vector (each yi can take one of 2 values), S is the set of labels that we

do know and wij ≥ 0 are the weights assigned to each yi describing how strongly we want the

label yi and yj to be similar. We can express this quadratic problem as a linear system that

is consistent by construction (see Appendix B.12), and hence apply Kaczmarz methods. As we

labelled 100 points in our data, the resulting linear system has a matrix of size 1900 × 1900

while the number of neighbours g in the orthogonality graph is at most 5.

In Figure 3.3 we compare the normalized squared error and distance against the iteration

number for 8 different selection rules: cyclic (C), random permutation (RP - where we change

the cycle order after each pass through the rows), uniform random (U), adaptive uniform

random (A(u)), non-uniform random NU, adaptive non-uniform random (A(Nu)), maximum

residual (MR), and maximum distance (MD).

In experiments 1 and 3, MR performs similarly to MD and both outperform all other

selection rules. For experiment 2, the MD rule outperforms all other selection rules in terms

of distance to the solution although MR performs better on the early iterations in terms of

squared error. In Appendix B.12 we explore a ‘hybrid’ method on the overdetermined linear

system problem that does well on both measures. For runtime results on these experiments,

see Nutini et al. [2016, Appendix M].

The new randomized A(u) method did not give significantly better performance than the

existing U method on any dataset. This agrees with our bounds which show that the gain of

this strategy is modest. In contrast, the new randomized A(Nu) method performed much better

than the existing NU method on the over-determined linear system in terms of squared error.

This again agrees with our bounds which suggest that the A(Nu) method has the most to gain

when the row norms are very different. Interestingly, in most experiments we found that cyclic

selection worked better than any of the randomized algorithms. However, cyclic methods were

clearly beaten by greedy methods.

3.10 Discussion

In this chapter, we proved faster convergence rate bounds for a variety of row-selection rules

in the context of Kaczmarz methods for solving linear systems. We have also provided new

randomized selection rules that make use of orthogonality in the data in order to achieve better

theoretical and practical performance. While we have focused on the case of non-accelerated

and single-variable variants of the Kaczmarz algorithm, we expect that all of our conclusions

also hold for accelerated Kaczmarz and block Kaczmarz methods [Gower and Richtárik, 2015,

Lee and Sidford, 2013, Liu and Wright, 2014, Needell and Tropp, 2014, Oswald and Zhou, 2015].

52

Chapter 4

Relaxing Strong Convexity

Fitting most machine learning models involves solving some sort of optimization problem.

Gradient descent, and variants of it like coordinate descent and stochastic gradient, are the

workhorse tools used by the field to solve very large instances of these problems. In this chap-

ter we consider the basic problem of minimizing a smooth function and the convergence rate of

gradient descent methods. It is well-known that if f is strongly convex, then gradient descent

achieves a global linear convergence rate for this problem [Nesterov, 2004]. However, many

of the fundamental models in machine learning like least squares and logistic regression yield

objective functions that are convex but not strongly convex. Further, if f is only convex, then

gradient descent only achieves a sub-linear rate.

This situation has motivated a variety of alternatives to strong convexity (SC) in the lit-

erature, in order to show that we can obtain linear convergence rates for problems like least

squares and logistic regression. One of the oldest of these conditions is the error bounds (EB)

of Luo and Tseng [1993], but four other recently-considered conditions are essential strong

convexity (ESC) [Liu et al., 2014], weak strong convexity (WSC) [Necoara et al., 2015], the

restricted secant inequality (RSI) [Zhang and Yin, 2013], and the quadratic growth (QG) con-

dition [Anitescu, 2000]. Some of these conditions have different names in the special case of

convex functions. For example, a convex function satisfying RSI is said to satisfy restricted

strong convexity (RSC) [Zhang and Yin, 2013]. Names describing convex functions satisfy-

ing QG include optimal strong convexity (OSC) [Liu and Wright, 2015], semi-strong convexity

(SSC) [Gong and Ye, 2014], and (confusingly) WSC [Ma et al., 2015b]. The proofs of linear

convergence under all of these relaxations are typically not straightforward, and it is rarely

discussed how these conditions relate to each other.

In this work, we consider a much older condition that we refer to as the Polyak- Lojasiewicz

(PL) inequality. This inequality was originally introduced by Polyak [1963], who showed that

it is a sufficient condition for gradient descent to achieve a linear convergence rate. We describe

it as the PL inequality because it is also a special case of the inequality introduced in the

same year by Lojasiewicz [1963]. We review the PL inequality in the next section and how

it leads to a trivial proof of the linear convergence rate of gradient descent. Next, in terms

of showing a global linear convergence rate to the optimal solution, we show that the PL

inequality is weaker than all of the more recent conditions discussed in the previous paragraph.

This suggests that we can replace the long and complicated proofs under any of the conditions

above with simpler proofs based on the PL inequality. Subsequently, we show how this result

53

implies gradient descent achieves linear rates for standard problems in machine learning like

least squares and logistic regression that are not necessarily strongly convex, and even for some

non-convex problems (Section 4.1.3). In Section 4.2 we use the PL inequality to give new

convergence rates for randomized and greedy coordinate descent (implying a new convergence

rate for certain variants of boosting) and sign-based gradient descent methods. Next we turn

to the problem of minimizing the sum of a smooth function and a simple non-smooth function.

We propose a generalization of the PL inequality that allows us to show linear convergence

rates for proximal gradient methods without strong convexity. This leads to a simple analysis

showing linear convergence of methods for training support vector machines. It also implies

that we obtain a linear convergence rate for `1-regularized least squares problems, showing that

the extra conditions previously assumed to derive linear converge rates in this setting are in

fact not needed.

4.1 Polyak- Lojasiewicz Inequality

We first focus on the basic unconstrained optimization problem

argmin
x∈Rn

f(x), (4.1)

and we assume that the first derivative of f is L-Lipschitz continuous. This means that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
||y − x||2, (4.2)

for all x, y ∈ IRn. For twice-differentiable objectives this assumption means that the eigenvalues

of ∇2f(x) are bounded above by some L, which is typically a reasonable assumption. We also

assume that the optimization problem has a non-empty solution set X ∗, and we use f∗ to

denote the corresponding optimal function value. We will say that a function satisfies the PL

inequality if the following holds for some µ > 0,

1

2
||∇f(x)||2 ≥ µ(f(x)− f∗), ∀ x. (4.3)

This inequality requires that the gradient grows faster than a quadratic function as we move

away from the optimal function value. Note that this inequality implies that every stationary

point is a global minimum. But unlike strong convexity, it does not imply that there is a

unique solution. Linear convergence of gradient descent under these assumptions was first

proved by Polyak [1963]. Below we give a simple proof of this result when using a step-size of

1/L.

Theorem 1. Consider problem (4.1), where f has an L-Lipschitz continuous gradient (4.2),

a non-empty solution set X ∗, and satisfies the PL inequality (4.3). Then the gradient method

54

with a step-size of 1/L,

xk+1 = xk − 1

L
∇f(xk), (4.4)

has a global linear convergence rate,

f(xk)− f∗ ≤
(

1− µ

L

)k
(f(x0)− f∗).

Proof. By using update rule (4.4) in the Lipschitz inequality condition (4.2) we have

f(xk+1)− f(xk) ≤ − 1

2L
||∇f(xk)||2.

Now by using the PL inequality (4.3) we get

f(xk+1)− f(xk) ≤ −µ
L

(f(xk)− f∗).

Re-arranging and subtracting f∗ from both sides gives us f(xk+1)− f∗ ≤
(
1− µ

L

)
(f(xk)− f∗),

where using the same argument as in [Csiba and Richtárik, 2017, Lem 1] we can see that

(1 − µ
L) < 1 since f(xk) − f∗ ≥ 0 for any k = 0, 1, . . . , and thus it must hold that µ ≤ L.

Applying the inequality recursively gives the result.

Note that the above result also holds if we use the optimal step-size at each iteration,

because under this choice we have

f(xk+1) = min
α
{f(xk − α∇f(xk))} ≤ f

(
xk − 1

L
∇f(xk)

)
.

A beautiful aspect of this proof is its simplicity; in fact it is simpler than the proof of the same

fact under the usual strong convexity assumption. It is certainly simpler than typical proofs

which rely on the other conditions mentioned at the beginning of this chapter. Further, it is

worth noting that the proof does not assume convexity of f . Thus, this is one of the few general

results we have for global linear convergence on non-convex problems.

4.1.1 Relationships Between Conditions

As mentioned at the beginning of this chapter, several other assumptions have been explored

over the last 25 years in order to show that gradient descent achieves a linear convergence rate.

We state these conditions next, noting that all of these definitions involve some constant µ > 0

(which may not be the same across conditions). We use the convention that xp is the projection

of x onto the solution set X ∗.

1. Strong Convexity (SC): For all x and y we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2.

55

2. Essential Strong Convexity (ESC): For all x and y such that xp = yp we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2.

3. Weak Strong Convexity (WSC): For all x we have

f∗ ≥ f(x) + 〈∇f(x), xp − x〉+
µ

2
‖xp − x‖2.

4. Restricted Secant Inequality (RSI): For all x we have

〈∇f(x), x− xp〉 ≥ µ‖xp − x‖2.

If the function f is also convex it is called restricted strong convexity (RSC).

5. Error Bound (EB): For all x we have

‖∇f(x)‖ ≥ µ‖xp − x‖.

6. Polyak- Lojasiewicz (PL): For all x we have

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f∗).

7. Quadratic Growth (QG): For all x we have

f(x)− f∗ ≥ µ

2
‖xp − x‖2.

If the function f is also convex it is called optimal strong convexity (OSC) or semi-

strong convexity or sometimes WSC (but we will reserve the expression WSC for the

definition above).

These conditions typically assume that f is convex, and lead to more complicated proofs

than the one of Theorem 1. However, it is rarely discussed how the conditions relate to each

other. Indeed, all of the relationships that have been explored have only been in the context of

convex functions [Liu and Wright, 2015, Necoara et al., 2015, Zhang, 2015]. In Figure 4.1 we

show how these conditions relate to each other with and without the assumption of convexity,

and we formalize these relationships in the following theorem.

Theorem 2. For a function f with a Lipschitz-continuous gradient, the following implications

hold:

(SC) ⊂ (ESC) ⊆ (WSC) ⊆ (RSI) ⊆ (EB) ≡ (PL) ⊆ (QG).

56

Invex

QG

PL = EB

RSI

SC

ESC

WSC

Convex

OSC, SSC, RSC

Figure 4.1: Visual of the implications shown in Theorem 2 between the various relaxations of
strong convexity.

If we further assume that f is convex then we have

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

Proof. See Appendix C.1.

Note that Zhang [2016] independently also recently gave the relationships between RSI, EB,

PL, and QG.9 This result shows that QG is the weakest assumption among those considered.

However, QG allows non-global local minima so it is not enough to guarantee that gradient

descent finds a global minimizer. This means that, among those considered above, PL and

the equivalent EB are the most general conditions that allow linear convergence to a global

minimizer. Note that in the convex case QG is called OSC or SSC, but the result above shows

that in the convex case it is also equivalent to EB and PL (as well as RSI which is known as

RSC in this case).

4.1.2 Invex and Non-Convex Functions

While the PL inequality does not imply convexity of f , it does imply the weaker condition of

invexity. A function is invex if it is differentiable and there exists a vector valued function η

such that for any x, y ∈ IRn, the following inequality holds

f(x) ≥ f(y) + η(x, y)T∇f(y).

It is clear that if η(x, y) = x− y, then f is convex.

Invexity was first introduced by Hanson [1981], and has been used in the context of learning

9 Drusvyatskiy and Lewis [2016] is a recent work discussing the relationships among many of these conditions
for non-smooth functions.

57

x

f(x)

Figure 4.2: Example: f(x) = x2 + 3 sin2(x) is an invex but non-convex function that satisfies
the PL inequality.

output kernels [Dinuzzo et al., 2011]. Craven and Glover [1985] show that a smooth f is invex

if and only if every stationary point of f is a global minimum. Since the PL inequality implies

that all stationary points are global minimizers, functions satisfying the PL inequality must be

invex. It is easy to see this by noting that at any stationary point x̄, we have ∇f(x̄) = 0, so

for µ > 0 by the PL inequality, we have

0 =
1

2
‖∇f(x̄)‖2 ≥ µ(f(x)− f∗) ≥ 0,

which means f(x) = f∗ and we must be at the global minimum.

Indeed, Theorem 2 shows that all of the previous conditions (except QG) imply invexity.

The function f(x) = x2+3 sin2(x) shown in Figure 4.2 is an example of an invex but non-convex

function satisfying the PL inequality (with µ = 1/32). Thus, Theorem 1 implies gradient descent

obtains a global linear convergence rate on this function.

Unfortunately, many complicated models have non-optimal stationary points. For example,

typical deep feed-forward neural networks have sub-optimal stationary points and are thus not

invex. A classic way to analyze functions like this is to consider a global convergence phase and

a local convergence phase. The global convergence phase is the time spent to get “close” to a

local minimum, and then once we are “close” to a local minimum the local convergence phase

characterizes the convergence rate of the method. Usually, the local convergence phase starts

to apply once we are locally strongly convex around the minimizer. But this means that the

local convergence phase may be arbitrarily small: for example, for f(x) = x2 + 3 sin2(x) the

local convergence rate would not even apply over the interval x ∈ [−1, 1]. If we instead defined

the local convergence phase in terms of locally satisfying the PL inequality, then we see that it

can be much larger (x ∈ IR for this example).

58

4.1.3 Relevant Problems

If f is µ-strongly convex, then it also satisfies the PL inequality with the same µ (see Ap-

pendix C.2). Further, by Theorem 2, f satisfies the PL inequality if it satisfies any of ESC,

WSC, RSI, or EB (while for convex f , QG is also sufficient). Although it is hard to precisely

characterize the general class of functions for which the PL inequality is satisfied, we note one

important special case below.

Strongly convex composed with linear: This is the case where f has the form f(x) =

g(Ax) for some σ-strongly convex function g and some matrix A. In Appendix C.2, we use the

Hoffman bound (previously used in Chapter 3) to show that this class of functions satisfies the

PL inequality, and we note that this form frequently arises in machine learning. For example,

least squares problems have the form

f(x) = ‖Ax− b‖2,

and by noting that g(z) , ‖z − b‖2 is strongly convex we see that least squares falls into this

category. Indeed, this class includes all convex quadratic functions.

In the case of logistic regression we have

f(x) =

m∑
i=1

log(1 + exp(bia
T
i x)).

This can be written in the form g(Ax), where g is strictly convex but not strongly convex. In

cases like this where g is only strictly convex, the PL inequality will still be satisfied over any

compact set. Thus, if the iterations of gradient descent remain bounded, the linear convergence

result still applies. It is reasonable to assume that the iterates remain bounded when the set

of solutions is finite, since each step must decrease the objective function. Thus, for practical

purposes, we can relax the above condition to “strictly-convex composed with linear” and the

PL inequality implies a linear convergence rate for logistic regression.

4.2 Convergence of Huge-Scale Methods

In this section, we use the PL inequality to analyze variants of one of the most widely-used

techniques for handling large-scale machine learning problems: coordinate descent methods. In

particular, the PL inequality yields very simple analyses of this method that apply to more

general classes of functions than previously analyzed. We also note that the PL inequality

has recently been used by Garber and Hazan [2015] to analyze the Frank-Wolfe algorithm and

by Karimi et al. [2016] to analyze stochastic gradient and stochastic variance reduced gradient

methods. Further, inspired by the resilient backpropagation (RPROP) algorithm of Riedmiller

and Braun [1992], we give a convergence rate analysis for a sign-based gradient descent method.

59

4.2.1 Randomized Coordinate Descent

Nesterov [2012] shows that randomized coordinate descent achieves a faster convergence rate

than gradient descent for problems where we have n variables and it is n times cheaper to update

one coordinate than it is to compute the entire gradient. The expected linear convergence rates

in this previous work rely on strong convexity, but in this section we show that randomized

coordinate descent achieves an expected linear convergence rate if we only assume that the PL

inequality holds.

To analyze coordinate descent methods, we assume that the gradient is coordinate-wise

Lipschitz continuous, meaning that for any x and y we have

f(x+ αei) ≤ f(x) + α∇if(x) +
L

2
α2, ∀α ∈ R, ∀x ∈ Rn, (4.5)

for any coordinate i, and where ei is the ith unit vector.

Theorem 3. Consider problem (4.1), where f has a coordinate-wise L-Lipschitz continuous

gradient (4.5), a non-empty solution set X ∗, and satisfies the PL inequality (4.3). Consider the

coordinate descent method with a step-size of 1/L,

xk+1 = xk − 1

L
∇ikf(xk)eik . (4.6)

If we choose the variable to update ik uniformly at random, then the algorithm has an expected

linear convergence rate of

E[f(xk)− f∗] ≤
(

1− µ

nL

)k
[f(x0)− f∗].

Proof. By using the update rule (4.6) in the Lipschitz condition (4.5) we have

f(xk+1) ≤ f(xk)− 1

2L
|∇ikf(xk)|2.

By taking the expectation of both sides with respect to ik we have

E
[
f(xk+1)

]
≤ f(xk)− 1

2L
E
[
|∇ikf(xk)|2

]
= f(xk)− 1

2L

∑
i

1

n
|∇if(xk)|2

= f(xk)− 1

2nL
||∇f(xk)||2.

By using the PL inequality (4.3) and subtracting f∗ from both sides, we get

E[f(xk+1)− f∗] ≤
(

1− µ

nL

)
[f(xk)− f∗].

Applying this recursively and using iterated expectations yields the result.

60

As before, instead of using 1/L we could perform exact coordinate optimization and the

result would still hold. If we have a Lipschitz constant Li for each coordinate and sample

proportional to the Li as suggested by Nesterov [2012], then the above argument (using a

step-size of 1/Lik) can be used to show that we obtain a faster rate of

E[f(xk)− f∗] ≤
(

1− µ

nL̄

)k
[f(x0)− f∗],

where L̄ = 1
n

∑n
j=1 Lj .

4.2.2 Greedy Coordinate Descent

In Chapter 2 we analyzed coordinate descent under the greedy Gauss-Southwell (GS) rule, and

argued that this rule may be suitable for problems with a large degree of sparsity. We showed

that a faster convergence rate can be obtained for the GS rule by measuring strong convexity

in the `1-norm. Since the PL inequality is defined on the dual (gradient) space, in order to

derive an analogous result we could measure the PL inequality in the ∞-norm,

1

2
‖∇f(x)‖2∞ ≥ µ1(f(x)− f∗).

Because of the equivalence between norms, this is not introducing any additional assumptions

beyond that the PL inequality is satisfied. Further, if f is µ1-strongly convex in the `1-norm,

then it satisfies the PL inequality in the ∞-norm with the same constant µ1. By using that

|∇ikf(xk)| = ‖∇f(xk)‖∞ when the GS rule is used, the above argument can be used to show

that coordinate descent with the GS rule achieves a convergence rate of

f(xk)− f∗ ≤
(

1− µ1

L

)k
[f(x0)− f∗],

when the function satisfies the PL inequality in the ∞-norm with a constant of µ1. By the

equivalence between norms we have that µ/n ≤ µ1, so this is faster than the rate with random

selection.

Meir and Rätsch [2003] show that we can view some variants of boosting algorithms as

implementations of coordinate descent with the GS rule. They use the error bound property

to argue that these methods achieve a linear convergence rate, but this property does not lead

to an explicit rate. Our simple result above thus provides the first explicit convergence rate for

these variants of boosting.

4.2.3 Sign-Based Gradient Methods

The learning heuristic RPROP (Resilient backPROPagation) is a classic iterative method used

for supervised learning problems in feedforward neural networks [Riedmiller and Braun, 1992].

61

The general update for some vector of step-sizes αk ∈ IRn is given by

xk+1 = xk − αk ◦ sign∇f(xk),

where the ◦ operator indicates coordinate-wise multiplication. Although this method has been

used for many years in the machine learning community, we are not aware of any previous

convergence rate analysis of such a method. We assume the individual step-sizes αki are cho-

sen proportional to 1/
√
Li, where the Li are constants such that the gradient is 1-Lipschitz

continuous in the norm defined by

‖z‖L−1[1] ,
∑
i

1√
Li
|zi|.

Formally, we assume that the Li are set so that for all x and y we have

‖∇f(y)−∇f(x)‖L−1[1] ≤ ‖y − x‖L[∞], (4.7)

and where the dual norm of the ‖ · ‖L−1[1] norm above is given by the ‖ · ‖L[∞] norm,

‖z‖L[∞] , max
i

√
Li|zi|.

We note that such Li always exist if the gradient is Lipschitz continuous, so this is not adding

any assumptions on the function f . The particular choice of the step-sizes αki that we will

analyze is

αki =
‖∇f(xk)‖L−1[1]√

Li
,

which yields a linear convergence rate for problems where the PL inequality is satisfied in the

L−1[1]-norm,
1

2
‖∇f(xk)‖2L−1[1] ≥ µL[∞]

(
f(xk)− f∗

)
. (4.8)

This choice of αk yields steepest descent in the L∞-norm. The coordinate-wise iteration update

under this choice of αki is given by

xk+1
i = xki −

‖∇f(xk)‖L−1[1]√
Li

sign∇if(xk).

Defining a diagonal matrix Λ with 1/
√
Li along the diagonal, the update can be written as

xk+1 = xk − ‖∇f(xk)‖L−1[1]Λ ◦ sign∇f(xk). (4.9)

Theorem 4. Consider problem (4.1), where f has a Lipschitz continuous gradient (4.7), a non-

empty solution set X ∗, and satisfies the PL inequality (4.8). Consider the sign-based gradient

62

update defined in (4.9). Then the algorithm has a linear convergence rate of

f(xk+1)− f(x∗) ≤
(
1− µL[∞]

) (
f(xk)− f(x∗)

)
.

Proof. See Appendix C.3.

4.3 Proximal Gradient Generalization

Attouch and Bolte [2009] consider a generalization of the the PL inequality due to Kurdyka

to give conditions under which the classic proximal-point algorithm achieves a linear conver-

gence rate for non-smooth problems (called the KL inequality). However, in practice proximal-

gradient methods are more relevant to many machine learning problems. The KL inequality

has been used to show local linear convergence of proximal gradient methods [Li and Pong,

2016], and it has been used to show global linear convergence of proximal gradient methods

under the assumption that the objective function is convex [Bolte et al., 2015]. In this section

we propose a different generalization of the PL inequality that yields a simple global linear

convergence analysis without assuming convexity of the objective function.

Proximal gradient methods apply to problems of the form

argmin
x∈Rn

F (x) = f(x) + g(x), (4.10)

where f is a differentiable function with an L-Lipschitz continuous gradient and g is a simple

but potentially non-smooth convex function. Typical examples of simple functions g include a

scaled `1-norm of the parameter vectors, g(x) = λ‖x‖1, and indicator functions that are zero if

x lies in a simple convex set and are infinity otherwise.

In order to analyze proximal gradient algorithms, a natural (though not particularly intu-

itive) generalization of the PL inequality is that there exists a µ > 0 satisfying

1

2
Dg(x, L) ≥ µ(F (x)− F ∗), (4.11)

where

Dg(x, α) ≡ −2αmin
y

[
〈∇f(x), y − x〉+

α

2
||y − x||2 + g(y)− g(x)

]
. (4.12)

We call this the proximal-PL inequality, and we note that if g is constant (or linear) then it

reduces to the standard PL inequality. Below we show that this inequality is sufficient for the

proximal gradient method to achieve a global linear convergence rate.

Theorem 5. Consider problem (4.10), where f has an L-Lipschitz continuous gradient (4.2), F

has a non-empty solution set X ∗, g is convex, and F satisfies the proximal-PL inequality (4.11).

63

Then the proximal gradient method with a step-size of 1/L,

xk+1 = argmin
y∈IRn

[
〈∇f(xk), y − xk〉+

L

2
||y − xk||2 + g(y)− g(xk)

]
(4.13)

converges linearly to the optimal value F ∗,

F (xk)− F ∗ ≤
(

1− µ

L

)k
[F (x0)− F ∗].

Proof. By using Lipschitz continuity of the gradient of f we have

F (xk+1) = f(xk+1) + g(xk) + g(xk+1)− g(xk)

≤ F (xk)+〈∇f(xk), xk+1−xk〉+L

2
||xk+1−xk||2 + g(xk+1)−g(xk)

≤ F (xk)− 1

2L
Dg(xk, L)

≤ F (xk)− µ

L
[F (xk)− F ∗],

which uses the definition of xk+1 and Dg followed by the proximal-PL inequality (4.11). This

subsequently implies that

F (xk+1)− F ∗ ≤
(

1− µ

L

)
[F (xk)− F ∗], (4.14)

which applied recursively gives the result.

While other conditions have been proposed to show linear convergence rates of proximal

gradient methods without strong convexity [Kadkhodaie et al., 2014, Zhang, 2015], their anal-

yses tend to be much more complicated than the above while, as we discuss in the next section,

the proximal-PL inequality includes the standard scenarios where these apply.

4.3.1 Relevant Problems

As with the PL inequality, we now list several important function classes that satisfy the

proximal-PL inequality (4.11). We give proofs that these classes satisfy the inequality in Ap-

pendix C.5.

1. The inequality is satisfied if f satisfies the PL inequality and g is constant. Thus, the

above result generalizes Theorem 1.

2. The inequality is satisfied if f is strongly convex. This is the usual assumption used to

show a linear convergence rate for the proximal gradient algorithm [Schmidt et al., 2011],

although we note that the above analysis is much simpler than standard arguments.

3. The inequality is satisfied if f has the form f(x) = h(Ax) for a strongly convex function

h and a matrix A, while g is an indicator function for a polyhedral set.

64

4. The inequality is satisfied if F is convex and satisfies the QG property.

It has also been shown that the inequality is satisfied if F satisfies the proximal-EB condition

or the KL inequality [Karimi et al., 2016]. By this equivalence, the proximal-PL inequality

also holds for other problems where a linear convergence rate has been shown like group `1-

regularization [Tseng, 2010], sparse group `1-regularization [Zhang et al., 2013], nuclear-norm

regularization [Hou et al., 2013], and other classes of functions [Drusvyatskiy and Lewis, 2016,

Zhou and So, 2015].

4.3.2 Least Squares with `1-Regularization

Perhaps the most interesting example of problem (4.10) is the `1-regularized least squares

problem,

argmin
x∈IRn

1

2
‖Ax− b‖2 + λ‖x‖1,

where λ > 0 is the regularization parameter. This problem has been studied extensively in

machine learning, signal processing, and statistics. This problem structure seems well-suited to

using proximal gradient methods, but the first works analyzing proximal gradient methods for

this problem only showed sub-linear convergence rates [Beck and Teboulle, 2009]. Subsequent

works show that linear convergence rates can be achieved under additional assumptions. For

example, Gu et al. [2013] prove that their algorithm achieves a linear convergence rate if A

satisfies a restricted isometry property (RIP) and the solution is sufficiently sparse. Xiao and

Zhang [2013] also assume the RIP property and show linear convergence using a homotopy

method that slowly decreases the value of λ. Agarwal et al. [2012] give a linear convergence rate

under a modified restricted strong convexity and modified restricted smoothness assumption. But

these problems have also been shown to satisfy proximal variants of the EB condition [Necoara

and Clipici, 2016, Tseng, 2010], and thus by the equivalence result in [Karimi et al., 2016] we

have that any `1-regularized least squares problem satisfies the proximal-PL inequality. Thus,

Theorem 5 gives a simple proof of global linear convergence for these problems without making

additional assumptions or making any modifications to the algorithm.

4.3.3 Proximal Coordinate Descent

It is also possible to adapt our results on coordinate descent and proximal gradient methods

in order to give a linear convergence rate for coordinate-wise proximal gradient methods for

problem (4.10). To do this, we require the extra assumption that g is a separable function.

This means that g(x) =
∑

i gi(xi) for a set of univariate functions gi. The update rule for the

coordinate-wise proximal gradient method is

xk+1 = argmin
α∈IR

[
α∇ikf(xk) +

L

2
α2 + gik(xik + α)− gik(xik)

]
, (4.15)

We state the convergence rate result below.

65

Theorem 6. Assume the setup of Theorem 5 and that g is a separable function g(x) =∑
i gi(xi), where each gi is convex. Then the coordinate-wise proximal gradient update rule

(4.15) achieves a convergence rate

E[F (xk)− F ∗] ≤
(

1− µ

nL

)k
[F (x0)− F ∗], (4.16)

when ik is selected uniformly at random.

The proof is given in Appendix C.6 and although it is more complicated than the proof

of Theorem 5, it is still simpler than existing proofs for proximal coordinate descent under

strong convexity [Richtárik and Takáč, 2014]. It is also possible to analyze stochastic proximal

gradient algorithms, and indeed Reddi et al. [2016a] use the proximal-PL inequality to analyze

finite-sum methods in the proximal stochastic case. We also note that Zhang [2016] has recently

analyzed cyclic coordinate descent for convex functions satisfying QG.

4.3.4 Support Vector Machines

Another important model problem that arises in machine learning is support vector machines,

argmin
x∈IRn

m∑
i=1

max(0, 1− bixTai) +
λ

2
‖x‖2. (4.17)

where (ai, bi) are the labelled training set with ai ∈ Rn and bi ∈ {−1, 1}. We often solve this

problem by performing coordinate optimization on its Fenchel dual, which has the form

min
w̄
f(w̄) =

1

2
w̄TMw̄ −

∑
w̄i, w̄i ∈ [0, U], (4.18)

for a particular positive semi-definite matrix M and constant U . This convex function satisfies

the QG property and thus Theorem 6 implies that coordinate optimization achieves a linear

convergence rate in terms of optimizing the dual objective. Further, note that Hush et al. [2006]

show that we can obtain an ε-accurate solution to the primal problem with an O(ε2)-accurate

solution to the dual problem. Thus this result also implies we can obtain a linear convergence

rate on the primal problem by showing that stochastic dual coordinate ascent has a linear

convergence rate on the dual problem. Global linear convergence rates for SVMs have also

been shown by others [Ma et al., 2015b, Tseng and Yun, 2009a, Wang and Lin, 2014], but again

we note that these works lead to much more complicated analyses. Although the constants in

these convergence rates may be quite bad (depending on the smallest non-zero singular value

of the Gram matrix), we note that the existing sublinear rates still apply in the early iterations

while, as the algorithm begins to identify support vectors, the constants improve (depending

on the smallest non-zero singular value of the block of the Gram matrix corresponding to the

support vectors).

The result of the previous section is not only restricted to SVMs. Indeed, the result of

66

the previous section implies a linear convergence rate for many `2-regularized linear prediction

problems, the framework considered in the stochastic dual coordinate ascent (SDCA) work

of Shalev-Shwartz and Zhang [2013]. While Shalev-Shwartz and Zhang [2013] show that this is

true when the primal is smooth, our result gives linear rates in many cases where the primal is

non-smooth.

4.4 Discussion

We believe that the work in this chapter provides a unifying and simplifying view of a vari-

ety of optimization and convergence rate issues in machine learning. Indeed, we have shown

that many of the assumptions used to achieve linear convergence rates can be replaced by

the PL inequality and its proximal generalization. While we have focused on sufficient con-

ditions for linear convergence, another recent work has turned to the question of necessary

conditions for convergence [Zhang, 2016]. Further, while we have focused on non-accelerated

methods, Zhang [2016] has recently analyzed Nesterov’s accelerated gradient method without

strong convexity. We also note that, while we have focused on first-order methods, Nesterov

and Polyak [2006] have used the PL inequality to analyze a second-order Newton-style method

with cubic regularization. They also consider a generalization of the inequality under the name

gradient-dominated functions.

Throughout this chapter, we pointed out how our analyses imply convergence rates for a

variety of machine learning models and algorithms. Some of these were previously known,

typically under stronger assumptions or with more complicated proofs, but many of these are

novel. We expect that going forward efficiency will no longer be decided by the issue of whether

functions are strongly convex, but rather by whether they satisfy a variant of the PL inequality.

67

Chapter 5

Greedy Block Coordinate Descent

Block coordinate descent (BCD) methods have become one of our key tools for solving some

of the most important large-scale optimization problems. This is due to their typical ease of

implementation, low memory requirements, cheap iteration costs, adaptability to distributed

settings, ability to use problem structure, and numerical performance. Notably, they have been

used for almost two decades in the context of `1-regularized least squares (LASSO) [Fu, 1998,

Sardy et al., 2000] and support vector machines (SVMs) [Chang and Lin, 2011, Joachims, 1999].

Indeed, randomized BCD methods have recently been used to solve instances of these widely-

used models with a billion variables [Richtárik and Takáč, 2014], while for “kernelized” SVMs

greedy BCD methods remain among the state of the art methods [You et al., 2016]. Due to the

wide use of these models, any improvements on the convergence of BCD methods will affect a

myriad of applications.

While there are a variety of ways to implement a BCD method, the three main building

blocks that affect its performance are:

1. Blocking strategy. We need to define a set of possible “blocks” of problem variables

that we might choose to update at a particular iteration. Two common strategies are

to form a partition of the coordinates into disjoint sets (we call this fixed blocks) or to

consider any possible subset of coordinates as a “block” (we call this variable blocks).

Typical choices include using a set of fixed blocks related to the problem structure, or

using variable blocks by randomly sampling a fixed number of coordinates.

2. Block selection rule. Given a set of possible blocks, we need a rule to select a block of

corresponding variables to update. Classic choices include cyclically going through a fixed

ordering of blocks, choosing random blocks, choosing the block with the largest gradient

(the Gauss-Southwell rule), or choosing the block that leads to the largest improvement.

3. Block update rule. Given the block we have selected, we need to decide how to up-

date the block of corresponding variables. Typical choices include performing a gradient

descent iteration, computing the Newton direction and performing a line search, or com-

puting the optimal update of the block by subspace minimization.

In the next section we introduce our notation, review the standard choices behind BCD

algorithms, and discuss problem structures where BCD is suitable. Subsequently, the following

sections explore a wide variety of ways to speed up BCD by modifying the three building blocks

above.

68

1. In Section 5.2 we propose block selection rules that are variants of the Gauss-Southwell

rule, but that incorporate knowledge of Lipschitz constants in order to give better bounds

on the progress made at each iteration. We also give a general result characterizing the

convergence rate obtained using the Gauss-Southwell rule as well as the new greedy rules,

under both the Polyak- Lojasiewicz inequality and for general (potentially non-convex)

functions.

2. In Section 5.3 we discuss practical implementation issues. This includes how to approxi-

mate the new rules in the variable-block setting, how to estimate the Lipschitz constants,

how to efficiently implement line searches, how the blocking strategy interacts with greedy

rules, and why we should prefer Newton updates over the “matrix updates” of recent

works.

3. In Section 5.4 we show how second-order updates, or the exact update for quadratic

functions, can be computed in linear-time for problems with sparse dependencies when

using “forest-structured” blocks. This allows us to use huge block sizes for problems

with sparse dependencies, and uses a connection between sparse quadratic functions and

Gaussian Markov random fields (GMRFs) by exploiting the “message-passing” algorithms

developed for GMRFs.

We note that many related ideas have been explored by others in the context of BCD methods

and we will go into detail about these related works in subsequent sections. In Section 5.5 we

use a variety of problems arising in machine learning to evaluate the effects of these choices

on BCD implementations. These experiments indicate that in some cases the performance

improvement obtained by using these enhanced methods can be dramatic. The source code

and data files required to reproduce the experimental results of this paper can be downloaded

from: https://github.com/IssamLaradji/BlockCoordinateDescent.

5.1 Block Coordinate Descent Algorithms

We first consider the problem of minimizing a differentiable multivariate function,

argmin
x∈IRn

f(x). (5.1)

At iteration k of a BCD algorithm, we first select a block bk ⊆ {1, 2, . . . , n} and then update

the subvector xbk ∈ IR|bk| corresponding to these variables,

xk+1
bk

= xkbk + dk.

Coordinates of xk+1 that are not included in bk are simply kept at their previous value. The vec-

tor dk ∈ IR|bk| is typically selected to provide descent in the direction of the reduced dimensional

69

https://github.com/IssamLaradji/BlockCoordinateDescent

subproblem,

dk ∈ argmin
d∈IR|bk|

f(xk + Ubkd), (5.2)

where we construct Ubk ∈ {0, 1}n×|bk| from the columns of the identity matrix corresponding to

the coordinates in bk. Using this notation, we have

xbk = UTbkx,

which allows us to write the BCD update of all n variables in the form

xk+1 = xk + Ubkd
k.

There are many possible ways to define the block bk as well as the direction dk. Typically we

have a maximum block size τ , which is chosen to be the largest number of variables that we

can efficiently update at once. Given τ that divides evenly into n, consider a simple ordered

fixed partition of the coordinates into a set B of n/τ blocks,

B = {{1, 2, . . . , τ}, {τ + 1, τ + 2, . . . , 2τ}, . . . , {(n− τ) + 1, (n− τ) + 2, . . . , n}}.

To select the block in B to update at each iteration we could simply repeatedly cycle through

this set in order. A simple choice of dk is the negative gradient corresponding to the coordinates

in bk, multiplied by a scalar step-size αk that is sufficiently small to ensure that we decrease

the objective function. This leads to a gradient update of the form

xk+1 = xk − αkUbk∇bkf(xk), (5.3)

where ∇bkf(xk) are the elements of the gradient ∇f(xk) corresponding to the coordinates in

bk. While this gradient update and cyclic selection among an ordered fixed partition is simple,

we can often drastically improve the performance using more clever choices. We highlight some

common alternative choices in the next three subsections.

5.1.1 Block Selection Rules

Repeatedly going through a fixed partition of the coordinates is known as cyclic selection [Bert-

sekas, 2016], and this is referred to as Gauss-Seidel when solving linear systems [Seidel, 1874].

The performance of cyclic selection may suffer if the order the blocks are cycled through is

chosen poorly, but it has been shown that random permutations can fix a worst case for cyclic

CD [Lee and Wright, 2016]. A variation on cyclic selection is “essentially” cyclic selection

where each block must be selected at least every m iterations for some fixed m that is larger

than the number of blocks [Bertsekas, 2016]. Alternately, several authors have explored the

advantages of randomized block selection [Nesterov, 2010, Richtárik and Takáč, 2014]. The

simplest randomized selection rule is to select one of the blocks uniformly at random. However,

70

several recent works show dramatic performance improvements over this naive random sam-

pling by incorporating knowledge of the Lipschitz continuity properties of the gradients of the

blocks [Nesterov, 2010, Qu and Richtárik, 2016, Richtárik and Takáč, 2016] or more recently

by trying to estimate the optimal sampling distribution online [Namkoong et al., 2017].

An alternative to cyclic and random block selection is greedy selection. Greedy methods

solve an optimization problem to select the “best” block at each iteration. A classic example

of greedy selection is the block Gauss-Southwell (GS) rule, which chooses the block whose

gradient has the largest Euclidean norm,

bk ∈ argmax
b∈B

‖∇bf(xk)‖, (5.4)

where we use B as the set of possible blocks. As we saw in Chapter 2, this rule tends to make

more progress per iteration in theory and practice than randomized selection. Unfortunately, for

many problems it is more expensive than cyclic or randomized selection. However, several recent

works show that certain problem structures allow efficient calculation of GS-style rules (see

Chapter 2 as well as [Fountoulakis et al., 2016, Lei et al., 2016, Meshi et al., 2012]), allow

efficient approximation of GS-style rules [Dhillon et al., 2011, Stich et al., 2017, Thoppe et al.,

2014], or allow other rules that try to improve on the progress made at each iteration [Csiba

et al., 2015, Glasmachers and Dogan, 2013].

The ideal selection rule is the maximum improvement (MI) rule, which chooses the block

that decreases the function value by the largest amount. Notable recent applications of this

rule include leading eigenvector computation [Li et al., 2015], polynomial optimization [Chen

et al., 2012], and fitting Gaussian processes [Bo and Sminchisescu, 2012]. While recent works

explore computing or approximating the MI rule for quadratic functions [Bo and Sminchisescu,

2012, Thoppe et al., 2014], in general the MI rule is much more expensive than the GS rule.

5.1.2 Fixed vs. Variable Blocks

While the choice of the block to update has a significant effect on performance, how we define

the set of possible blocks also has a major impact. Although other variations are possible, we

highlight below the two most common blocking strategies:

1. Fixed blocks. This method uses a partition of the coordinates into disjoint blocks, as

in our simple example above. This partition is typically chosen prior to the first iteration

of the BCD algorithm, and this set of blocks is then held fixed for all iterations of the

algorithm. We often use blocks of roughly equal size, so if we use blocks of size τ this

method might partition the n coordinates into n/τ blocks. Generic ways to partition the

coordinates include “in order” as we did above [Bertsekas, 2016], or using a random parti-

tion [Nesterov, 2010]. Alternatively, the partition may exploit some inherent substructure

of the objective function such as block separability [Meier et al., 2008], the ability to effi-

ciently solve the corresponding sub-problem (5.2) with respect to the blocks [Sardy et al.,

71

2000], or based on the Lipschitz constants of the resulting blocks [Csiba and Richtárik,

2016, Thoppe et al., 2014].

2. Variable blocks. Instead of restricting our blocks to a pre-defined partition of the coor-

dinates, we could instead consider choosing any of the 2n − 1 possible sets of coordinates

as our block. In the randomized setting, this is referred to as “arbitrary” sampling [Qu

and Richtárik, 2016, Richtárik and Takáč, 2016]. We say that such strategies use vari-

able blocks because we are not choosing from a partition of the coordinates that is fixed

across the iterations. Due to computational considerations, when using variable blocks

we typically want to impose a restriction on the size of the blocks. For example, we could

construct a block of size τ by randomly sampling τ coordinates without replacement,

which is known as τ -nice sampling [Qu and Richtárik, 2016, Richtárik and Takáč, 2016].

Alternately, we could include each coordinate in the block bk with some probability like

τ/n (so the block size may change across iterations but we control its expected size). A

version of the greedy GS rule (5.4) with variable blocks would select the τ coordinates

corresponding to the elements of the gradient with largest magnitudes [Tseng and Yun,

2009b]. This can be viewed as a greedy variant of τ -nice sampling. While we can find

these τ coordinates easily,10 computing the MI rule with variable blocks is much more

difficult. Indeed, while methods exist to compute the MI rule for quadratics with fixed

blocks [Thoppe et al., 2014], with variable blocks it is NP-hard to compute the MI rule

and existing works resort to approximations [Bo and Sminchisescu, 2012].

5.1.3 Block Update Rules

The selection of the update vector dk can significantly affect performance of the BCD method.

For example, in the gradient update (5.3) the method can be sensitive to the choice of the

step-size αk. Classic ways to set αk include using a fixed step-size (with each block possibly

having its own fixed step-size), using an approximate line search, or using the optimal step-size

(which has a closed-form solution for quadratic objectives) [Bertsekas, 2016].

The most common alternative to the gradient update above is a Newton update,

dk = −αk
(
∇2
bkbk

f(xk)
)−1
∇bkf(xk), (5.5)

where we might replace the instantaneous Hessian ∇2
bkbk

f(xk) by a positive-definite approx-

imation to it. In this context the step-size αk is again a step-size that can be chosen using

similar strategies to those mentioned above. Several recent works analyze such updates and

show that they can substantially improve the convergence rate [Fountoulakis and Tappenden,

2015, Qu et al., 2016, Tappenden et al., 2016]. For special problem classes, another possible

10Once the max-heap (as defined in Chapter 2) has been updated with the current gradient values, we can find
the maximal τ elements by repeating the process of removing the maximal element and resorting the remaining
elements τ times. This yields the τ maximal elements at a cost of τ log(n).

72

type of update is what we will call the optimal update. This update chooses dk to solve (5.2).

In other words, it updates the block bk to maximally decrease the objective function.

5.1.4 Problems of Interest

BCD methods tend to be good choices for problems where we can update all variables for roughly

the same cost as computing the gradient. As presented in Section 2.1 for the single-coordinate

case this includes the following two common problem structures,

h1(x) :=
n∑
i=1

gi(xi) + f(Ax), or h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where f is smooth and cheap, the fij are smooth, G = {V,E} is a graph, and A is a matrix.

Examples of problems leading to functions of the form h1 include least squares, logistic regres-

sion, LASSO, and SVMs.11 The most important example of problem h2 is quadratic functions,

which are crucial to many aspects of scientific computing.12

Problems h1 and h2 are also suitable for BCD methods, as they tend to admit efficient

block update strategies. In general, if single-coordinate descent is efficient for a problem,

then BCD methods are also efficient for that problem and this applies whether we use fixed

blocks or variable blocks. Other scenarios where coordinate descent and BCD methods have

proven useful include matrix and tensor factorization methods [Xu and Yin, 2013, Yu et al.,

2012], problems involving log-determinants [Hsieh et al., 2013, Scheinberg and Rish, 2009], and

problems involving convex extensions of sub-modular functions [Ene and Nguyen, 2015, Jegelka

et al., 2013].

An important point to note is that there are special problem classes where BCD with

fixed blocks is reasonable even though using variable blocks (or single-coordinate updates)

would not be suitable. For example, consider a variant of problem h1 where we use group

`1-regularization [Bakin, 1999],

h3(x) :=
∑
b∈B
‖xb‖+ f(Ax), (5.6)

where B is a partition of the coordinates. We cannot apply single-coordinate updates to this

problem due to the non-smooth norms, but we can take advantage of the group-separable

structure in the sum of norms and apply BCD using the blocks in B [Meier et al., 2008, Qin

et al., 2013]. Sardy et al. [2000] in their early work on solving LASSO problems consider

problem h1 where the columns of A are the union of a set of orthogonal matrices. By choosing

the fixed blocks to correspond to the orthogonal matrices, it is very efficient to apply BCD.

11Coordinate descent remains suitable for multi-linear generalizations of problem h1 like functions of the form
f(XY) where X and Y are both matrix variables.

12Problem h2 can be generalized to allow functions between more than 2 variables, and coordinate descent
remains suitable as long as the expected number of functions in which each variable appears is n-times smaller
than the total number of functions (assuming each function has a constant cost).

73

In Appendix D.1, we outline how fixed blocks lead to an efficient greedy BCD method for the

widely-used multi-class logistic regression problem when the data has a certain sparsity level.

5.2 Improved Greedy Rules

Previous works have identified that the greedy GS rule can lead to suboptimal progress, and

have proposed rules that are closer to the MI rule for the special case of quadratic functions [Bo

and Sminchisescu, 2012, Thoppe et al., 2014]. However, for non-quadratic functions it is not

obvious how we should approximate the MI rule. As an intermediate between the GS rule and

the MI rule for general functions, in Section 2.5.2 we presented the Gauss-Southwell-Lipschitz

(GSL) rule in the case of single-coordinate updates. The GSL rule is equivalent to the MI rule in

the special case of quadratic functions, so either rule can be used in that setting. However, the

MI rule involves optimizing over a subspace which will typically be expensive for non-quadratic

functions. After reviewing the classic block GS rule, in this section we consider several possible

block extensions of the GSL rule that give a better approximation to the MI rule without

requiring subspace optimization.

5.2.1 Block Gauss-Southwell

When analyzing BCD methods we typically assume that the gradient of each block b is Lb-

Lipschitz continuous, meaning that for all x ∈ IRn and d ∈ IR|b|

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, (5.7)

for some constant Lb > 0. This is a standard assumption, and in Appendix D.2 we give bounds

on Lb for the common data-fitting models of least squares and logistic regression. If we apply

the descent lemma [Bertsekas, 2016] to the reduced sub-problem (5.2) associated with some

block bk selected at iteration k, then we obtain the following upper bound on the function value

progress,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
Lbk
2
‖xk+1 − xk‖2 (5.8)

= f(xk) + 〈∇bkf(xk), dk〉+
Lbk
2
‖dk‖2.

The right side is minimized in terms of dk under the choice

dk = − 1

Lbk
∇bkf(xk), (5.9)

74

which is simply a gradient update with a step-size of αk = 1/Lbk . Substituting this into our

upper bound, we obtain

f(xk+1) ≤ f(xk)− 1

2Lbk
‖∇bkf(xk)‖2. (5.10)

A reasonable way to choose a block bk at each iteration is by minimizing the upper bound

in (5.10) with respect to bk. For example, if we assume that Lb is the same for all blocks b then

we derive the GS rule (5.4) of choosing the bk that maximizes the gradient norm.

We can use the bound (5.10) to compare the progress made by different selection rules. For

example, this bound indicates that the GS rule can make more progress with variable blocks

than with fixed blocks (under the usual setting where the fixed blocks are a subset of the possible

variable blocks). In particular, consider the case where we have partitioned the coordinates into

blocks of size τ and we are comparing this to using variable blocks of size τ . The case where

there is no advantage for variable blocks is when the indices corresponding to the τ -largest

|∇if(xk)| values are in one of the fixed partitions; in this (unlikely) case the GS rule with fixed

blocks and variable blocks will choose the same variables to update. The case where we see

the largest advantage of using variable blocks is when each of the indices corresponding to the

τ -largest |∇if(xk)| values are in different blocks of the fixed partition; in this case the last term

in (5.10) can be improved by a factor as large as τ2 when using variable blocks instead of fixed

blocks. Thus, with larger blocks there is more of an advantage to using variable blocks over

fixed blocks.

5.2.2 Block Gauss-Southwell-Lipschitz

The GS rule is not the optimal block selection rule in terms of the bound (5.10) if we know

the block-Lipschitz constants Lb. Instead of choosing the block with largest norm, consider

minimizing (5.10) in terms of bk,

bk ∈ argmax
b∈B

{‖∇bf(xk)‖2
Lb

}
. (5.11)

We call this the block Gauss-Southwell-Lipschitz (GSL) rule. If all Lb are the same, then

the GSL rule is equivalent to the classic GS rule. But in the typical case where the Lb differ,

the GSL rule guarantees more progress than the GS rule since it incorporates the gradient

information as well as the Lipschitz constants Lb. For example, it reflects that if the gradients

of two blocks are similar but their Lipschitz constants are very different, then we can guarantee

more progress by updating the block with the smaller Lipschitz constant. In the extreme case,

for both fixed and variable blocks the GSL rule improves the bound (5.10) over the GS rule by

a factor as large as (maxb∈B Lb)/(minb∈B Lb).

The block GSL rule in (5.11) is a simple generalization of the single-coordinate GSL rule to

blocks of any size. However, it loses a key feature of the single-coordinate GSL rule: the block

75

GSL rule is not equivalent to the MI rule for quadratic functions. Unlike the single-coordinate

case, where ∇2
iif(xk) = Li so that (5.8) holds with equality, for the block case we only have

∇2
bbf(xk) � Lb so (5.8) may underestimate the progress that is possible in certain directions.

In the next section we give a second generalization of the GSL rule that is equivalent to the MI

rule for quadratics.

5.2.3 Block Gauss-Southwell-Quadratic

For single-coordinate updates, the bound in (5.10) is the tightest quadratic bound on progress

we can expect given only the assumption of block Lipschitz-continuity (it holds with equality

for quadratic functions). However, for block updates of more than one variable we can obtain a

tighter quadratic bound using general quadratic norms of the form ‖ · ‖H =
√
〈H·, ·〉 for some

positive-definite matrix H. In particular, assume that each block has a Lipschitz-continuous

gradient with Lb = 1 for a particular positive-definite matrix Hb ∈ IR|b|×|b|, meaning that

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

,

for all x ∈ IRn and d ∈ IR|b|. Due to the equivalence between norms, this merely changes how we

measure the continuity of the gradient and is not imposing any new assumptions. Indeed, the

block Lipschitz-continuity assumption in (5.7) is just a special case of the above with Hb = LbI,

where I is the |b| × |b| identity matrix. Although this characterization of Lipschitz continuity

appears more complex, for some functions it is actually computationally cheaper to construct

matrices Hb than to find valid bounds Lb. We show this in Appendix D.2 for the cases of least

squares and logistic regression.

Under this alternative characterization of the Lipschitz assumption, at each iteration k we

have

f(xk+1) ≤ f(xk) + 〈∇bkf(xk), dk〉+
1

2
‖dk‖2Hbk

. (5.12)

The left-hand side of (5.12) is minimized when

dk = − (Hbk)−1∇bkf(xk), (5.13)

which we will call the matrix update of a block. Although this is equivalent to Newton’s

method for quadratic functions, we use the name “matrix update” rather than “Newton’s

method” here to distinguish two types of updates: Newton’s method is based on the instanta-

neous Hessian ∇2
bbf(xk), while the matrix update is based on a matrix Hb that upper bounds

the Hessian for all x.13 We will discuss Newton updates in subsequent sections, but substituting

the matrix update into the upper bound yields

f(xk+1) ≤ f(xk)− 1

2
‖∇bkf(xk)‖2

H−1
bk

. (5.14)

13We say that a matrix A “upper bounds” a matrix B, written A � B, if for all x we have xTAx ≥ xTBx.

76

Consider a simple quadratic function f(x) = xTAx for a positive-definite matrix A. In this case

we can take Hb to be the sub-matrix Abb while in our previous bound we would require Lb to be

the maximum eigenvalue of this sub-matrix. Thus, in the worst case (where ∇bkf(xk) is in the

span of the principal eigenvectors of Abb) the new bound is at least as good as (5.10). But if the

eigenvalues of Abb are spread out then this bound shows that the matrix update will typically

guarantee substantially more progress; in this case the quadratic bound (5.14) can improve on

the bound in (5.10) by a factor as large as the condition number of Abb when updating block

b. The update (5.13) was analyzed for BCD methods in several recent works [Qu et al., 2016,

Tappenden et al., 2016], which considered random selection of the blocks. They show that this

update provably reduces the number of iterations required, and in some cases dramatically. For

the special case of quadratic functions where (5.14) holds with equality, greedy rules based on

minimizing this bound have been explored for both fixed [Thoppe et al., 2014] and variable [Bo

and Sminchisescu, 2012] blocks.

Rather than focusing on the special case of quadratic functions, we want to define a better

greedy rule than (5.11) for functions with Lipschitz-continuous gradients. By optimizing (5.14)

in terms of bk we obtain a second generalization of the GSL rule,

bk ∈ argmax
b∈B

{
‖∇bf(xk)‖H−1

b

}
≡ argmax

b∈B

{
∇bf(xk)TH−1

b ∇bf(xk)
}
, (5.15)

which we call the block Gauss-Southwell quadratic (GSQ) rule.14 Since (5.14) holds with

equality for quadratics this new rule is equivalent to the MI rule in that case. But this rule also

applies to non-quadratic functions where it guarantees a better bound on progress than the GS

rule (and the GSL rule).

5.2.4 Block Gauss-Southwell-Diagonal

While the GSQ rule has appealing theoretical properties, for many problems it may be difficult

to find full matrices Hb and their storage may also be an issue. Previous related works [Csiba

and Richtárik, 2017, Qu et al., 2016, Tseng and Yun, 2009b] address this issue by restricting

the matrices Hb to be diagonal matrices Db. Under this choice we obtain a rule of the form

bk ∈ argmax
b∈B

{
‖∇bf(xk)‖D−1

b

}
≡ argmax

b∈B

{∑
i∈b

|∇if(xk)|2
Db,i

}
, (5.16)

where we are using Db,i to refer to the diagonal element corresponding to coordinate i in block

b. We call this the block Gauss-Southwell diagonal (GSD) rule. This bound arises if we

consider a gradient update, where coordinate i has a constant step-size of D−1
b,i when updated

14While preparing this work for submission, we were made aware of a work that independently proposed this
rule under the name “greedy mini-batch” rule [Csiba and Richtárik, 2017]. However, our focus on addressing the
computational issues associated with the rule is quite different from that work, which focuses on tight convergence
analyses.

77

as part of block b. This rule gives an intermediate approach that can guarantee more progress

per iteration than the GSL rule, but that may be easier to implement than the GSQ rule.

5.2.5 Convergence Rate under Polyak- Lojasiewicz

Our discussion above focuses on the progress we can guarantee at each iteration, assuming

only that the function has a Lipschitz-continuous gradient. Under additional assumptions, it is

possible to use these progress bounds to derive convergence rates on the overall BCD method.

For example, assume f satisfies the PL inequality presented in Chapter 4, that is, for all x we

have for some µ > 0 that
1

2
(‖∇f(x)‖∗)2 ≥ µ (f(x)− f∗) , (5.17)

where ‖ · ‖∗ can be any norm and f∗ is the optimal function value. The function class satis-

fying this inequality includes all strongly convex functions but also includes a variety of other

important problems like least squares (see Section 4.1.3). As seen in Section 4.2, this inequality

leads to a simple proof of the linear convergence of any algorithm which has a progress bound

of the form

f(xk+1) ≤ f(xk)− 1

2
‖∇f(xk)‖2∗, (5.18)

such as gradient descent, coordinate descent with the GS rule and sign-based updates.

Theorem 7. Assume f satisfies the PL inequality (5.17) for some µ > 0 and norm ‖ · ‖∗. Any

algorithm that satisfies a progress bound of the form (5.18) with respect to the same norm ‖ · ‖∗
obtains the following linear convergence rate,

f(xk+1)− f∗ ≤ (1− µ)k
[
f(x0)− f∗

]
. (5.19)

Proof. By subtracting f∗ from both sides of (5.18) and applying (5.17) directly, we obtain our

result by recursion.

Thus, if we can describe the progress obtained using a particular block selection rule and

block update rule in the form of (5.18), then we have a linear rate of convergence for BCD on

this class of functions. It is straightforward to do this using an appropriately defined norm, as

shown in the following corollary.

Corollary 1. Assume ∇f is Lipschitz continuous (5.12) and that f satisfies the PL inequality

(5.17) in the norm defined by

‖v‖B = max
b∈B
‖vb‖Hb−1 , (5.20)

for some µ > 0 and matrix Hb ∈ IR|b|×|b|. Then the BCD method using either the GSQ, GSL,

GSD or GS selection rule achieves a linear convergence rate of the form (5.19).

Proof. Using the definition of the GSQ rule (5.15) in the progress bound resulting from the

78

Lipschitz continuity of ∇f and the matrix update (5.14), we have

f(xk+1) ≤ f(xk)− 1

2
max
b∈B

{
‖∇bf(xk)‖2

H−1
b

}
= f(xk)− 1

2
‖∇f(xk)‖2B.

(5.21)

By Theorem 7 and the observation that the GSL, GSD and GS rules are all special cases of the

GSQ rule corresponding to specific choices of Hb, we have our result.

We refer the reader to the work of Csiba and Richtárik for tools that allow alternative

analyses of BCD methods [Csiba and Richtárik, 2017].

5.2.6 Convergence Rate with General Functions

The PL inequality is satisfied for many problems of practical interest, and is even satisfied

for some non-convex functions. However, general non-convex functions do not satisfy the PL

inequality and thus the analysis of the previous section does not apply. Without a condition like

the PL inequality, it is difficult to show convergence to the optimal function value f∗ (since we

should not expect a local optimization method to be able to find the global solution of functions

that may be NP-hard to minimize). However, the bound (5.21) still implies a weaker type of

convergence rate even for general non-convex problems. The following result is a generalization

of a standard argument for the convergence rate of gradient descent [Nesterov, 2004], and gives

us an idea of how fast the BCD method is able to find a point resembling a stationary point

even in the general non-convex setting.

Theorem 8. Assume ∇f is Lipschitz continuous (5.12) and that f is bounded below by some

f∗. Then the BCD method using either the GSQ, GSL, GSD or GS selection rule achieves the

following convergence rate of the minimum gradient norm,

min
t=0,1,...,k−1

‖∇f(xt)‖2B ≤
2(f(x0)− f∗)

k
.

Proof. By rearranging (5.21), we have

1

2
‖∇f(xk)‖2B ≤ f(xk)− f(xk+1).

Summing this inequality over iterations t = 0 up to (k − 1) yields

1

2

k−1∑
t=0

‖∇f(xt)‖2B ≤ f(x0)− f(xk+1).

Using that all k elements in the sum are lower bounded by their minimum and that f(xk+1) ≥

79

f∗, we get
k

2

(
min

t=0,1,...,k−1
‖∇f(xt)‖2B

)
≤ f(x0)− f∗.

Due to the potential non-convexity we cannot say anything about the gradient norm of

the final iteration, but this shows that the minimum gradient norm converges to zero with an

error at iteration k of O(1/k). This is a global sublinear result, but note that if the algorithm

eventually arrives and stays in a region satisfying the PL inequality around a set of local optima,

then the local convergence rate to this set of optima will increase to be linear.

5.3 Practical Issues

The previous section defines straightforward new rules that yield a simple analysis. In practice

there are several issues that remain to be addressed. For example, it seems intractable to

compute any of the new rules in the case of variable blocks. Furthermore, we may not know

the Lipschitz constants for our problem. For fixed blocks we also need to consider how to

partition the coordinates into blocks. Another issue is that the dk choices used above do not

incorporate the local Hessian information. Although how we address these issues will depend

on our particular application, in this section we discuss several issues associated with these

practical considerations.

5.3.1 Tractable GSD for Variable Blocks

The problem with using any of the new selection rules above in the case of variable blocks is

that they seem intractable to compute for any non-trivial block size. In particular, to compute

the GSL rule using variable blocks requires the calculation of Lb for each possible block, which

seems intractable for any problem of reasonable size. Since the GSL rule is a special case of the

GSD and GSQ rules, these rules also seem intractable in general. In this section we show how

to restrict the GSD matrices so that this rule has the same complexity as the classic GS rule.

Consider a variant of the GSD rule where each Db,i can depend on i but does not depend

on b, so we have Db,i = di for some value di ∈ IR+ for all blocks b. This gives a rule of the form

bk ∈ argmax
b∈B

{∑
i∈b

|∇if(xk)|2
di

}
. (5.22)

Unlike the general GSD rule, this rule has essentially the same complexity as the classic GS

rule since it simply involves finding the largest values of the ratio |∇if(xk)|2/di.
A natural choice of the di values would seem to be di = Li, since in this case we recover

the GSL rule if the blocks have a size of 1 (here we are using Li to refer to the coordinate-

wise Lipschitz constant of coordinate i). Unfortunately, this does not lead to a bound of the

80

form (5.18) as needed in Theorems 7 and 8 because coordinate-wise Li-Lipschitz continuity

with respect to the Euclidean norm does not imply 1-Lipschitz continuity with respect to the

norm ‖ · ‖D−1
b

when the block size is larger than 1. Subsequently, the steps under this choice

may increase the objective function. A similar restriction on the Db matrices in (5.22) is used in

the implementation of Tseng and Yun based on the Hessian diagonals [Tseng and Yun, 2009b],

but their approach similarly does not give an upper bound and thus they employ a line search

in their block update.

It is possible to avoid needing a line search by setting Db,i = Liτ , where τ is the maximum

block size in B. This still generalizes the single-coordinate GSL rule, and in Appendix D.3

we show that this leads to a bound of the form (5.18) for twice-differentiable convex functions

(thus Theorems 7 and 8 hold). If all blocks have the same size then this approach selects the

same block as using Db,i = Li, but the matching block update uses a much-smaller step-size

that guarantees descent. We do not advocate using this smaller step, but note that the bound

we derive also holds for alternate updates like taking a gradient update with αk = 1/Lbk or

using a matrix update based on Hbk .

The choice of Db,i = Liτ leads to a fairly pessimistic bound, but it is not obvious even

for simple problems how to choose an optimal set of Di values. Choosing these values is

related to the problem of finding an expected separable over-approximation (ESO), which arises

in the context of randomized coordinate descent methods [Richtárik and Takáč, 2016]. Qu

and Richtárik give an extensive discussion of how we might bound such quantities for certain

problem structures [Qu and Richtárik, 2016]. In our experiments we also explored another

simple choice that is inspired by the “simultaneous iterative reconstruction technique” (SIRT)

from tomographic image reconstruction [Gregor and Fessler, 2015]. In this approach, we use a

matrix upper bound M on the full Hessian ∇2f(x) (for all x) and set15

Db,i =
n∑
j=1

|Mi,j |. (5.23)

We found that this choice worked better when using gradient updates, although using the

simpler Liτ is less expensive and was more effective when doing matrix updates.

By using the relationship Lb ≤
∑

i∈b Li ≤ |b|maxi∈b Li, two other ways we might consider

defining a more-tractable rule could be

bk ∈ argmax
b∈B

{∑
i∈b |∇if(xk)|2
|b|maxi∈b Li

}
, or bk ∈ argmax

b∈B

{∑
i∈b |∇if(xk)|2∑

i∈b Li

}
.

The rule on the left can be computed using dynamic programming while the rule on the right

can be computed using an algorithm of Megiddo [1979]. However, when using a step-size of

1/Lb we found both rules performed similarly or worse to using the GSD rule with Db,i = Li

15It follow that D −M � 0 because it is symmetric and diagonally-dominant with non-negative diagonals.

81

(when paired with gradient or matrix updates).16

5.3.2 Tractable GSQ for Variable Blocks

In order to make the GSQ rule tractable with variable blocks, we could similarly require that

the entries of Hb depend solely on the coordinates i ∈ b, so that Hb = Mb,b where M is a fixed

matrix (as above) and Mb,b refers to the sub-matrix corresponding to the coordinates in b. Our

restriction on the GSD rule in the previous section corresponds to the case where M is diagonal.

In the full-matrix case, the block selected according to this rule is given by the coordinates

corresponding to the non-zero variables of an L0-constrained quadratic minimization,

argmin
‖d‖0≤τ

{
f(xk) + 〈∇f(xk), d〉+

1

2
dTMd

}
, (5.24)

where ‖ · ‖0 is the number of non-zeroes. This selection rule is discussed in Tseng and Yun

[2009b], but in their implementation they use a diagonal M . Although this problem is NP-hard

with a non-diagonal M , there is a recent wealth of literature on algorithms for finding approx-

imate solutions. For example, one of the simplest local optimization methods for this problem

is the iterative hard-thresholding (IHT) method [Blumensath and Davies, 2009]. Another pop-

ular method for approximately solving this problem is the orthogonal matching pursuit (OMP)

method from signal processing which is also known as forward selection in statistics [Hock-

ing, 1976, Pati et al., 1993]. Computing d via (5.24) is also equivalent to computing the MI

rule for a quadratic function, and thus we could alternately use the approximation of Bo and

Sminchisescu [2012] for this problem.

Although it appears quite general, note that the exact GSQ rule under this restriction on Hb

does not guarantee as much progress as the more-general GSQ rule (if computed exactly) that

we proposed in the previous section. For some problems we can obtain tighter matrix bounds

over blocks of variables than are obtained by taking the sub-matrix of a fixed matrix-bound

over all variables. We show this for the case of multi-class logistic regression in Appendix D.2.

As a consequence of this result we conclude that there does not appear to be a reason to use

this restriction in the case of fixed blocks.

Although using the GSQ rule with variable blocks forces us to use an approximation, these

approximations might still select a block that makes more progress than methods based on

diagonal approximations (which ignore the strengths of dependencies between variables). It is

possible that approximating the GSQ rule does not necessarily lead to a bound of the form (5.18)

as there may be no fixed norm for which this inequality holds. However, in this case we can

initialize the algorithm with an update rule that does achieve such a bound in order to guarantee

that Theorems 7 and 8 hold, since this initialization ensures that we do at least as well as this

reference block selection rule.

16On the other hand, the rule on the right worked better if we forced the algorithms to use a step-size of
1/(

∑
i∈b Li), but this led to worse performance overall than using the larger 1/Lb step-size.

82

The main disadvantage of this approach for large-scale problems is the need to deal with

the full matrix M (which does not arise when using a diagonal approximation or using fixed

blocks). In large-scale settings we would need to consider matrices M with special structures

like the sum of a diagonal matrix with a sparse and/or a low-rank matrix.

5.3.3 Lipschitz Estimates for Fixed Blocks

Using the GSD rule with the choice of Db,i = Li may also be useful in the case of fixed blocks.

In particular, if it is easier to compute the single-coordinate Li values than the block Lb values

then we might prefer to use the GSD rule with this choice. On the other hand, an appealing

alternative in the case of fixed blocks is to use an estimate of Lb for each block as in Nesterov’s

work [Nesterov, 2010]. In particular, for each Lb we could start with some small estimate (like

Lb = 1) and then double it whenever the inequality (5.10) is not satisfied (since this indicates

Lb is too small). Given some b, the bound obtained under this strategy is at most a factor of 2

slower than using the optimal values of Lb. Further, if our estimate of Lb is much smaller than

the global value, then this strategy can actually guarantee much more progress than using the

“correct” Lb value.17

In the case of matrix updates, we can use (5.14) to verify that an Hb matrix is valid [Foun-

toulakis and Tappenden, 2015]. Recall that (5.14) is derived by plugging the update (5.13) into

the Lipschitz progress bound (5.12). Unfortunately, it is not obvious how to update a matrix

Hb if we find that it is not a valid upper bound. One simple possibility is to multiply the

elements of our estimate Hb by 2. This is equivalent to using a matrix update but with a scalar

step-size αk,

dk = −αk(Hb)
−1∇bkf(xk), (5.25)

similar to the step-size in the Newton update (5.5).

5.3.4 Efficient Line Searches

The Lipschitz approximation procedures of the previous section do not seem practical when

using variable blocks, since there are an exponential number of possible blocks. To use variable

blocks for problems where we do not know Lb or Hb, a reasonable approach is to use a line

search. For example, we can choose αk in (5.25) using a standard line search like those that use

the Armijo condition or Wolfe conditions [Nocedal and Wright, 1999]. When using large block

sizes with gradient updates, line searches based on the Wolfe conditions are likely to make more

progress than using the true Lb values (since for large block sizes the line search would tend to

choose values of αk that are much larger than αk = 1/Lbk).

Further, the problem structures that lend themselves to efficient coordinate descent algo-

rithms tend to lend themselves to efficient line search algorithms. For example, if our objective

17While it might be tempting to also apply such estimates in the case of variable blocks, a practical issue is
that we would need a step-size for all of the exponential number of possible variable blocks.

83

has the form f(Ax) then a line search would try to minimize the f(Axk + αkAUbkd
k) in terms

of αk. Notice that the algorithm would already have access to Axk and that we can efficiently

compute AUbkd
k since it only depends on the columns of A that are in bk. Thus, after (effi-

ciently) computing AUbkd
k once the line search simply involves trying to minimize f(v1 +αkv2)

in terms of αk (for particular vectors v1 and v2). The cost of this approximate minimization

will typically not add a large cost to the overall algorithm.

5.3.5 Block Partitioning with Fixed Blocks

Several prior works note that for fixed blocks the partitioning of coordinates into blocks can play

a significant role in the performance of BCD methods. Thoppe et al. [2014] suggest trying to find

a block-diagonally dominant partition of the coordinates, and experimented with a heuristic

for quadratic functions where the coordinates corresponding to the rows with the largest values

were placed in the same block. In the context of parallel BCD, Scherrer et al. [2012] consider

a feature clustering approach in the context of problem h1 that tries to minimize the spectral

norm between columns of A from different blocks. Csiba and Richtárik [2016] discuss strategies

for partitioning the coordinates when using randomized selection.

Based on the discussion in the previous sections, for greedy BCD methods it is clear that

we guarantee the most progress if we can make the mixed norm ‖∇f(xk)‖B as large as possible

across iterations (assuming that the Hb give a valid bound). This supports strategies where

we try to minimize the maximum Lipschitz constant across iterations. One way to do this is

to try to ensure that the average Lipschitz constant across the blocks is small. For example,

we could place the largest Li value with the smallest Li value, the second-largest Li value

with the second-smallest Li value, and so on. While intuitive, this may be sub-optimal; it

ignores that if we cleverly partition the coordinates we may force the algorithm to often choose

blocks with very-small Lipschitz constants (which lead to much more progress in decreasing the

objective function). In our experiments, similar to the method of Thoppe et. al. for quadratics,

we explore the simple strategy of sorting the Li values and partitioning this list into equal-sized

blocks. Although in the worst case this leads to iterations that are not very productive since

they update all of the largest Li values, it also guarantees some very productive iterations that

update none of the largest Li values and leads to better overall performance in our experiments.

5.3.6 Newton Updates

Choosing the vector dk that we use to update the block xbk would seem to be straightforward

since in the previous section we derived the block selection rules in the context of specific

block updates; the GSL rule is derived assuming a gradient update (5.9), the GSQ rule is

derived assuming a matrix update (5.13), and so on. However, using the update dk that leads

to the selection rule can be highly sub-optimal. For example, we might make substantially

more progress using the matrix update (5.13) even if we choose the block bk based on the GSL

rule. Indeed, given bk the matrix update makes the optimal amount of progress for quadratic

84

functions, so in this case we should prefer the matrix update for all selection rules (including

random and cyclic rules).

However, the matrix update in (5.13) can itself be highly sub-optimal for non-quadratic

functions as it employs an upper-bound Hbk on the sub-Hessian ∇2
bkbk

f(x) that must hold for all

parameters x. For twice-differentiable non-quadratic functions, we could potentially make more

progress by using classic Newton updates where we use the instantaneous Hessian ∇2
bkbk

f(xk)

with respect to the block. Indeed, considering the extreme case where we have one block

containing all the coordinates, Newton updates can lead to superlinear convergence [Dennis

and Moré, 1974] while matrix updates destroy this property. That being said, we should

not expect superlinear convergence of BCD methods with Newton or even optimal updates.18

Nevertheless, in Chapter 6 we show that for certain common problem structures it is possible

to achieve superlinear convergence with Newton-style updates.

Fountoulakis & Tappenden recently highlight this difference between using matrix updates

and using Newton updates [Fountoulakis and Tappenden, 2015], and propose a BCD method

based on Newton updates. To guarantee progress when far from the solution classic Newton

updates require safeguards like a line search or trust-region [Fountoulakis and Tappenden,

2015, Tseng and Yun, 2009b], but as we discussed in this section line searches tend not to add

a significant cost to BCD methods. Thus, if we want to maximize the progress we make at

each iteration we recommend to use one of the greedy rules to select the block to update, but

then update the block using the Newton direction and a line search. In our implementation, we

used a backtracking line search starting with αk = 1 and backtracking for the first time using

quadratic Hermite polynomial interpolation and using cubic Hermite polynomial interpolation

if we backtracked more than once (which rarely happened since αk = 1 or the first backtrack

were typically accepted) [Nocedal and Wright, 1999].19

5.4 Message-Passing for Huge-Block Updates

Qu et al. [2016] discuss how in some settings increasing the block size with matrix updates

does not necessarily lead to a performance gain due to the higher iteration cost. In the case of

Newton updates the additional cost of computing the sub-Hessian ∇2
bbf(xk) may also be non-

trivial. Thus, whether matrix and Newton updates will be beneficial over gradient updates will

depend on the particular problem and the chosen block size. However, in this section we argue

that in some cases matrix updates and Newton updates can be computed efficiently using huge

blocks. In particular, we focus on the case where the dependencies between variables are sparse,

and we will choose the structure of the blocks in order to guarantee that the matrix/Newton

update can be computed efficiently.

18Consider a 2-variable quadratic objective where we use single-coordinate updates. The optimal update
(which is equivalent to the matrix/Newton update) is easy to compute, but if the quadratic is non-separable
then the convergence rate of this approach is only linear.

19We also explored a variant based on cubic regularization of Newton’s method [Nesterov and Polyak, 2006],
but were not able to obtain a significant performance gain with this approach.

85

The cost of using Newton updates with the BCD method depends on two factors: (i) the cost

of calculating the sub-Hessian ∇2
bkbk

f(xk) and (ii) the cost of solving the corresponding linear

system. The cost of computing the sub-Hessian depends on the particular objective function we

are minimizing. But, for the problems where coordinate descent is efficient (see Section 5.1.4),

it is typically substantially cheaper to compute the sub-Hessian for a block than to compute

the full Hessian. Indeed, for many cases where we apply BCD, computing the sub-Hessian

for a block is cheap due to the sparsity of the Hessian. For example, in the graph-structured

problems h2 the edges in the graph correspond to the non-zeroes in the Hessian.

Although this sparsity and reduced problem size would seem to make BCD methods with

exact Newton updates ideal, in the worst case the iteration cost would still be O(|bk|3) using

standard matrix factorization methods. A similar cost is needed using the matrix updates

with fixed Hessian upper-bounds Hb and for performing an optimal update in the special case

of quadratic functions. In some settings we can reduce this to O(|bk|2) by storing matrix

factorizations, but this cost is still prohibitive if we want to use large blocks (we can use |bk| in
the thousands but not the millions).

An alternative to computing the exact Newton update is to use an approximation to the

Newton update that has a runtime dominated by the sparsity level of the sub-Hessian. For

example, we could use conjugate gradient methods or use randomized Hessian approxima-

tions [Dembo et al., 1982, Pilanci and Wainwright, 2017]. However, these approximations

require setting an approximation accuracy and may be inaccurate if the sub-Hessian is not

well-conditioned. In this section we consider an alternative approach: choosing blocks with a

sparsity pattern that guarantees we can solve the resulting linear systems involving the sub-

Hessian (or its approximation) in O(|bk|) using a “message-passing” algorithm. If the sparsity

pattern is favourable, this allows us to update huge blocks at each iteration using exact matrix

updates or Newton updates (which are the optimal updates for quadratic problems).

To illustrate the message-passing algorithm, we first consider the basic quadratic minimiza-

tion problem

argmin
x∈IRn

1

2
xTAx− cTx,

where we assume the matrix A ∈ IRn×n is positive-definite and sparse. By excluding terms

not depending on the coordinates in the block, the optimal update for block b is given by the

solution to the linear system

Abbxb = c̃, (5.26)

where Abb ∈ IR|b|×|b| is the submatrix of A corresponding to block b, and c̃ = cb − Abb̄xb̄ is a

vector with b̄ defined as the complement of b and Abb̄ ∈ IR|b|×|b̄| is the submatrix of A with rows

from b and columns from b̄. We note that in practice efficient BCD methods already need to

track Ax so computing c̃ is efficient. Although we focus on solving (5.26) for simplicity, the

message-passing solution we discuss here will also apply to matrix updates (which leads to a

linear system involving Hb) and Newton updates (which leads to a linear system involving the

86

sub-Hessian).

Consider a pairwise undirected graph G = (V,E), where the vertices V are the coordinates

of our problem and the edges E are the non-zero off-diagonal elements of A. Thus, if A is

diagonal then G has no edges, if A is dense then there are edges between all nodes (G is fully-

connected), if A is tridiagonal then edges connect adjacent nodes (G is a chain-structured graph

where (1)− (2)− (3)− (4)− . . .), and so on.

For BCD methods, unless we have a block size |b| = n, we only work with a subset of nodes

b at each iteration. The graph obtained from the sub-matrix Abb is called the induced subgraph

Gb. Specifically, the nodes Vb ∈ Gb are the coordinates in the set b, while the edges Eb ∈ Gb are

all edges (i, j) ∈ E where i, j ∈ Vb (edges between nodes in b). We are interested in the special

case where the induced sub-graph Gb forms a forest, meaning that it has no cycles.20 The

idea of exploiting tree structures within BCD updates has previously been explored by Sontag

and Jaakkola [2009]. However, unlike this work, where we use tree structured blocks to com-

pute general Newton updates, Sontag and Jaakkola propose this idea in the context of linear

programming.

In the special case of forest-structured induced subgraphs, we can compute the optimal

update (5.26) in linear time using message passing [Shental et al., 2008] instead of the cubic

worst-case time required by typical matrix factorization implementations. Indeed, in this case

the message passing algorithm is equivalent to Gaussian elimination [Bickson, 2009, Prop. 3.4.1]

where the amount of “fill-in” is guaranteed to be linear. This idea of exploiting tree structures

within Gaussian elimination dates back over 50 years [Parter, 1961], and similar ideas have

recently been explored by Srinivasan and Todorov [2015] for Newton methods. Their graphical

Newton algorithm can solve the Newton system in O(t3) times the size of G, where t is the

“treewidth” of the graph (t = 1 for forests). However, the tree-width of G is usually large while

it is more reasonable to assume that we can find low-treewidth induced subgraphs Gb.

To illustrate the message-passing algorithm in the terminology of Gaussian elimination, we

first need to divide the nodes {1, 2, . . . , |b|} in the forest into sets L{1}, L{2}, . . . , L{T}, where

L{1} is an arbitrary node in graph Gb selected to be the root node, L{2} is the set of all

neighbours of the “root” node, L{3} is the set of all neighbours of the nodes in L{2} excluding

parent nodes (nodes in L{1 : 2}), and so on until all nodes are assigned to a set (if the forest

is made of disconnected trees, we need to do this for each tree). An example of this process is

depicted in Figure 5.4. Once these sets are initialized, we start with the nodes furthest from

the root node L{T}, and carry out the row operations of Gaussian elimination moving towards

the root. Then we use backward substitution to solve the system Ãx = c̃. We outline the full

procedure in Algorithm 1.

Whether or not message-passing is useful will depend on the sparsity pattern of A. Diagonal

matrices correspond to disconnected graphs, which are clearly forests (they have no edges), and

20An undirected cycle is a sequence of adjacent nodes in V starting and ending at the same node, where there
are no repetitions of nodes or edges other than the final node.

87

Algorithm 1 Message Passing for a Tree Graph

1. Initialize:
Input: vector c̃, forest-structured matrix Ã, and levels L{1}, L{2}, . . . , L{T}.
for i = 1, 2, . . . , |b|

Set Pii ← Ãii, Ci ← c̃i. # P,C track row operations

2. Gaussian Elimination:
for t = T, T − 1, . . . , 1 # start furthest from root

for i ∈ L{t}
if t > 1
J ← N{i}\L{1 : t− 1} # neighbours that are not parent node

if J = ∅ # i corresponds to a leaf node

continue # no updates

else
J ← N{i} # root node has no parent node

PJi ← ÃJi # initialize off-diagonal elements

Pii ← Pii −
∑
j∈J

P 2
ji

Pjj
update diagonal elements of P in L{t}

Ci ← Ci −
∑
j∈J

Pji
Pjj
· Cj

3. Backward Solve:
for t = 1, 2, . . . , T # start with root node

for i ∈ L{t}
if t < T
p← N{i}\L{t+ 1 : T} # parent node of i (empty for t = 1)

else
p← N{i} # only neighbour of leaf node is parent

xi ←
Ci − Ãip · xp

Pii
solution to Ãx = c̃

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

Figure 5.1: Process of partitioning nodes into level sets. For the above graph we have the
following sets: L{1} = {8}, L{2} = {6, 7}, L{3} = {3, 4, 5} and L{4} = {1, 2} .

thus we can use an optimal BCD update with a block size of n. Now consider a quadratic

function with a lattice-structured non-zero pattern as in Figure 5.3. This graph is a bipartite

88

Figure 5.2: Illustration of Step 2 (row-reduction process) of Algorithm 1 for the tree in Figure
5.4. The matrix represents [Ã|c̃]. The black squares represent unchanged non-zero values of Ã
and the grey squares represent non-zero values that are updated at some iteration in Step 2. In
the final matrix (far right), the values in the last column are the values assigned to the vector
C in Steps 1 and 2 above, while the remaining columns that form an upper triangular matrix
are the values corresponding to the constructed P matrix. The backward solve of Step 3 solves
the linear system.

(a) Red-black, |b| = n/2. (b) Fixed block, |b| = n/2. (c) Variable block, |b| ≈ 2n/3.

Figure 5.3: Partitioning strategies for defining forest-structured blocks.

graph, or a two-colourable graph, and a classic fixed partitioning strategy for problems with this

common structure is to use a “red-black ordering” (see Figure 5.3a). Choosing this colouring

makes the matrix Abb diagonal when we update the red nodes (and similarly for the black

nodes), allowing us to solve (5.26) in linear time. So this colouring scheme allows an optimal

BCD update with a block size of n/2. The adjacency matrix of a graph like this is called

consistently ordered. In general, an adjacency matrix is consistently ordered if the nodes of the

corresponding graph can be partitioned into sets such that any two adjacent nodes belong to

different, consecutive sets [Young, 1971, Def. 5.3.2]. In the case of red-black ordering, all odd

numbered sets would make up one block and all even numbered sets would make up another

block.

Message passing allows us to go beyond the red-black, and update any forest-structured

block of size τ in linear time. For example, the partition given in Figure 5.3b also has blocks

of size n/2 but these blocks include dependencies. Our experiments indicate that blocks that

maintain dependencies, such as Figure 5.3b, make substantially more progress than using the

red-black blocks or using smaller non-forest structured blocks. However, red-black blocks, or

89

more generally, consistently ordered matrices, are very well-suited for parallelization.

Unlike in Figure 5.3a, the colouring of a general graph or partitioning of a general adjacency

matrix may lead to blocks of different sizes. Multi-colouring techniques are used to find graph

colourings for general graphs, where colours are assigned to nodes such that no neighbouring

nodes share the same colour [Saad, 2003, §12.4]. Finding the minimum number of “colours”

(or the maximum size of blocks) for a given graph is exactly the NP-hard graph colouring

problem. However, there are various heuristics that quickly give a non-minimal valid colouring

of the nodes (for a survey of heuristic, meta-heuristic and hybrid methods for graph colouring,

see Baghel et al. [2013]). If a graph is ν-colourable, then we can arrange the adjacency matrix

such that it has ν diagonal blocks along its diagonal (the off diagonal blocks may be dense). In

relation to BCD methods, this means that Abb is diagonal for each block and we can update

each of the ν blocks in linear time in the size of the block.

Alternatively, as we did for blocks of equal size in Figure 5.3b we can consider all blocks

with a forest-structured induced subgraph, where the block size may vary at each iteration but

restricting to forests still leads to a linear-time update. As seen in Figure 5.3c, by allowing

variable block sizes we can select a forest-structured block of size |b| ≈ 2n/3 in one iteration

(black nodes) while still maintaining a linear-time update. If we further sample different random

forests or blocks at each iteration, then the convergence rate under this strategy is covered by

the arbitrary sampling theory [Qu et al., 2014]. Also note that the maximum of the gradient

norms over all forests defines a valid norm, so our analysis of Gauss-Southwell can be applied

to this case.

5.4.1 Partitioning into Forest-Structured Blocks

We can generalize the red-black approach to arbitrary graphs by defining our blocks such that

no two neighbours are in the same block. While for lattice-structured graphs we only need

two blocks to do this, for general graphs we may need a larger number of blocks. Finding the

minimum number of blocks we need for a given graph is exactly the NP-hard graph colour-

ing problem. Fortunately, there are various heuristics that quickly give a non-minimal valid

colouring of the nodes. For example, in our experiments we used the following classic greedy

algorithm [Welsh and Powell, 1967]:

1. Proceed through the vertices of the graph in some order i = 1, 2, . . . , n.

2. For each vertex i, assign it the smallest positive integer (“colour”) such that it does not

have the same colour as any of its neighbours among the vertices {1, 2, . . . , i− 1}.

We can use all vertices assigned to the same integer as our blocks in the algorithm, and if we

apply this algorithm to a lattice-structured graph (using row- or column-ordering of the nodes)

then we obtain the classic red-black colouring of the graph.

Instead of disconnected blocks, in this work we instead consider forest-structured blocks.

The size of the largest possible forest is related to the graph colouring problem [Esperet et al.,

90

2015], but we can consider a slight variation on the second step of the greedy colouring algorithm

to find a set of forest-structured blocks:

1. Proceed through the vertices of the graph in some order i = 1, 2, . . . , n.

2. For each vertex i, assign it the smallest positive integer (“forest”) such that the nodes

assigned to that integer among the set {1, 2, . . . , i} form a forest.

If we apply this to a lattice structured graph (in column-ordering), this generates a partition

into two forest-structured graphs similar to the one in Figure 5.3b (only the bottom row is

different). This procedure requires us to be able to test whether adding a node to a forest

maintains the forest structure, and we show how to do this efficiently in Appendix D.4.

In the case of lattice-structured graph there is a natural ordering of the vertices, but for

many graphs there is no natural ordering. In such we might simply consider a random ordering.

Alternately, if we know the individual Lipschitz constants Li, we could order by these values

(with the largest Li going first so that they are likely assigned to the same block if possible). In

our experiments we found that this ordering improved performance for an unstructured dataset,

and performed similarly to using the natural ordering in a lattice-structured dataset.

5.4.2 Approximate Greedy Rules with Forest-Structured Blocks

Similar to the problems of the previous section, computing the Gauss-Southwell rule over forest-

structured variable blocks is NP-hard, as we can reduce the 3-satisfiability problem to the

problem of finding a maximum-weight forest [Garey and Johnson, 1979]. However, we use a

similar greedy method to approximate the greedy Gauss-Southwell rule over the set of trees:

1. Initialize bk with the node i corresponding to the largest gradient, |∇if(xk)|.

2. Search for the node i with the largest gradient that is not part of bk and that maintains

that bk is a forest.

3. If such a node is found, add it to bk and go back to step 2. Otherwise, stop.

Although this procedure does not yield the exact solution in general, it is appealing since (i) the

procedure is efficient as it is easy to test whether adding a node maintains the forest property

(see Appendix D.4), (ii) it outputs a forest so that the subsequent update is linear-time, (iii) we

are guaranteed that the coordinate corresponding to the variable with the largest gradient is

included in bk, and (iv) we cannot add any additional node to the final forest and still maintain

the forest property. A similar heuristic can be used to approximate the GSD rule under the

restriction from Section 5.3.1 or to generate a forest randomly.

5.5 Numerical Experiments

We performed an extensive variety of experiments to evaluate the effects of the contributions

listed in the previous sections. In this section we include several of these results that highlight

91

some key trends we observed, and in each subsection below we explicitly list the insights we

obtained from the experiment. We considered five datasets that evaluate the methods in a

variety of scenarios:

A Least-squares with a sparse data matrix.

B Binary logistic regression with a sparse data matrix.

C 50-class logistic regression problem with a dense data matrix.

D Lattice-structured quadratic objective as in Section 5.4.

E Binary label propagation problem (sparse but unstructured quadratic).

For interested readers, we give the full details of these datasets in Appendix D.5 where we have

also included our full set of experiment results.

In our experiments we use the number of iterations as our measure of performance. This

measure is far from perfect, especially when considering greedy methods, since it ignores

the computational cost of each iteration. However, this measure of performance provides

an problem- and implementation-independent measure of performance. We seek a problem-

independent measure of performance since runtimes are highly dependent on the block size

and the problem structure; as the block size grows, the extra computational cost of greedy

methods may eventually be outweighed by the cost of computing the block update. We seek

an implementation-independent measure of performance since the actual runtimes of different

methods will vary wildly across applications. However, it is typically easy to estimate the per-

iteration runtime when considering a new problem. Thus, we hope that our quantification of

what can be gained from more-expensive methods gives guidance to readers about whether the

more-expensive methods will lead to a performance gain on their applications. In any case, we

are careful to qualify all of our claims with warnings in cases where the iteration costs differ.

5.5.1 Greedy Rules with Gradient Updates

Our first experiment considers gradient updates with a step-size of 1/Lb, and seeks to quantify

the effect of using fixed blocks compared to variable blocks (Section 5.2.1) as well as the effect

of using the new GSL rule (Section 5.2.2). In particular, we compare selecting the block using

Cyclic, Random, Lipschitz (sampling the elements of the block proportional to Li), GS, and

GSL rules. For each of these rules we implemented a fixed block (FB) and variable block

(VB) variant. For VB using Cyclic selection, we split a random permutation of the coordinates

into equal-sized blocks and updated these blocks in order (followed by using another random

permutation). To approximate the seemingly-intractable GSL rule with VB, we used the GSD

rule (Section 5.2.4) using the SIRT-style approximation (5.23) from Section 5.3.1. We used the

bounds in Appendix D.2 to set the Lb values. To construct the partition of the coordinates

92

0 100 200 300 400 500
Iterations with 5-sized blocks

7.9× 103

4.4× 104

2.4× 105

1.3× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

3.0× 103

3.2× 103

3.4× 103

3.6× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

Cyclic-FB Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VBRandom-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.7× 102

3.4× 102

4.4× 102

5.6× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

Figure 5.4: Comparison of different random and greedy block selection rules on three different
problems when using gradient updates.

needed in the FB method, we sorted the coordinates according to their Li values then placed

the largest Li values into the first block, the next set of largest in the second block, and so on.

We plot selected results in Figure 5.4, while experiments on all datasets and with other

block sizes are given in Appendix D.5.2. Overall, we observed the following trends:

• Greedy rules tend to outperform random and cyclic rules, particularly with small

block sizes. This difference is sometimes enormous, and this suggests we should prefer

greedy rules when the greedy rules can be implemented with a similar cost to cyclic or

random selection.

• The variance of the performance between the rules becomes smaller as the

block size increases. This suggests that if we use very-large block sizes with gradient

updates that we should prefer simple Cyclic or Random updates.

• VB can substantially outperform FB when using GS for certain problems. This

is because FB are a subset of the VB, so we can make the progress bound better. Thus,

we should prefer GS-VB for problems where this has a similar cost to GS-FB. We found

this trend was reversed for random rules, where fixed blocks tended to perform better.

We suspect this trend is due to the coupon collector problem: it takes FB fewer iterations

than VB to select all variables at least once.

• GSL consistently improved on the classic GS rule, and in some cases the new rule

with FB even outperformed the GS rule with VB. Interestingly, the performance gain was

larger in the block case than in the single-coordinate case (see Section 2.8).

In Appendix D.5.2 we repeat this experiment for the FB methods but using the approxima-

tion to Lb discussed in Section 5.3.3. This sought to test whether this procedure, which may

underestimate the true Lb and thus use larger step-sizes, would improve performance. This

experiment lead to some additional insights:

• Approximating Lb was more effective as the block size increases. This makes

sense, since with large block sizes there are more possible directions and we are unlikely

to ever need to use a step-size as small as 1/Lb for the global Lb.

93

0 100 200 300 400 500
Iterations with 5-sized blocks

0.3× 10−1

4.0× 100

4.9× 102

6.1× 104

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A
GSQ-FB

GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 103

2.6× 103

3.0× 103

3.4× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 102

3.0× 102

4.1× 102

5.4× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

Figure 5.5: Comparison of different greedy block selection rules on three different problems
when using matrix updates.

• Approximating Lb is far more effective than using a loose bound. We have

relatively-good bounds for all problems except Problem C. On this problem the Lipschitz

approximation procedure was much more effective even for small block sizes.

This experiment suggests that we should prefer to use an approximation to Lb (or an explicit

line search) when using gradient updates unless we have a tight approximation to the true

Lb and we are using a small block size. We also performed experiments with different block

partitioning strategies for FB (see Appendix D.5.2). Although these experiments had some

variability, we found that the block partitioning strategy did not make a large difference for

cyclic and random rules. In contrast, when using greedy rules our sorting approach tended

to outperform using random blocks or choosing the blocks to have similar average Lipschitz

constants.

5.5.2 Greedy Rules with Matrix Updates

Our next experiment considers using matrix updates based on the matrices Hb from Ap-

pendix D.2, and quantifies the effects of the GSQ and GSD rules introduced in Sections 5.2.3-

5.2.4 as well the approximations to these introduced in Sections 5.3.1-5.3.2. In particular, for

FB we consider the GS rule and the GSL rule (from the previous experiment), the GSD rule

(using the diagonal matrices from Section 5.3.1 with Db,i = Li), and the GSQ rule (which is

optimal for the three quadratic objectives). For VB we consider the GS rule from the previous

experiment as well as the GSD rule (using Db,i = Li), and the GSQ rule using the approxima-

tion from Section 5.3.2 and 10 iterations of iterative hard thresholding. Other than switching

to matrix updates and focusing on these greedy rules, we keep all other experimental factors

the same.

We plot selected results of doing this experiment in Figure 5.5. These experiments showed

the following interesting trends:

• There is a larger advantage to VB with matrix updates. When using matrix

updates, the basic GS-VB method outperformed even the most effective GSQ-FB rule for

smaller block sizes.

94

• There is little advantage to GSD/GSQ with FB. Although the GSL rule consistently

improved over the classic GS rule, we did not see any advantage to using the more-

advanced GSD or GSQ rules when using FB.

• GSD outperformed GS with VB. Despite the use of a crude approximation to the

GSD rule, the GSD rule consistently outperformed the classic GS rule.

• GSQ slightly outperformed GSD with VB and large blocks. Although the GSQ-

VB rule performed the best across all experiments, the difference was more noticeable for

large block sizes. However, this did not offset its high cost in any experiment. We also

experimented with OMP instead of IHT, and found it gave a small improvement but the

iterations were substantially more expensive.

Putting the above together, with matrix updates our experiments indicate that the GSL or

GSD seem to both provide good performance for FB, while for VB the GSD rule should be

preferred. We would only recommend using the GSQ rule in settings where we can use VB and

where operations involving the objective f are much more expensive than running an IHT or

OMP method. We performed experiments with different block partition strategies for FB, but

found that when using matrix updates the partitioning strategy did not make a big difference

for cyclic, random, or greedy rules.

In Appendix D.5.3 we repeat this experiment for the non-quadratic objectives using the New-

ton direction and a backtracking line search to set the step-size, as discussed in Sections 5.3.4

and 5.3.6. For both datasets, the Newton updates resulted in a significant performance improve-

ment over the matrix updates. This indicates that we should prefer classic Newton updates over

the more recent matrix updates for non-quadratic objectives where computing the sub-block of

the Hessian is tractable.

5.5.3 Message-Passing Updates

We next seek to quantify the effect of using message-passing to efficiently implement exact

updates for quadratic functions, as discussed in Section 5.4. For this experiment, we focused

on the lattice-structured dataset D and the unstructured but sparse dataset E. These are both

quadratic objectives with high treewidth, but that allow us to find large forest-structured in-

duced subgraphs. We compared the following strategies to choose the block: greedily choosing

the best general unstructured blocks using GS (General), cycling between blocks generated by

the greedy graph colouring algorithm of Section 5.4.1 (Red Black), cycling between blocks gen-

erated by the greedy forest-partitioning algorithm of Section 5.4.1 (Tree Partitions), greedily

choosing a tree using the algorithm of Section 5.4.2 (Greedy Tree), and growing a tree randomly

using the same algorithm (Random Tree). For the lattice-structured Dataset D, the greedy par-

titioning algorithms proceed through the variables in order which generate partitions similar

to those shown in in Figure 5.3b. For the unstructured Dataset E, we apply the greedy parti-

tioning strategies of Section 5.4.1 using both a random ordering and by sorting the Lipschitz

95

0 100 200 300 400 500
Iterations

0.1× 10−4

0.4× 10−1

1.2× 102

3.5× 105

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D
Random Tree

Greedy Tree

General

Red Black

Tree Partitions

0 100 200 300 400 500
Iterations

0.8× 10−4

0.4× 10−2

0.2× 100

1.3× 101

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Random Tree

Greedy Tree

General

Red Black Lipschitz

Tree Partitions Lipschitz

Tree Partitions Order

Red Black Order

Figure 5.6: Comparison of different greedy block selection rules on two quadratic graph-
structured problems when using optimal updates.

constants Li. Since the cost of the exact update for tree-structured methods is O(n), for the

unstructured blocks we chose a block size of bk = n1/3 to make the costs comparable (since the

exact solve is cubic in the block size for unstructured blocks).

We plot selected results of doing this experiment in Figure 5.6. Here, we see that even the

classic red-black ordering outperforms using general unstructured blocks (since we must use

such small block sizes). The tree-structured blocks perform even better, and in the unstruc-

tured setting our greedy approximation of the GS rule under variable blocks outperforms the

other strategies. However, our greedy tree partitioning method also performs well. For the

lattice-structured data (left) it performed similarly to the greedy approximation, while for the

unstructured data (right) it outperformed all methods except greedy (and performed better

when sorting by the Lipschitz constants than using a random order).

5.6 Discussion

In this chapter we focused on non-accelerated BCD methods. However, we expect that our

conclusions are likely to also apply for accelerated BCD methods [Fercoq and Richtárik, 2015].

Similarly, while we focused on the setting of serial computation, we expect that our conclusions

will give insight into developing more efficient parallel and distributed BCD methods [Richtárik

and Takáč, 2016].

Although our experiments indicate that our choice of the diagonal matrices D within the

GSD rule provides a consistent improvement, this choice is clearly sub-optimal. A future

direction is to find a generic strategy to construct better diagonal matrices, and work on ESO

methods could potentially be adapted for doing this [Qu and Richtárik, 2016]. This could be

in the setting where we are given knowledge of the Lipschitz constants, but a more-interesting

idea is to construct these matrices online as the algorithm runs.

The GSQ rule can be viewed as a greedy rule that incorporates more sophisticated second-

96

order information than the simpler GS and GSL rules. In preliminary experiments, we also

considered selection rules based on the cubic regularization bound. However, these did not

seem to converge more quickly than the existing rules in our experiments, and it is not obvious

how one could efficiently implement such second-order rules.

We focused on BCD methods that approximate the objective function at each step by

globally bounding higher-order terms in a Taylor expansion. However, we would expect more

progress if we could bound these locally in a suitably-larger neighbourhood of the current

iteration. Alternately, note that bounding the Taylor expansion is not the only way to upper

bound a function. For example, Khan [2012] discusses a variety of strategies for bounding the

binary logistic regression loss and indeed proves that other bounds are tighter than the Taylor

expansion (“Bohning”) bound that we use. It would be interesting to explore the convergence

properties of BCD methods whose bounds do not come from a Taylor expansion.

While we focused on the case of trees, there are message-passing algorithms that allow graphs

with cycles [Rose, 1970, Srinivasan and Todorov, 2015]. The efficiency of these methods depends

on the “treewidth” of the induced subgraph, where if the treewidth is small (as in trees) then

the updates are efficient, and if the treewidth is large (as in fully-connected graphs) then these

do not provide an advantage. Treewidth is related to the notion of “chordal” graphs (trees are

special cases of chordal graphs) and chordal embeddings which have been exploited for matrix

problems like covariance estimation [Dahl et al., 2008] and semidefinite programming [Sun et al.,

2014, Vandenberghe and Andersen, 2015]. Considering “treewidth 2” or “treewidth 3” blocks

would give more progress than our tree-based updates, although it is NP-hard to compute the

treewidth of a general graph (but it is easy to upper-bound this quantity by simply choosing a

random elimination order).

As opposed to structural constraints like requiring the graph to be a tree, it is now known

that message-passing algorithms can solve linear systems with other properties like diagonal

dominance or “attractive” coefficients [Malioutov et al., 2006]. There also exist specialized

linear-time solvers for Laplacian matrices [Kyng and Sachdeva, 2016], and it would be interesting

to explore BCD methods based on these structures. It would also be interesting to explore

whether approximate message-passing algorithms which allow general graphs [Malioutov et al.,

2006] can be used to improve optimization algorithms.

97

Chapter 6

Active-Set Identification and

Complexity

In this section we consider optimization problems of the form

argmin
x∈IRn

f(x) +

n∑
i=1

gi(xi), (6.1)

where ∇f is Lipschitz-continuous, that is for all x, y ∈ IRn, we have

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, (6.2)

and each gi only needs to be convex and lower semi-continuous (it may be non-smooth or

infinite at some xi). A classic example of a problem in this framework is optimization subject

to non-negative constraints,

argmin
x≥0

f(x), (6.3)

where in this case gi is the indicator function on the non-negative orthant,

gi(xi) =

0 if xi ≥ 0,

∞ if xi < 0.

Another example that has received significant recent attention is the case of an `1-regularizer,

argmin
x∈IRn

f(x) + λ‖x‖1, (6.4)

where in this case gi(xi) = λ|xi|. Here, the `1-norm regularizer is used to encourage sparsity in

the solution. A related problem is the group `1-regularization problem (5.6), where instead of

being separable, g is block-separable.

Proximal gradient methods have become one of the default strategies for solving prob-

lem (6.1). Given the separability assumption we make on g in (6.1), the proximal gradient

update is separable. The coordinate-wise proximal gradient update (using a step-size of 1/L)

is given by

xk+1
i = prox 1

L
gi

(
xki −

1

L
∇if(xk)

)
, (6.5)

98

where the coordinate-wise proximal operator is defined as

prox 1
L
gi

(y) = argmin
xi∈IR

1

2
|xi − y|2 +

1

L
gi(xi).

Whether we are using the coordinate-wise or full proximal gradient method, this update form

holds for the individual coordinates.

In the special case of non-negative constraints like (6.3) the update in (6.5) is given by

x
k+ 1

2
i = xi −

1

L
∇if(xk)

xk+1
i =

[
x
k+ 1

2
i

]+

,

which we have written as a gradient update followed by the projection [β]+ = max{0, β} onto

the non-negative orthant (see Figure 6.1a). For `1-regularization problems (6.4) the update

reduces to an element-wise soft-thresholding step,

x
k+ 1

2
i = xk − 1

L
∇if(xk),

xk+1
i =

x
k+ 1

2
i∣∣∣∣xk+ 1

2
i

∣∣∣∣
[∣∣∣∣xk+ 1

2
i

∣∣∣∣− λ

L

]+

,
(6.6)

which we have written as a gradient update followed by the soft-threshold operator (shown in

Figure 6.1b).

It has been established that (block) coordinate descent methods based on the update (6.5)

for problem (6.1) obtain similar convergence rates to the case where we do not have a non-

smooth term g (see Section 2.7 and [Nesterov, 2012, Richtárik and Takáč, 2014]). The main

focus of this chapter is to show that the non-smoothness of g can actually lead to a faster

convergence rate.

This idea dates back at least 40 years to the work of Bertsekas [1976].21 For the case of

non-negative constraints, he shows that the sparsity pattern of xk generated by the projected-

gradient method matches the sparsity pattern of the solution x∗ for all sufficiently large k. Thus,

after a finite number of iterations the projected-gradient method will “identify” the final set of

non-zero variables. Once these values are identified, Bertsekas suggests that we can fix the zero-

valued variables and apply an unconstrained Newton update to the set of non-zero variables to

obtain superlinear convergence. Even without switching to a superlinearly-convergent method,

the convergence rate of the projected-gradient method can be faster once the set of non-zeroes

is identified since it is effectively optimizing in the lower-dimensional space corresponding to

the non-zero variables.

21A similar property was shown for proximal point methods in a more general setting around the same
time, [Rockafellar, 1976].

99

(a) For problem (6.3) each iteration of the
proximal gradient method takes a gradient de-

scent step, xk+
1
2 , and then projects this point

onto the non-negative orthant.

u1

u2

xk

xk+ 1
2

[
xk+ 1

2

]+

(b) For problem (6.4), the proximal operator or “soft-
threshold” operator shrinks the value of u by the reg-
ularization constant, λ. If |u| > λ, then the resulting
value is u− sign(u) · λ. Otherwise, if |u| ≤ λ, then the
proximal operator sets u to 0.

u

proxλ|·|(u)

−λ
λ

u

u

u

λ

λ

Figure 6.1: Visualization of (a) the proximal gradient update for a non-negatively constrained
optimization problem (6.3); and (b) the proximal operator (soft-threshold) used in the proximal
gradient update for an `1-regularized optimization problem (6.4).

This idea of identifying a smooth “manifold” containing the solution x∗ has been generalized

to allow polyhedral constraints [Burke and Moré, 1988], general convex constraints [Wright,

1993], and even non-convex constraints [Hare and Lewis, 2004]. Similar results exist in the

proximal gradient setting. For example, it has been shown that the proximal gradient method

identifies the sparsity pattern in the solution of `1-regularized problems after a finite number

of iterations [Hare, 2011]. The active-set identification property has also been shown for other

algorithms like certain coordinate descent and stochastic gradient methods [Lee and Wright,

2012, Mifflin and Sagastizábal, 2002, Wright, 2012]. Specifically, Wright shows that BCD also

has this manifold identification property for separable g [Wright, 2012], provided that the coor-

dinates are chosen in an essentially-cyclic way (or provided that we can simultaneously choose

to update all variables that do not lie on the manifold). Wright also shows that superlinear con-

vergence is possible if we use a Newton update on the manifold, assuming the Newton update

does not leave the manifold.

In this chapter, we show active-set identification for the full proximal gradient method. This

is a well-known characteristic of the full proximal gradient method but given our assumption

on the separability of g our proof analysis is much simpler than these existing analyses. We

then extend this result to the proximal coordinate descent case for general separable g. We

follow a similar argument to Bertsekas [1976], which yields a simple proof that holds for many

possible selection rules including greedy rules (which may not be essentially-cyclic). When using

greedy BCD methods with variable blocks we show this leads to superlinear convergence for

100

problems with sufficiently-sparse solutions (when we use updates incorporating second-order

information). In the special case of LASSO and SVM problems, we further show that optimal

updates are possible. This leads to finite convergence for SVM and LASSO problems with

sufficiently-sparse solutions when using greedy selection and sufficiently-large variable blocks.

Most prior works show the active-set identification happens asymptotically. In Section 6.3,

we introduce the notion of the “active-set complexity” of an algorithm, which we define as the

number of iterations required before an algorithm is guaranteed to have reached the active-set.

Our active-set identification arguments lead to bounds on the active-set complexity of the full

and BCD variants of the proximal gradient method. We are only aware of one previous work

giving such bounds, the work of Liang et al. who included a bound on the active-set complexity

of the proximal gradient method [Liang et al., 2017, Proposition 3.6]. Unlike this work, their

result does not evoke strong-convexity. Instead, their work applies an inclusion condition on

the local subdifferential of the regularization term that ours does not require. By focusing on

the strongly-convex case in Section 6.3 (which is common in machine learning due to the use

of regularization), we obtain a simpler analysis and a much tighter bound than in this previous

work. Specifically, both rates depend on the “distance to the subdifferential boundary”, but in

our analysis this term only appears inside of a logarithm rather than outside of it. As examples,

we consider problems (6.3) and (6.4), and show explicit bounds for the active-set complexity in

both the full and BCD proximal gradient methods.

6.1 Notation and Assumptions

By our separability assumption on g, the subdifferential of g can be expressed as the concate-

nation of the individual subdifferential of each gi, where the subdifferential of gi at any xi ∈ IR

is defined by

∂gi(xi) = {v ∈ IR : gi(y) ≥ gi(xi) + v · (y − xi), for all y ∈dom gi}.

This implies that the subdifferential of each gi is just an interval on the real line. In particular,

the interior of the subdifferential of each gi at a non-differentiable point xi can be written as

an open interval,

int ∂gi(xi) ≡ (li, ui), (6.7)

where li ∈ IR ∪ {−∞} and ui ∈ IR ∪ {∞} (the ∞ values occur if xi is at its lower or upper

bound, respectively). The active-set at a solution x∗ for a separable g is then defined by

Z = {i : ∂gi(x
∗
i) is not a singleton}.

By (6.7), the set Z includes indices i where x∗i is equal to the lower bound on xi, is equal to

the upper bound on xi, or occurs at a non-smooth value of gi. In our examples of non-negative

constraints or `1-regularization, Z is the set of coordinates that are zero at the solution x∗.

101

With this definition, we can formally define the manifold identification property.

Definition 1. The manifold identification property for problem (6.1) is satisfied if for all suf-

ficiently large k, we have that xki = x∗i for some solution x∗ for all i ∈ Z.

In order to prove the manifold identification property, in addition to assuming that ∇f is

L-Lipschitz continuous (6.2), we require two assumptions. Our first assumption is that the

iterates of the algorithm converge to a solution x∗.

Assumption 1. The iterates converge to an optimal solution x∗ of problem (6.1), that is

xk → x∗ as k →∞.

Our second assumption is a nondegeneracy condition on the solution x∗ that the algorithm

converges to. Below we write the standard nondegeneracy condition from the literature for our

special case of (6.1).

Assumption 2. We say that x∗ is a nondegenerate solution for problem (6.1) if it holds that−∇if(x∗) = ∇ig(x∗i) if ∂gi(x
∗
i) is a singleton (gi is smooth at x∗i)

−∇if(x∗) ∈ int ∂gi(x
∗
i) if ∂gi(x

∗
i) is not a singleton (gi is non-smooth at x∗i).

This condition states that −∇f(x∗) must be in the “relative interior” (see [Boyd and Van-

denberghe, 2004, Section 2.1.3]) of the subdifferential of g at the solution x∗. In the case of the

non-negative bound constrained problem (6.3), this requires that ∇if(x∗) > 0 for all variables

i that are zero at the solution (x∗i = 0). For the `1-regularization problem (6.4), this requires

that |∇if(x∗)| < λ for all variables i that are zero at the solution.22

6.2 Manifold Identification for Separable g

In this section we show that the full and BCD variants of the proximal gradient method identify

the active-set of (6.1) in a finite number of iterations. Although this result follows from the more

general results in the literature for the full proximal gradient method, by focusing on (6.1) we

give a substantially simpler proof that will allow us to bound the active-set iteration complexity

of the method.

6.2.1 Proximal Gradient Method

We first note that if we assume f is strongly convex, then the iterates converge to a (unique)

solution x∗ with a linear rate [Schmidt et al., 2011],

‖xk − x∗‖ ≤
(

1− 1

κ

)k
‖x0 − x∗‖, (6.8)

22Note that |∇if(x∗)| ≤ λ for all i with x∗i = 0 follows from the optimality conditions, so this assumption
simply rules out the case where |∇if(x∗i)| = λ. We note that in this case the nondegeneracy condition is a strict
complementarity condition [De Santis et al., 2016].

102

where κ is the condition number of f . This implies that Assumption 1 holds. We give a simple

result that follows directly from Assumption 1 and establishes that for any β > 0 there exists a

finite iteration k̄ such that the distance from the iterate xk to the solution x∗ for all iterations

k ≥ k̄ is bounded above by β.

Lemma 1. Let Assumption 1 hold. For any β, there exists some minimum finite k̄ such that

‖xk − x∗‖ ≤ β for all k ≥ k̄.

An important quantity in our analysis is the minimum distance to the nearest boundary of

the subdifferential (6.7) among indices i ∈ Z. This quantity is given by

δ = min
i∈Z
{min{−∇if(x∗)− li, ui +∇if(x∗)}} . (6.9)

Our argument essentially states that once Lemma 1 is satisfied for some finite k̄ and a particular

β > 0, then at this point the algorithm always sets xki to x∗i for all i ∈ Z. In the next result,

we prove that this happens for a value β depending on δ as defined in (6.9).

Lemma 2. Consider problem (6.1), where f is convex with L-Lipschitz continuous gradient

and the gi are proper convex functions (not necessarily smooth). Let Assumption 1 be satisfied

and Assumption 2 be satisfied for the particular x∗ that the algorithm converges to. Then for

the proximal gradient method with a step-size of 1/L there exists a k̄ such that for all k > k̄ we

have xki = x∗i for all i ∈ Z.

Proof. By the definition of the proximal gradient step and the separability of g, for all i we

have

xk+1
i ∈ argmin

y

{
1

2

∣∣∣∣y − (xki − 1

L
∇if(xk)

)∣∣∣∣2 +
1

L
gi(y)

}
.

This problem is strongly-convex, and its unique solution satisfies

0 ∈ y − xki +
1

L
∇if(xk) +

1

L
∂gi(y),

or equivalently that

L(xki − y)−∇if(xk) ∈ ∂gi(y). (6.10)

By Lemma 1, there exists a minimum finite iterate k̄ such that ‖xk̄ − x∗‖ ≤ δ/2L. Since

|xki − x∗i | ≤ ‖xk − x∗‖, this implies that for all k ≥ k̄ we have

− δ/2L ≤ xki − x∗i ≤ δ/2L, for all i. (6.11)

103

Further, the Lipschitz continuity of ∇f in (6.2) implies that we also have

|∇if(xk)−∇if(x∗)| ≤ ‖∇f(xk)−∇f(x∗)‖
≤ L‖xk − x∗‖
≤ δ/2,

which implies that

− δ/2−∇if(x∗) ≤ −∇if(xk) ≤ δ/2−∇if(x∗). (6.12)

To complete the proof it is sufficient to show that for any k ≥ k̄ and i ∈ Z that y = x∗i satisfies

(6.10). Since the solution to (6.10) is unique, this will imply the desired result. We first show

that the left-side is less than the upper limit ui of the interval ∂gi(x
∗
i),

L(xki − x∗i)−∇if(xk) ≤ δ/2−∇if(xk) (right-side of (6.11))

≤ δ −∇if(x∗) (right-side of (6.12))

≤ (ui +∇if(x∗))−∇if(x∗) (definition of δ, (6.9))

≤ ui.

We can use the left-sides of (6.11) and (6.12) and an analogous sequence of inequalities to show

that L(xki − x∗i) − ∇if(xk) ≥ li, implying that x∗i solves (6.10).

Both problems (6.3) and (6.4) satisfy the manifold identification result. By the definition

of δ in (6.9), we have that δ = mini∈Z{∇if(x∗)} for problem (6.3). We note that if δ = 0,

then we may approach the manifold through the interior of the domain and the manifold may

never be identified (this is the purpose of the nondegeneracy condition). For problem (6.4), we

have that δ = λ−maxi∈Z{|∇if(x∗)|}. From these results, we are able to define explicit bounds

on the number of iterations required to reach the manifold, a new result that we explore in

Section 6.3.

6.2.2 Proximal Coordinate Descent Method

We note that Assumption 1 holds for the proximal coordinate descent method if we assume

that f is strongly convex and that we use cyclic or greedy selection. Specifically, by existing

works on cyclic [Beck and Tetruashvili, 2013] and greedy selection (Section 2.7) of ik within

proximal coordinate descent methods, we have that

F (xk)− F (x∗) ≤ ρk[F (x0)− F (x∗)], (6.13)

104

for some ρ < 1 when f is strongly convex. Note that strong convexity of f implies the strong

convexity of F , so we have

F (y) ≥ F (x) + 〈s, y − x〉+
µ

2
‖y − x‖2,

where µ is the strong convexity constant of f and s is any subgradient of F at x. Taking y = xk

and x = x∗ we obtain that

F (xk) ≥ F (x∗) +
µ

2
‖xk − x∗‖2, (6.14)

which uses that 0 ∈ ∂F (x∗). Thus we have that

‖xk − x∗‖2 ≤ 2

µ
[F (xk)− F (x∗)] ≤ 2

µ
ρk[F (x0)− F (x∗)], (6.15)

which implies Assumption 1. However, Assumption 1 will also hold under a variety of other

scenarios.

There are three results that we require in order to prove the manifold identification property

for proximal coordinate descent methods. The first result is Lemma 1 and follows directly from

Assumption 1. The second result we require is that for any i ∈ Z such that xki 6= x∗i , eventually

coordinate i is selected at some finite iteration.

Lemma 3. Let Assumption 1 hold. If xki 6= x∗i for some i ∈ Z, then coordinate i will be selected

by the proximal coordinate descent method after a finite number of iterations.

Proof. For eventual contradiction, suppose we did not select such an i after iteration k′. Then

for all k ≥ k′ we have that

|xk′i − x∗i | = |xki − x∗i | ≤ ‖xk − x∗‖. (6.16)

By Assumption 1 the right-hand side is converging to 0, so it will eventually be less than

|xk′i −x∗i | for some k ≥ k′, contradicting the inequality. Thus after a finite number of iterations

we must have that xki 6= xk
′
i , which can only be achieved by selecting i.

The third result we require is an adaptation of Lemma 2 to the proximal coordinate descent

setting. It states that once Lemma 1 is satisfied for some finite k̄ and a particular β > 0

(depending on δ), then for the coordinate i ∈ Z selected at some iteration k′ ≥ k̄ by the

proximal coordinate descent method, we have xk
′
i = x∗i .

Lemma 4. Consider problem (6.1), where f is convex with L-Lipschitz continuous gradient

and the gi are proper convex functions (not necessarily smooth). Let Assumption 1 be satisfied

and Assumption 2 be satisfied for the particular x∗ that the algorithm converges to. Then for

the proximal coordinate descent method with a step-size of 1/L, if ‖xk − x∗‖ ≤ δ/2L holds and

i ∈ Z is selected at iteration k, then xk+1
i = x∗i .

105

Proof. The proof is identical to Lemma 2, but restricting to the update of the single coordinate.

With the above results we next have the manifold identification property for the proximal

coordinate descent method.

Theorem 9. Consider problem (6.1), where f is convex with L-Lipschitz continuous gradient

and the gi are proper convex functions. Let Assumption 1 be satisfied and Assumption 2 be

satisfied for the particular x∗ that the algorithm converges to. Then for the proximal coordinate

descent method with a step-size of 1/L there exists a finite k such that xki = x∗i for all i ∈ Z.

Proof. Lemma 1 implies that the assumptions of Lemma 4 are eventually satisfied, and com-

bining this with Lemma 3 we have our result.

While the above result considers single-coordinate updates, it can trivially be modified to

show that the proximal BCD method has the manifold identification property. The only change

is that once ‖xk − x∗‖ ≤ δ/2L, we have that xk+1
i = x∗i for all i ∈ bk ∩Z. Thus, BCD methods

can simultaneously move many variables onto the optimal manifold. In Section 6.4 we show

how the active-set identification results presented in this section can lead to superlinear or finite

convergence of proximal BCD methods.

Instead of using a step-size of 1/L, it is more common to use a bigger step-size of 1/Li

within coordinate descent methods, where Li is the coordinate-wise Lipschitz constant. In this

case, the results of Lemma 4 hold for β = δ/(L + Li). This is a larger region since Li ≤ L,

so with this standard step-size the iterates can move onto the manifold from further away and

we expect to identify the manifold earlier. The argument can also be modified to use other

step-size selection methods, provided that we can write the algorithm in terms of a step-size

αk that is guaranteed to be bounded from below.

6.3 Active-Set Complexity

The manifold identification property presented in the previous section can be shown using

the more sophisticated tools of related works [Burke and Moré, 1988, Hare and Lewis, 2004].

However, an appealing aspect of the simple argument in Section 6.2 is that it can be combined

with non-asymptotic convergence rates of the iterates to bound the number of iterations required

to reach the manifold. We call this the “active-set complexity” of the method. Given any method

with an iterate bound of the form,

‖xk − x∗‖ ≤ γ
(

1− 1

κ

)k
, (6.17)

for some κ ≥ 1, the next result uses that (1 − 1/κ)k ≤ exp(−k/κ) to bound the number of

iterations it will take to identify the active-set, and thus reach the manifold.

106

Theorem 10. Consider any method that achieves an iterate bound (6.17). For δ as defined

in (6.9), we have ‖xk̄−x∗‖ ≤ δ/2L after at most κ log(2Lγ/δ) iterations. Further, we will iden-

tify the active-set after an additional t iterations, where t is the number of additional iterations

required to select all suboptimal xi with i ∈ Z.

For the full proximal gradient method, if we assume f is strongly convex, then by the rate

in 6.8 we have that γ = ‖x0−x∗‖ and κ is the condition number of f . Further, all variables are

updated at each iteration so it will only take a single additional iteration (t = 1) to ensure all

suboptimal xi with i ∈ Z are optimal. Therefore, we will identify the active-set after at most

κ log(2L‖x0 − x∗‖/δ) iterations. Nutini et al. [2017b] extend these results to show active-set

identification and active-set complexity for the full proximal gradient method when using a

general constant step-size. Their results include proving a generalized convergence rate bound

for the proximal gradient method.

For the proximal BCD case, if we assume that f is strongly convex and that we are using

cyclic or greedy selection, then we are guaranteed the linear convergence rate in (6.15) for

γ = 2
µ [F (x0)−F (x∗)] and some κ ≥ 1. (We note that this type of rate also holds for a variety of

other types of selection rules). Unlike the full proximal gradient case, the active-set complexity

is complicated by the fact that not all coordinates are updated on each iteration for proximal

BCD methods; the value of t depends on the selection rule we use. If we use cyclic selection we

will require at most t = n additional iterations to select all suboptimal coordinates i ∈ Z and

thus, to reach the optimal manifold. To bound the active-set complexity for general rules like

greedy rules, we cannot guarantee that all coordinates will be selected after n iterations once we

are close to the solution. In the case of non-negative constraints (6.3), the number of additional

iterations depends on a quantity we will call ε, which is the smallest non-zero variable xk̄i for

i ∈ Z and k̄ satisfying the first part of Theorem 10. It follows from (6.15) that we require at

most κ log(γ/ε) iterations beyond k̄ to select all non-zero i ∈ Z. Thus, the active-set complexity

for greedy rules for problem (6.3) is bounded above by κ(log(2Lγ/δ) + log(γ/ε)). Based on this

bound, greedy rules (which yield a smaller κ) may identify the manifold more quickly than

cyclic rules in cases where ε is large. However, if ε is very small then greedy rules may take a

larger number of iterations to reach the manifold.23

Finally, it is interesting to note that the bound we prove in Theorem 10 only depends

logarithmically on 1/δ, and that if δ (as defined in (6.9)) is quite large then we can expect to

identify the active-set very quickly. This O(log(1/δ)) dependence is in contrast to the previous

result of Liang et al. who give a bound of the form O(1/
∑n

i=1 δ
2
i) where δi is the distance of

∇if to the boundary of the subdifferential ∂gi at x∗ [Liang et al., 2017, Proposition 3.6]. Thus,

our bound is much tighter as it only depends logarithmically on the single largest δi (though

we make the extra assumption of strong-convexity).

23If this is a concern, the implementer could consider a safeguard ensuring that the method is essentially-
cyclic. Alternately, we could consider rules that prefer to include variables that are near the manifold and have
the appropriate gradient sign.

107

6.4 Superlinear and Finite Convergence of Proximal BCD

Most of the issues discussed in Chapter 5 for smooth BCD methods carry over in a straight-

forward way to the proximal setting; we can still consider fixed or variable blocks, there exist

matrix and Newton updates, and we can still consider cyclic, random, or greedy selection rules.

One subtle issue is that, as presented in Section 2.7, there are many generalizations of the GS

rule to the proximal setting. However, the GS-q rule defined by Tseng and Yun [2009a] seems

to be the generalization of GS with the best theoretical properties. A GSL variant of this rule

in the notation of Chapter 5 would take the form

bk ∈ argmin
b∈B

{
min
d

{
〈∇bf(xk), d〉+

Lb
2
‖d‖2 +

∑
i∈b

gi(xi + di)−
∑
i∈b

gi(xi)

}}
, (6.18)

where we assume that the gradient of f is Lb-Lipschitz continuous with respect to block b. A

generalization of the GS rule is obtained if we assume that the Lb are equal across all blocks.

In the next three subsections, we discuss the consequences of our active-set identification

results when using the proximal BCD method. Specifically, once we have identified the active-

set, we can achieve superlinear convergence for certain problems with sparse solutions (and in

some cases finite termination at an optimal solution).

6.4.1 Proximal-Newton Updates and Superlinear Convergence

Once we have identified the optimal manifold, we can think about switching from using the

proximal BCD method to using an unconstrained optimizer on the coordinates i 6∈ Z. The

unconstrained optimizer can be a Newton update, and thus under the appropriate conditions

can achieve superlinear convergence. However, a problem with such “2-phase” approaches is

that we do not know the exact time at which we reach the optimal manifold. This can make the

approach inefficient: if we start the second phase too early, then we sub-optimize over the wrong

manifold, while if we start the second phase too late, then we waste iterations performing first-

order updates when we should be using second-order updates. Wright proposes an interesting

alternative where at each iteration we consider replacing the proximal gradient block update

with a Newton block update on the current manifold [Wright, 2012]. This has the advantage

that the manifold can continue to be updated, and that Newton updates are possible as soon

as the optimal manifold has been identified. However, note that the dimension of the current

manifold might be larger than the block size and the dimension of the optimal manifold, so this

approach can significantly increase the iteration cost for some problems.

Rather than “switching” to an unconstrained Newton update, we can alternately take ad-

vantage of the superlinear converge of proximal-Newton updates [Lee et al., 2012]. For example,

in this section we consider Newton proximal-BCD updates as in several recent works [Foun-

toulakis and Tappenden, 2015, Qu et al., 2016, Tappenden et al., 2016]. For a block b these

108

updates have the form

xk+1
b ∈ argmin

y∈R|b|

{
〈∇bf(xkb), y − xkb 〉+

1

2αk
‖y − xkb‖2Hk

b
+
∑
i∈b

gi(yi)

}
, (6.19)

where Hk
b is the matrix corresponding to block b at iteration k (which can be the sub-Hessian

∇2
bbf(xk)) and αk is the step-size. As before if we set Hk

b = Hb for some fixed matrix Hb, then

we can take αk = 1 if block b of f is 1-Lipschitz continuous in the Hb-norm.

In the next section, we give a practical variant on proximal-Newton updates that also has the

manifold identification property under standard assumptions.24 An advantage of this approach

is that the block size typically restricts the computational complexity of the Newton update

(which we discuss further in the next sections). Further, superlinear convergence is possible in

the scenario where the coordinates i 6∈ Z are chosen as part of the block bk for all sufficiently

large k. However, note that this superlinear scenario only occurs in the special case where we

use a greedy rule with variable blocks and where the size of the blocks is at least as large as the

dimension of the optimal manifold. With variable blocks, the GS-q and GSL-q rules (6.18) will

no longer select coordinates i ∈ Z since their optimal di value is zero when close to the solution

and on the manifold. Thus, these rules will only select i 6∈ Z once the manifold has been

identified.25 In contrast, we would not expect superlinear convergence for fixed blocks unless

all i 6∈ Z happen to be in the same partition. While we could show superlinear convergence

of subsequences for random selection with variable blocks, the number of iterations between

elements of the subsequence may be prohibitively large.

6.4.2 Practical Proximal-Newton Methods

A challenge with using the update (6.19) in general is that the optimization is non-quadratic

(due to the gi terms) and non-separable (due to the Hk
b -norm). If we make the Hk

b diagonal,

then the objective is separable but this destroys the potential for superlinear convergence.

Fortunately, a variety of strategies exist in the literature to allow non-diagonal Hk
b .

For example, for bound constrained problems we can apply two-metric projection (TMP)

methods, which use a modified Hk
b and allow the computation of a (cheap) projection under

the Euclidean norm [Gafni and Bertsekas, 1984]. This method splits the coordinates into an

“active” set and a “working” set, where the active-set A for non-negative constraints would be

A = {i | xi < ε,∇if(x) > 0},
24A common variation of the proximal-Newton method solves (6.19) with αk = 1 and then sets xk+1 based

on a search along the line segment between xk and this solution [Fountoulakis and Tappenden, 2015, Schmidt,
2010]. This variation does not have the manifold identification property; only when the line search is on αk do
we have this property.

25A subtle issue is the case where di = 0 in (6.18) but i 6∈ Z. In such cases we can break ties by preferring
coordinates i, where gi is differentiable so that the i 6∈ Z are included.

109

for some small ε while the working-setW is the compliment of this set. So the active-set contains

the coordinates corresponding to the variables that we expect to be zero while the working-set

contains the coordinates corresponding to the variables that we expect to be unconstrained.

The TMP method can subsequently use the update

xW ← projC
(
xW − αH−1

W ∇Wf(x)
)

xA ← projC (xA − α∇Af(x)) .

This method performs a gradient update on the active-set and a Newton update on the working-

set. Gafni and Bertsekas [1984] show that this preserves many of the essential properties of

projected-Newton methods like giving a descent direction, converging to a stationary point,

and superlinear convergence if we identify the correct set of non-zero variables. Also note that

for indices i ∈ Z, this eventually only takes gradient steps so our analysis of the previous section

applies (it identifies the manifold in a finite number of iterations). As opposed to solving the

block-wise proximal-Newton update in (6.19), in our experiments we explore simply using the

TMP update applied to the block and found that it gave nearly identical performance for a

much lower cost.

TMP methods have also been generalized to settings like `1-regularization [Schmidt, 2010]

and they can essentially be used for any separable g function. Another widely-used strategy is

to inexactly solve (6.19) [Fountoulakis and Tappenden, 2015, Lee et al., 2012, Schmidt, 2010].

This has the advantage that it can still be used in the group `1-regularization setting or other

group-separable settings.

6.4.3 Optimal Updates for Quadratic f and Piecewise-Linear g

Two of the most well-studied optimization problems in machine learning are the SVM and

LASSO problems. The LASSO problem is given by an `1-regularized quadratic objective

argmin
x

1

2
‖Ax− b‖2 + λ‖x‖1,

while the dual of the (non-smooth) SVM problem has the form of a bound-constrained quadratic

objective

argmin
x∈[0,U]

1

2
xTMx−

∑
i

xi, (6.20)

for a particular positive semi-definite matrix M and constant U . In both cases we typically

expect the solution to be sparse, and identifying the optimal manifold has been shown to

improve practical performance of BCD methods [De Santis et al., 2016, Joachims, 1999].

Both problems have a set of gi that are piecewise-linear over their domain, implying that

the they can be written as a maximum over univariate linear functions on the domain of

110

each variable. Although we can still consider TMP or inexact proximal-Newton updates for

these problems, this special structure actually allows us to compute the exact minimum with

respect to a block (which is efficient when considering medium-sized blocks). Indeed, for SVM

problems the idea of using exact updates in BCD methods dates back to the sequential minimal

optimization (SMO) method [Platt, 1998], which uses exact updates for blocks of size 2. In this

section we consider methods that work for blocks of arbitrary size.26

While we could write the optimal update as a quadratic program, the special structure of

the LASSO and SVM problems lends well to exact homotopy methods. These methods date

back to Osborne and Turlach [2011], Osborne et al. [2000] who proposed an exact homotopy

method that solves the LASSO problem for all values of λ. This type of approach was later

popularized under the name “least angle regression” (LARS) [Efron et al., 2004]. Since the

solution path is piecewise-linear, given the output of a homotopy algorithm we can extract

the exact solution for our given value of λ. Hastie et al. [2004] derive an analogous homotopy

method for SVMs, while Rosset and Zhu [2007] derive a generic homotopy method for the case

of piecewise-linear gi functions.

The cost of each iteration of a homotopy method on a problem with |b| variables is O(|b|2).

It is known that the worst-case runtime of these homotopy methods can be exponential [Mairal

and Yu, 2012]. However, the problems where this arises are somewhat unstable, and in practice

the solution is typically obtained after a linear number of iterations. This gives a runtime in

practice of O(|b|3), which does not allow enormous blocks but does allow us to efficiently use

block sizes in the hundreds or thousands. That being said, since these methods compute the

exact block update, in the scenario where we previously had superlinear convergence, we now

obtain finite convergence. That is, the algorithm will stop in a finite number of iterations with

the exact solution provided that it has identified the optimal manifold, uses a greedy rule with

variable blocks, and the block size is larger than the dimension of the manifold. This finite

termination is also guaranteed under similar assumptions for TMP methods, and although

TMP methods may make less progress per-iteration than exact updates, they may be a cheaper

alternative to homotopy methods as the cost is explicitly restricted to O(|b|3).

6.5 Numerical Experiments

In this section we demonstrate the manifold identification and superlinear/finite convergence

properties of the greedy BCD method as discussed in Section 6.4 for a sparse non-negative

constrained `1-regularized least-squares problem using Dataset A (see Appendix D.5.1). In

particular, we compare the performance of a projected gradient update with Lb step-size, a

projected Newton (PN) solver with line search as discussed in Section 6.4.1 and the two-metric

projection (TMP) update as discussed in Section 6.4.2 when using fixed (FB) and variable (VB)

26The methods discussed in this section can also be used to compute exact Newton-like updates in the case of
a non-quadratic f , but where the gi are still piecewise-linear.

111

0 50 100 150 200 250 300 350 400
Iterations with 5-sized blocks

0.7× 10−8

0.2× 10−4

0.7× 10−1

2.3× 102

7.1× 105

f(
x
)
−
f
∗
 fo

r N
on

-n
eg

at
iv

e
Le

as
t S

qu
ar

es
 o

n
Da

ta
se

t A

PN-VB

TM
P-VB

PG-VB
PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.2× 10−8

0.8× 10−5

0.4× 10−1

1.6× 102

7.1× 105

PN-VB
TM

P-VB

PG-VB

PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.4× 10−8

0.1× 10−4

0.5× 10−1

1.9× 102

7.1× 105

PN-VB
TM

P-VB

PG-VB

PN-FB

TMP-FB

PG-FB

Figure 6.2: Comparison of different updates when using greedy fixed and variable blocks of
different sizes.

blocks of different sizes (|bk| ∈ 5, 50, 100). We use a regularization constant of λ = 50, 000 to

encourage a high level of sparsity resulting in an optimal solution x∗ with 51 non-zero variables.

In Figure 6.2 we indicate active-set identification with a star and show that all approaches

eventually identify the active-set. We see that TMP does as well as projected Newton for

all block sizes, while both do better than gradient updates. For a block size of 100, we get

finite convergence using projected Newton and TMP updates. We repeat this experiment for

random block selection in Figure 6.3 and show that for such a sparse problem multiple iterations

are often required before progress is made due to the repetitive selection of variables that are

already zero/active.

0 100 200 300 400 500
Iterations with 5-sized blocks

6.2× 105

6.4× 105

6.6× 105

6.8× 105

7.1× 105

f(
x
)
−
f
∗
 fo

r N
on

-n
eg

at
iv

e
Le

as
t S

qu
ar

es
 o

n
Da

ta
se

t A

PN-VB

TMP-VB

PG-VB

PN-FB
TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 50-sized blocks

2.0× 104

4.9× 104

1.2× 105

2.9× 105

7.1× 105

PN-VB

TMP-VB

PG-VB

PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 100-sized blocks

6.0× 102

3.5× 103

2.1× 104

1.2× 105

7.1× 105

PN-VB

TMP-VB

PG-VB

PN-FB

TMP-FB

PG-FB

Figure 6.3: Comparison of different updates when using random fixed and variable blocks of
different sizes.

6.6 Discussion

In this chapter we showed that greedy BCD methods have a finite-time manifold identifica-

tion property for problems with separable non-smooth structures like bound constraints or

`1-regularization. Our analysis notably leads to bounds on the number of iterations required

to reach the optimal manifold, or the “active-set complexity”, for the full proximal gradient

method as well as BCD variants. Further, when using greedy rules with variable blocks this

leads to superlinear or finite convergence for problems with sufficiently-sparse solutions.

112

While we made the assumption of strong convexity (or similar), it would be useful to re-

lax this condition while still establishing active-set identification results. Further directions

include allowing linear equalities between blocks or extending the results to accelerated proxi-

mal methods. Finally, although it is easy to extend the results in this section to the case of a

group-separable g, a very useful extension would be to consider the non-separable case.

113

Chapter 7

Discussion

In this chapter we discuss interesting extensions of the work presented in this dissertation, as

well as issues that we did not consider and several future directions.

• Revitalization of greedy coordinate descent methods. Since the publication of our

work in Chapter 2, there has been a resurgence of greedy coordinate descent methods in

the literature for various applications. We list several below that cite our work:

– Wang [2017] considers model-based iterative reconstruction methods for image re-

construction applications. They propose using a combination of greedy and random

coordinate descent methods, and show that the best performance is obtained using

a hybrid of 20% random updates and 80% greedy updates.

– Gsponer et al. [2017] present a new learning algorithm for learning a sequence regres-

sion function, which uses greedy coordinate descent method and exact optimization

to find αk. They exploit the sparsity and nested structure of the feature space to

ensure an efficient calculation of the greedy Gauss-Southwell rule. They improve

the efficiency further by proving an upper bound on the best coordinate and then

using a branch-and-bound algorithm to calculate the best coordinate. Their method

compares to state-of-the-art, while requiring little to no pre-processing or domain

knowledge.

– Massias et al. [2017] consider working-set methods, where only a subset of constraints

are considered at each iteration leading to simpler problems of reduced size. The

authors propose a new batch version of the GS-r rule and show that their new greedy

active-set method achieves state-of-the-art performance on sparse learning problems

with respect to floating point calculations (and time) on LASSO and multi-task

LASSO estimators.

– Stich et al. [2017] propose an approximate greedy coordinate descent method, where a

gradient oracle is used to approximate the gradient. They show that the approximate

gradient can be updated cheaply at no extra cost, making their method efficient for

a more general set of problems with less structure than we assume in this work.

• Accelerated methods: We focused on non-accelerated greedy (block) coordinate de-

scent methods in Chapters 2 and 5. However, we expect our conclusions are likely to

hold in the case of accelerated methods. In fact, since the publication of our work in

114

Chapter 2, Lau and Yao [2017] proposed an accelerated greedy block coordinate proximal

gradient method using the GS-r selection rule. They assume the Kurdyka- Lojasiewicz

inequality (see Chapter 4) and exploit the results of recent works to show convergence of

their method for non-convex problems. Their method is shown to beat state-of-the-art

solvers on sparse linear regression problems with separable or block-separable regularizers.

• Parallel methods: Another extension that we did not consider in this work is paral-

lelization. For iterative methods like coordinate descent, parallel implementations are

suitable when the dependency graph is sparse (see Bertsekas and Tsitsiklis [1989, §1.2.4]).

For example, if the objective function is separable, then coordinate descent methods are

“embarrassingly parallel”, meaning the speedup achieved is directly proportional to the

number of processors used. When we talk about coordinate descent for truly huge-scale

problems, it is impractical to consider a serial implementation. Lots of work has been

done on parallel randomized coordinate descent methods (see Richtárik and Takáč [2016]

for summary). Since the publication of our work the following parallel greedy coordinate

descent methods have been proposed:

– You et al. [2016] considered smooth functions with bound constraints and showed

linear convergence of their proposed asynchronous parallel greedy coordinate descent

method when using the GS-r selection rule.

– Moreau and Oudre [2017] considered the specific problem of convolutional sparse

coding, which is designed to build sparse linear representations of datasets. They

exploited the specific structure of the convolutional problem and showed that their

proposed asynchronous parallel version of greedy coordinate descent using the GS-

r rule scales superlinearly with the number of cores (up to a point), making it an

efficient option compared to other state-of-the-art methods. Unlike [You et al., 2016]

their results do not require centralized communication and a finely tuned step size.

• Non-convex problems: While we focused on convex problems, since our work in Chap-

ter 2 was published other authors have shown that our methods are useful for non-convex

problems. For example, although it is well-known that the Gauss-Southwell rule works

well for the non-convex PageRank problem [Berkhin, 2006, Bonchi et al., 2012, Jeh and

Widom, 2003, Lei et al., 2016, McSherry, 2005, Nassar et al., 2015], following the publi-

cation of our work, Wang et al. [2017] showed that the Gauss-Southwell-Lipschitz rule is

also very useful for this problem.

We have also seen extensions of the PL work that was presented Chapter 4.

– Zhang et al. [2016] show that principle component analysis satisfies the PL inequality

on a Riemann manifold.

– Reddi et al. [2016b] show linear convergence of proximal versions of both the stochas-

tic variance reduced gradient and SAGA algorithms when assuming our proximal

115

PL-inequality.

– Joulani et al. [2017] show that if a function is star-strongly-convex, then that implies

that the function satisfies the PL inequality.

– Roulet and d’Aspremont [2017] use the PL inequality to ensure linear convergence

of an accelerated method with restart.

– [Yin et al., 2017] analyze the convergence of mini-batch stochastic gradient descent

methods under the PL inequality, specifically when the batch-size is proportional to

a measure of the “gradient diversity”.

– The PL inequality under the name of “gradient dominance condition” has also been

show to hold for phase retrieval problems [Zhou et al., 2016], blind deconvolution [Li

et al., 2016], and linear residual neural networks [Hardt and Ma, 2016, Zhou and

Liang, 2017], while Zhou and Liang [2017] also show it holds for the square loss

function of linear and one-hidden-layer nonlinear neural networks.

– Csiba and Richtárik [2017] introduce the “Weak Polyak- Lojasiewicz” condition. Sim-

ilar to how we introduced the PL inequality as a generalization of strong-convexity

to a class of non-convex problems in Chapter 4, Csiba and Richtárik generalize the

weakly convex case, providing convergence theory for a new class of non-convex

problems.

An elegant consequence of the work in Chapter 4 is that we are starting to see more

connections drawn between existing works when it comes to relaxing strong-convexity.

This allows authors to exploit the “best” or weakest assumption in the easiest form for

their given problem setting.

• Other methods: Greedy variations of several other methods have also been proposed

since our work, including a greedy primal-dual method [Lei et al., 2017] and a greedy

direction method of multiplier (uses our analysis from Chapter 2) [Huang et al., 2017].

We mentioned in Chapter 3 that the Kaczmarz method could be used for piecewise-linear

objectives. Since the publication of our work, Yang and Lin [2015] developed an SGD

method that has a linear convergence rate (like stochastic average gradient) for piecewise-

linear objectives.

Future extensions that were not considered in this dissertation are:

• Successive over-relaxation methods. Successive over-relaxation (SOR) [Frankel,

1950, Young, 1950] is an extrapolation of the cyclic Gauss-Seidel method. It is defined,

depending on the extrapolation factor ω > 0, by replacing the iterate xk+1 following a

full sweep through the coordinates by the following modification,

xk+1 = ωxk+1 + (1− ω)xk.

116

This scheme can significantly accelerate the convergence rate obtained by the Gauss-Seidel

(cyclic CD) method for an optimal value of ω where 1 < ω < 2. The optimal value of ω

is known in some cases but it is not known for general matrices.

When we apply SOR to the coordinate-wise update in coordinate descent methods (or

Gauss-Seidel assuming cyclic selection), we obtain the following

xk+1 = ωxk+1 + (1− ω)xk

= ω(xk − α∇if(xk)eik) + (1− ω)xk

= xk − ωα∇if(xk)eik ,

which translates to the adjustment of the step size by a constant factor. It would be

interesting to see if a similar speed-up as is seen for the Gauss-Seidel method can be

obtained for coordinate descent or Kaczmarz methods when using greedy selection rules.

It is possible that in this setting, there is a connection between SOR and a simpler version

of some well-known first-order acceleration technique like Nesterov’s accelerated gradient

descent method or the heavy-ball method. We may be able to exploit or generalize the

cases where ω is known to see if these connections exist.

• Successive Projection Methods. We did not talk about the successive projection

method of Censor [1981] in this work, which is a generalization of the Kaczmarz method.

Recently, Tibshirani [2017] analyzed the similarities between Dykstra’s algorithm (equiv-

alently, successive projection method), alternating direction method of multipliers and

coordinate descent, showing connections and equivalences between these methods when

applied to the primal and dual regularized regression problem (under some assumptions).

These connections could lead to various new analyses and extensions for coordinate de-

scent methods, including new parallel methods and extensions to infinite-dimensional

function spaces.

• BCD methods with constraints between blocks. This is an important setting for

variational inference in graphical models, which is a very important topic in machine

learning [Bishop, 2006]. A recent result gives a convergence rate for a variation inference

method [Khan et al., 2016] but this result is not for the standard coordinate descent

method. The difficulty with using BCD for problems with constraints between blocks

is that related subproblems (blocks with constraints between them) are solved indepen-

dently. Zhang et al. [2014] show that it is possible to strategically partition blocks and

then use a message passing algorithm (which allows you to account for the constraints) so

as to significantly improve the empirical efficiency of alternating minimization techniques.

More recently, She and Schmidt [2017] show linear convergence of the 2-coordinate se-

quential minimal optimization methods for application to SVMs with unregularized bias.

This is a case where the constraints are not completely separable. Earlier works on this

117

topic include Tseng and Yun [2009a] who considered linearly constrained nonsmooth sep-

arable functions, Necoara et al. [2011] who considered random block coordinate descent

for general large-scale convex objectives with linearly coupled constraints, and Necoara

and Patrascu [2014] who propose a variant of random block coordinate descent for com-

posite objective functions with linearly coupled constraints. It would be interesting to see

if there is potential to exploit simpler analysis/better convergence rates for randomized

methods, analyze these methods for a more general class of constrained problems and

possibly extend the analysis to greedy BCD methods.

118

Bibliography

A. Agarwal, S. N. Negahban, and M. J. Wainwright. Fast global convergence rates of gradient
methods for high-dimensional statistical recovery. Ann. Statist., pages 2452–2482, 2012.

M. Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM J.
Optim., pages 1116–1135, 2000.

H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features. Math. Program., Ser. B, pages 5–16, 2009.

F. Bach and E. Moulines. Non–asymptotic analysis of stochastic approximation algorithms for
machine learning. In Advances in Neural Information Processing Systems 24, pages 451–459,
2011.

M. Baghel, S. Agrawal, and S. Silakari. Recent trends and developments in graph coloring. In
Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory
and Applications, pages 431–439. Springer Berlin Heidelberg, 2013.

S. Bakin. Adaptive regression and model selection in data mining problems. PhD thesis, Aus-
tralian National University, Canberra, Australia, 1999.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM J. Optim., 23(4):2037–2060, 2013.

Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. In
O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised Learning, chapter 11, pages
193–216. MIT Press, 2006.

P. Berkhin. Bookmark-coloring algorithm for personalized PageRank computing. Internet
Mathematics, 3(1):41–62, 2006.

D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transac-
tions on Automatic Control, 21(2):174–184, 1976.

D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific Belmont, 2015.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 3rd edition, 2016.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods,
volume 23. Englewood Cliffs: Prentice Hall, NJ, 1989.

D. Bickson. Gaussian Belief Propagation: Theory and Application. PhD thesis, The Hebrew
University of Jerusalem, Jerusalem, Israel, 2009.

119

C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006.

T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Appl.
Comput. Harmon. Anal., 27(3):265–274, 2009.

L. Bo and C. Sminchisescu. Greedy block coordinate descent for large scale Gaussian process
regression. arXiv:1206.3238, 2012.

D. Böhning. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math., 44(1):197–200,
1992.

J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity
of first-order descent methods for convex functions. arXiv:1510.08234, 2015.

F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. S. Lakshmanan. Fast matrix compu-
tations for pairwise and columnwise commute times and Katz scores. Internet Mathematics,
8(1-2):73–112, 2012.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
arXiv:1606.04838, 2016.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and transcription.
arXiv:1206.6392, 2012.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM J. Numer. Anal.,
25(5):1197–1211, 1988.

A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes
Rendus Hebd. Séances Acad. Sci., 25:536–538, 1847.

Y. Censor. Row-action methods for huge and sparse systems and their applications. SIAM
Rev., 23(4):444–466, 1981.

Y. Censor, P. B. Eggermont, and D. Gordon. Strong underrelaxation in Kaczmarz’s method
for inconsistent systems. Numer. Math., 41:83–92, 1983.

Y. Censor, G. T. Herman, and M. Jiang. A note on the behaviour of the randomized Kaczmarz
algorithm of Strohmer and Vershynin. J. Fourier Anal. Appl., 15:431–436, 2009.

V. Cevher, S. Becker, and M. Schmidt. Convex optimization for big data: Scalable, randomized,
and parallel algorithms for big data analytics. IEEE Signal Processing Magazine, 31:32–43,
2014.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, 2011. Software available at http://www.csie.ntu.

edu.tw/~cjlin/libsvm.

B. Chen, S. He, Z. Li, and S. Zhang. Maximum block improvement and polynomial optimization.
SIAM J. Optim., 22(1):87–107, 2012.

120

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

S. Chen and D. Donoho. Basis pursuit. In 28th Asilomar Conf. Signals, Systems Computers.
Asilomar, 1994.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
Rev., 43(1):129–159, 2001.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press Cambridge, second edition, 2001.

C. Cortes and V. N. Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.

B. D. Craven and B. M. Glover. Invex functions and duality. J. Austral. Math. Soc. (Series
A), pages 1–20, 1985.

D. Csiba and P. Richtárik. Importance sampling for minibatches. arXiv:1602.02283, 2016.

D. Csiba and P. Richtárik. Global convergence of arbitrary-block gradient methods for gener-
alized Polyak- Lojasiewicz functions. arXiv:1709.03014, 2017.

D. Csiba, Z. Qu, and P. Richtárik. Stochastic dual coordinate ascent with adaptive probabilities.
In Proceedings of the 32nd International Conference on Machine Learning, pages 674–683,
2015.

J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance selection for nonchordal graphs
via chordal embedding. Optim. Methods Softw., 23(4):501–520, 2008.

M. De Santis, S. Lucidi, and F. Rinaldi. A fast active set block coordinate descent algorithm
for `1-regularized least squares. SIAM J. Optim., 26(1):781–809, 2016.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer.
Anal., 19(2):400–408, 1982.

J. E. Dennis and J. J. Moré. A characterization of superlinear convergence and its application
to quasi-Newton methods. Math. Comput., 28(126):549–560, 1974.

F. Deutsch. Rate of convergence of the method of alternating projections. Internat. Schriften-
reihe Numer. Math., 72:96–107, 1985.

F. Deutsch and H. Hundal. The rate of convergence for the method of alternating projections,
II. J. Math. Anal. Appl., 205:381–405, 1997.

I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Nearest neighbor based greedy coordinate
descent. In Advances in Neural Information Processing Systems 24, pages 2160–2168, 2011.

F. Dinuzzo, C. S. Ong, P. Gehler, and G. Pillonetto. Learning output kernels with block
coordinate descent. In Proceedings of the 28th International Conference on Machine Learning,
pages 49–56, 2011.

D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of
proximal methods. arXiv:1602.06661, 2016.

121

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32(2):
407–451, 2004.

Y. C. Eldar and D. Needell. Acceleration of randomized Kaczmarz methods via the Johnson-
Lindenstrauss Lemma. Numer. Algor., 58:163–177, 2011.

A. Ene and H. L. Nguyen. Random coordinate descent methods for minimizing decomposable
submodular functions. In Proceedings of the 32nd International Conference on Machine
Learning, pages 787–795, 2015.

L. Esperet, L. Lemoine, and F. Maffray. Equitable partition of graphs into induced forests.
Discrete Math., 338:1481–1483, 2015.

H. G. Feichtinger, C. Cenker, M. Mayer, H. Steier, and T. Strohmer. New variants of the POCS
method using affine subspaces of finite codimension with applications to irregular sampling.
SPIE: VCIP, pages 299–310, 1992.

O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. SIAM J.
Optim., 25(4):1997–2023, 2015.

W. F. Ferger. The nature and use of the harmonic mean. Journal of the American Statistical
Association, 26(173):36–40, 1931.

K. Fountoulakis and R. Tappenden. A flexible coordinate descent method. arXiv:1507.03713,
2015.

K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney. Exploiting
optimization for local graph clustering. arXiv:1602.01886, 2016.

S. P. Frankel. Convergence rates of iterative treatments of partial differential equations. Math.
Tables Aids Comput., 4(30):65–75, 1950.

M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

W. J. Fu. Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat., 7(3):
397–416, 1998.

E. M. Gafni and D. P. Bertsekas. Two-metric projection methods for constrained optimization.
SIAM J. Control Optim., 22(6):936–964, 1984.

A. Galántai. On the rate of convergence of the alternating projection method in finite dimen-
sional spaces. J. Math. Anal. Appl., 310:30–44, 2005.

D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets.
In Proceedings of the 32nd International Conference on Machine Learning, pages 541–549,
2015.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

T. Glasmachers and U. Dogan. Accelerated coordinate descent with adaptive coordinate fre-
quencies. In Proceedings of the 5th Asian Conference on Machine Learning, pages 72–86,
2013.

122

P. Gong and J. Ye. Linear convergence of variance-reduced stochastic gradient without strong
convexity. arXiv:1406.1102, 2014.

R. Gordon, R. Bender, and G. T. Herman. Algebraic Reconstruction Techniques (ART) for
three-dimensional electron microscopy and x-ray photography. J. Theor. Biol., 29(3):471–481,
1970.

R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM J.
Matrix Anal. Appl., 36(4):1660–1690, 2015.

J. Gregor and J. A. Fessler. Comparison of SIRT and SQS for regularized weighted least squares
image reconstruction. IEEE Trans. Comput. Imaging, 1(1):44–55, 2015.

M. Griebel and P. Oswald. Greedy and randomized versions of the multiplicative Schwartz
method. Lin. Alg. Appl., 437:1596–1610, 2012.

S. Gsponer, B. Smyth, and G. Ifrim. Efficient sequence regression by learning linear models in
all-subsequence space. In Machine Learning and Knowledge Discovery in Databases, pages
37–52, 2017.

M. Gu, L.-H. Lim, and C. J. Wu. ParNes: A rapidly convergent algorithm for accurate recovery
of sparse and approximately sparse signals. Numer. Algor., pages 321–347, 2013.

M. Hanke and W. Niethammer. On the acceleration of Kaczmarz’s method for inconsistent
linear systems. Lin. Alg. Appl., 130:83–98, 1990.

M. A. Hanson. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl., pages
545–550, 1981.

M. Hardt and T. Ma. Identity matters in deep learning. arXiv:1611.04231, 2016.

W. L. Hare. Identifying active manifolds in regularization problems. In H. H. Bauschke, R. S.
Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, pages 261–271. Springer New
York, New York, NY, 2011.

W. L. Hare and A. S. Lewis. Identifying active constraints via partial smoothness and prox-
regularity. J. Convex Analysis, 11(2):251–266, 2004.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, volume 1.
Springer Series in Statistics, New York, 2nd edition, 2001.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. J. Mach. Learn. Res., 5:1391–1415, 2004.

G. T. Herman and L. B. Meyer. Algebraic reconstruction techniques can be made computa-
tionally efficient. IEEE Trans. Medical Imaging, 12(3):600–609, 1993.

R. R. Hocking. A biometrics invited paper. The analysis and selection of variables in linear
regression. Biometrics, 32(1):1–49, 1976.

A. J. Hoffman. On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur.
Stand., 49(4):263–265, 1952.

123

K. Hou, Z. Zhou, A. M.-C. So, and Z.-Q. Luo. On the linear convergence of the proximal gradient
method for trace norm regularization. In Advances in Neural Information Processing Systems
26, pages 710–718, 2013.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate de-
scent method for large-scale linear SVM. In Proceedings of the 25th International Conference
on Machine Learning, pages 408–415, 2008.

C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. K. Ravikumar, and R. Poldrack. BIG & QUIC: Sparse
inverse covariance estimation for a million variables. In Advances in Neural Information
Processing Systems 26, pages 3165–3173, 2013.

X. Huang, I. E. H. Yen, R. Zhang, Q. Huang, P. Ravikumar, and I. S. Dhillon. Greedy direction
method of multiplier for MAP inference of large output domain. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54, pages 1550–
1559, 2017.

D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed accuracy and
run time for support vector machines. J. Mach. Learn. Res., pages 733–769, 2006.

P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerating stochastic
gradient descent. arXiv:1704.08227, 2017.

S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization.
In Advances in Neural Information Processing Systems 26, pages 1313–1321, 2013.

G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th International
Conference on World Wide Web, pages 271–279. ACM, 2003.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and
A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169–184.
MIT Press, 1999.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26, pages 315–323, 2013.

W. B. Johnson and J. Lindenstrauss. Extensions of Lipchitz mappings into a Hilbert space.
Contemp. Math., 26:189–206, 1984.

P. Joulani, A. György, and C. Szepesvári. A modular analysis of adaptive (non-) convex opti-
mization: Optimism, composite objectives, and variational bounds. Proceedings of Machine
Learning Research, 1:1–40, 2017.

S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International
de l’Académie Polonaise des Sciences et des Letters. Classe des Sciences Mathématiques et
Naturelles. Série A, Sciences Mathématiques, 35:355–357, 1937.

M. Kadkhodaie, M. Sanjabi, and Z.-Q. Luo. On the linear convergence of the approximate
proximal splitting method for non-smooth convex optimization. arXiv:1404.5350v1, 2014.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient
methods under the Polyak- Lojasiewicz condition. In Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML PKDD 2016, Proceedings, Part I, pages
795–811, 2016.

124

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

M. E. Khan. Variational Learning for Latent Gaussian Model of Discrete Data. PhD thesis,
The University of British Columbia, Vancouver, Canada, 2012.

M. E. Khan, R. Babanezhad, W. Lin, M. Schmidt, and M. Sugiyama. Faster stochastic vari-
ational inference using proximal gradient methods with general divergence functions. In
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence, pages 319–328,
2016.

R. Kyng and S. Sachdeva. Approximate Gaussian elimination for Laplacians - fast, sparse, and
simple. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 573–582. IEEE, 2016.

T. K. Lau and Y. Yao. Accelerated block coordinate proximal gradients with applications in
high dimensional statistics. arXiv:1710.05338, 2017.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential con-
vergence rate for finite training sets. In Advances in Neural Information Processing Systems
25, pages 2663–2671, 2012.

C.-P. Lee and S. J. Wright. Random permutations fix a worst case for cyclic coordinate descent.
arXiv:1607.08320, 2016.

J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for convex optimization.
In Advances in Neural Information Processing Systems 25, pages 827–835, 2012.

S. Lee and S. J. Wright. Manifold identification in dual averaging for regularized stochastic
online learning. J. Mach. Learn. Res., 13(1):1705–1744, 2012.

S.-i. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using
`1-regularization. In Advances in Neural Information Processing Systems 19, pages 817–824,
2006.

Y. T. Lee and A. Sidford. Efficient accelerated coordinate descent methods and faster algorithms
for solving linear systems. arXiv:1305.1922v1, 2013.

Q. Lei, K. Zhong, and I. S. Dhillon. Coordinate-wise power method. In Advances in Neural
Information Processing Systems 29, pages 2064–2072, 2016.

Q. Lei, I. E.-H. Yen, C.-y. Wu, I. S. Dhillon, and P. Ravikumar. Doubly greedy primal-
dual coordinate descent for sparse empirical risk minimization. In Proceedings of the 34th
International Conference on Machine Learning, pages 2034–2042, 2017.

L. Leventhal and A. S. Lewis. Randomized methods for linear constraints: Convergence rates
and conditioning. Math. Oper. Res., 35(3):641–654, 2010.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comput. Math.
Math. Phys., 6:1–50, 1966.

G. Li and T. K. Pong. Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its
applications to linear convergence of first-order methods. arXiv:1602.02915v1, 2016.

125

X. Li, S. Ling, T. Strohmer, and K. Wei. Rapid, robust, and reliable blind deconvolution via
nonconvex optimization. arXiv:1606.04933, 2016.

Y. Li and S. Osher. Coordinate descent optimization for `1 minimization with application to
compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 3(3):487–503, 2009.

Z. Li, A. Uschmajew, and S. Zhang. On convergence of the maximum block improvement
method. SIAM J. Optim., 25(1):210–233, 2015.

J. Liang, J. Fadili, and G. Peyré. Activity identification and local linear convergence of forward–
backward-type methods. SIAM J. Optim., 27(1):408–437, 2017.

J. Liu and S. J. Wright. An accelerated randomized Kaczmarz method. arXiv:1310.2887v2,
2014.

J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism and conver-
gence properties. SIAM J. Optim., pages 351–376, 2015.

J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. arXiv:1311.1873v3, 2014.

S. Lojasiewicz. A topological property of real analytic subsets (in French). Coll. du CNRS, Les
équations aux dérivées partielles, pages 87–89, 1963.

Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods:
A general approach. Ann. Oper. Res., 46(1):157–178, 1993.

A. Ma, D. Needell, and A. Ramdas. Convergence properties of the randomized extended Gauss-
Seidel and Kaczmarz methods. arXiv:1503.08235v2, 2015a.

C. Ma, T. Tappenden, and M. Takáč. Linear convergence of the randomized feasible descent
method under the weak strong convexity assumption. arXiv:1506.02530, 2015b.

J. Mairal and B. Yu. Complexity analysis of the lasso regularization path. In Proceedings of
the 29th International Conference on Machine Learning, pages 353–360, 2012.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation in
Gaussian graphical models. J. Mach. Learn. Res., 7(Oct):2031–2064, 2006.

M. Massias, A. Gramfort, and J. Salmon. From safe screening rules to working sets for faster
Lasso-type solvers. arXiv:1703.07285, 2017.

F. McSherry. A uniform approach to accelerated PageRank computation. In Proceedings of the
14th International Conference on World Wide Web, pages 575–582. ACM, 2005.

N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper. Res.,
4(4):414–424, 1979.

L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression. J. R. Stat.
Soc. Series B Stat. Methodol., 70(1):53–71, 2008.

R. Meir and G. Rätsch. An Introduction to Boosting and Leveraging, pages 118–183. Springer,
Heidelberg, 2003.

126

O. Meshi, T. Jaakkola, and A. Globerson. Convergence rate analysis of MAP coordinate
minimization algorithms. In Advances in Neural Information Processing Systems 25, pages
3014–3022, 2012.

R. Mifflin and C. Sagastizábal. Proximal points are on the fast track. J. Convex Anal., 9(2):
563–579, 2002.

P. W. Mirowski, Y. LeCun, D. Madhavan, and R. Kuzniecky. Comparing SVM and convolu-
tional networks for epileptic seizure prediction from intracranial EEG. In IEEE Workshop
on Machine Learning for Signal Processing, pages 244–249. IEEE, 2008.

A.-r. Mohamed, G. Dahl, and G. Hinton. Deep belief networks for phone recognition. In NIPS
Workshop on Deep Learning for Speech Recognition and Related Applications, page 39, 2009.

T. Moreau and N. Oudre, L. amd Vayatis. Distributed convolutional sparse coding.
arXiv:1705.10087, 2017.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

H. Namkoong, A. Sinha, S. Yadlowsky, and J. C. Duchi. Adaptive sampling probabilities for
non-smooth optimization. In Proceedings of the 34th International Conference on Machine
Learning, pages 2574–2583, 2017.

H. Nassar, K. Kloster, and D. F. Gleich. Strong localization in personalized PageRank vectors.
In International Workshop on Algorithms and Models for the Web-Graph, pages 190–202.
Springer, 2015.

I. Necoara and D. Clipici. Parallel random coordinate descent method for composite minimiza-
tion: Convergence analysis and error bounds. SIAM J. Optim., pages 197–226, 2016.

I. Necoara and A. Patrascu. A random coordinate descent algorithm for optimization problems
with composite objection function and linear coupled constraints. Comput. Optim. Appl.,
pages 307–337, 2014.

I. Necoara, Y. Nesterov, and F. Glineur. A random coordinate descent method on large opti-
mization problems with linear constraints. Technical Report, 2011.

I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-
strongly convex optimization. arXiv:1504.06298v3, 2015.

D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math., 50:
395–403, 2010.

D. Needell and J. A. Tropp. Paved with good intentions: analysis of a randomized block
Kaczmarz method. Linear Algebra Appl., 441:199–221, 2014.

D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm. arXiv:1310.5715v5, 2013.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2009.

Y. Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2).
In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

127

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2004.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
CORE Discussion Paper, 2010.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J. Optim., 22(2):341–362, 2012.

Y. Nesterov. Gradient methods for minimizing composite functions. Math. Program., 140:
125–161, 2013.

Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global perfor-
mance. Math. Program., pages 177–205, 2006.

A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In Proceedings
of the 21st International Conference on Machine Learning, page 78. ACM, 2004.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

A. B. J. Novikoff. On convergence proofs for perceptrons. Symp. Math. Theory Automata, 12:
615–622, 1962.

J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, and H. Koepke. Coordinate descent
converges faster with the Gauss-Southwell rule than random selection. In Proceedings of the
32nd International Conference on Machine Learning, pages 1632–1641, 2015.

J. Nutini, B. Sepehry, I. Laradji, M. Schmidt, H. Koepke, and A. Virani. Convergence rates for
greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality
graph. arXiv:1612.07838, 2016.

J. Nutini, I. Laradji, M. Schmidt, and W. Hare. Let’s make block coordinate descent go fast:
Faster greedy rules, message- passing, active-set complexity, and superlinear convergence.
submitted for publication, 2017a.

J. Nutini, M. Schmidt, and W. Hare. “Active-set complexity” of proximal gradient: How long
does it take to find the sparsity pattern? submitted for publication, 2017b.

S. M. Omohundro. Five balltree construction algorithms. Technical report, International Com-
puter Science Institute, Berkeley, 1989.

M. R. Osborne and B. A. Turlach. A homotopy algorithm for the quantile regression lasso and
related piecewise linear problems. J. Comput. Graph. Stat., 20(4):972–987, 2011.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection in least
squares problems. IMA J. Numer. Anal., 20(3):389–403, 2000.

P. Oswald and W. Zhou. Convergence analysis for Kaczmarz-type methods in a Hilbert space
framework. Lin. Alg. Appl., 478:131–161, 2015.

S. Parter. The use of linear graphs in Gauss elimination. SIAM Rev., 3(2):119–130, 1961.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition. In Proceedings of the
27th Annu. Asilomar Conf. Signals, Systems and Computers, pages 40–44. IEEE, 1993.

128

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

M. Pilanci and M. J. Wainwright. Newton sketch: A linear-time optimization algorithm with
linear-quadratic convergence. SIAM J. Optim., 27(1):205–245, 2017.

J. C. Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical report, Microsoft Research, 1998.

B. T. Polyak. Gradient methods for minimizing functionals (in Russian). Zh. Vychisl. Mat.
Mat. Fiz., pages 643–653, 1963.

Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algorithms for Group
Lasso. Mathematical Programming Computation, 5:143–169, 2013.

Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling I: Algorithms and com-
plexity. Optim. Methods Softw., 31(5):829–857, 2016.

Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling II: Expected separable
overapproximation. Optim. Methods Softw., 31(5):858–884, 2016.

Z. Qu, P. Richtárik, and T. Zhang. Randomized dual coordinate ascent with arbitrary sampling.
arXiv:1411.5873, 2014.

Z. Qu, P. Richtárik, M. Takáč, and O. Fercoq. SDNA: Stochastic dual Newton ascent for
empirical risk minimization. In Proceedings of the 33rd International Conference on Machine
Learning, pages 1823–1832, 2016.

G. Rätsch, S. Mika, and M. K. Warmuth. On the convergence of leveraging. In Advances in
Neural Information Processing Systems 14, pages 487–494, 2001.

S. J. Reddi, S. Sra, B. Poczos, and A. Smola. Fast stochastic methods for nonsmooth nonconvex
optimization. arXiv:1605.06900, 2016a.

S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Proximal stochastic methods for nonsmooth
nonconvex finite-sum optimization. In Advances in Neural Information Processing Systems
29, pages 1145–1153, 2016b.

P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization.
Math. Prog., 156(1-2):433–484, 2016.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent meth-
ods for minimizing a composite function. Math. Program., 144:1–38, 2014.

P. Richtárik and M. Takáč. On optimal probabilities in stochastic coordinate descent methods.
Optimization Letters, 10(6):1233–1243, 2016.

M. Riedmiller and H. Braun. RPROP - A fast adaptive learning algorithm. In: Proc. of ISCIS
VII, 1992.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22(3):
400–407, 1951.

129

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optim., 14(5):877898, 1976.

L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss functions all the
same? Neural Computation, 16(5):1063–1076, 2004.

D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl., 32(3):
597–609, 1970.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Ann. Stat., 35(3):1012–1030,
2007.

V. Roulet and A. d’Aspremont. Sharpness, restart and acceleration. In Advances in Neural
Information Processing Systems 30, pages 1119–1129, 2017.

H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. CRC Press,
2005.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM J. Res. Dev.,
3(3):210–229, 1959.

S. Sardy, A. G. Bruce, and P. Tseng. Block coordinate relaxation methods for nonparametric
wavelet denoising. J. Comput. Graph. Stat., 9(2):361–379, 2000.

K. Scheinberg and I. Rish. SINCO - a greedy coordinate ascent method for sparse inverse
covariance selection problem. Optimization Online, 2009.

C. Scherrer, A. Tewari, M. Halappanavar, and D. J. Haglin. Feature clustering for accelerating
parallel coordinate descent. In Advances in Neural Information Processing Systems 25, pages
28–36, 2012.

M. Schmidt. Graphical Model Structure Learning with `1-Regularization. PhD thesis, The
University of British Columbia, Vancouver, BC, Canada, 2010.

M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods
for convex optimization. In Advances in Neural Information Processing Systems 24, pages
1458–1466, 2011.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Math. Program., 162(1-2):83–112, 2017.

L. Seidel. Über ein Verfahren die Gleichungen, auf welche die Methode der kleinsten Quadrate
führt, sowie lineäre Gleichungen überhaupt durch successive Annäherung aufzulösen. Verlag
der k. Akademie, 1874.

B. Sepehry. Finding a maximum weight sequence with dependency constraints. Master’s thesis,
University of British Columbia, Vancouver, BC, Canada, 2016.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. J. Mach. Learn. Res., pages 567–599, 2013.

130

J. She and M. Schmidt. Linear convergence and support vector identification of sequential min-
imal optimization. In 10th NIPS Workshop on Optimization for Machine Learning, page 5,
2017.

O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson, and D. Dolev. Gaussian belief propaga-
tion solver for systems of linear equations. In Information Theory, 2008. ISIT 2008. IEEE
International Symposium on, pages 1863–1867. IEEE, 2008.

S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using sparse
logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin. A primer on coordinate descent algorithms.
arXiv:1610.00040, 2016.

A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for sublinear time maximum inner product
search (MIPS). In Advances in Neural Information Processing Systems 27, pages 2321–2329,
2014.

C. Song, S. Cui, Y. Jiang, and S.-T. Xia. Accelerated stochastic greedy coordinate descent
by soft thresholding projection onto simplex. In Advances in Neural Information Processing
Systems 30, pages 4841–4850, 2017.

D. Sontag and T. Jaakkola. Tree block coordinate descent for MAP in graphical models. In
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics,
pages 544–551, 2009.

A. Srinivasan and E. Todorov. Graphical Newton. arXiv:1508.00952, 2015.

S. U. Stich, A. Raj, and M. Jaggi. Approximate steepest coordinate descent. arXiv:1706.08427,
2017.

T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential conver-
gence. J. Fourier Anal. Appl., 15:262–278, 2009.

Y. Sun, M. S. Andersen, and L. Vandenberghe. Decomposition in conic optimization with
partially separable structure. SIAM J. Optim., 24(2):873–897, 2014.

K. Tanabe. Projection method for solving a singular system of linear equations and its appli-
cations. Numer. Math., 17:203–214, 1971.

R. Tappenden, P. Richtárik, and J. Gondzio. Inexact coordinate descent: Complexity and
preconditioning. J. Optim. Theory Appl., pages 144–176, 2016.

M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun. MultiNet: Real-time joint
semantic reasoning for autonomous driving. arXiv:1612.07695, 2016.

G. Thoppe, V. S. Borkar, and D. Garg. Greedy block coordinate descent (GBCD) method for
high dimensional quadratic programs. arXiv:1404.6635, 2014.

R. J. Tibshirani. Dykstra’s algorithm, ADMM, and coordinate descent: Connections, insights,
and extensions. In Advances in Neural Information Processing Systems 30, pages 517–528,
2017.

131

P. Tseng. Approximation accuracy, gradient methods, and error bound for structured convex
optimization. Math. Program., Ser. B, pages 263–295, 2010.

P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly constrained nons-
mooth separable optimization. J. Optim. Theory Appl., pages 513–535, 2009a.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable mini-
mization. Math. Program., 117:387–423, 2009b.

A. van der Sluis. Condition numbers and equilibrium of matrices. Numer. Math., 14:14–23,
1969.

L. Vandenberghe and M. S. Andersen. Chordal graphs and semidefinite optimization. Found.
Trends Optim., 1(4):241–433, 2015.

N. K. Vishnoi. Lx = b Laplacian solvers and their algorithmic applications. Found. Trends
Theoretical Computer Science, 8(1-2):1–141, 2013.

J. von Neumann. Functional Operators (AM-22), Volume 2: The Geometry of Orthogonal
Spaces. (AM-22). Princeton University Press, 1950.

M. J. Wainwright. Structured regularizers for high-dimensional problems: Statistical and com-
putational issues. Ann. Rev. Stat. Appl., 1(1):233–253, Jan 2014.

J. Wang, W. Wang, D. Garber, and N. Srebro. Efficient coordinate-wise leading eigenvector
computation. arXiv:1702.07834, 2017.

P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex opti-
mization. J. Mach. Learn. Res., pages 1523–1548, 2014.

X. Wang. High Performance Tomography. PhD thesis, Purdue University, West Lafayette, IN,
USA, 2017.

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and
its application to timetabling problems. The Computer Journal, 10(1):85–86, 1967.

T. Whitney and R. Meany. Two algorithms related to the method of steepest descent. SIAM
J. Numer. Anal., 4(1):109–118, 1967.

S. J. Wright. Identifiable surfaces in constrained optimization. SIAM J. Control Optim., 31(4):
1063–1079, 1993.

S. J. Wright. Accelerated block-coordinate relaxation for regularized optimization. SIAM J.
Optim., 22(1):159–186, 2012.

S. J. Wright. Coordinate descent algorithms. arXiv:1502.04759v1, 2015.

T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. The
Annals of Applied Statistics, 2(1):224–244, 2008.

L. Xiao and T. Zhang. A proximal-gradient homotopy method for the sparse least-squares
problem. SIAM J. Optim., 23(2):1062–1091, 2013.

132

Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci,
6(3):1758–1789, 2013.

T. Yang and Q. Lin. RSG: Beating subgradient method without smoothness and strong con-
vexity. arXiv:1512.03107, 2015.

D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos, K. Ramchandran, and P. Bartlett. Gradient
diversity empowers distributed learning. arXiv:1706.05699, 2017.

Y. You, X. Lian, J. Liu, H.-F. Yu, I. S. Dhillon, J. Demmel, and C.-J. Hsieh. Asynchronous
parallel greedy coordinate descent. In Advances in Neural Information Processing Systems
29, pages 4682–4690, 2016.

D. M. Young. Iterative Methods for Solving Partial Difference Equations of Elliptic Type. PhD
thesis, Harvard University, Cambridge, MA, USA, 1950.

D. M. Young. Iterative Solution of Large Linear Systems. New York: Academic Press, 1971.

H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent approaches to parallel
matrix factorization for recommender systems. In Data Mining (ICDM), 2012 IEEE 12th
International Conference on, pages 765–774. IEEE, 2012.

H. Zhang. The restricted strong convexity revisited: Analysis of equivalence to error bound
and quadratic growth. arXiv:1511.01635, 2015.

H. Zhang. New analysis of linear convergence of gradient-type methods via unifying error bound
conditions. arXiv:1606.00269, 2016.

H. Zhang and W. Yin. Gradient methods for convex minimization: Better rates under weaker
conditions. arXiv:1303.4645, 2013.

H. Zhang, J. Jiang, and Z.-Q. Luo. On the linear convergence of a proximal gradient method for
a class of nonsmooth convex minimization problems. J. Oper. Res. Soc. China, 1(2):163–186,
2013.

H. Zhang, S. J. Reddi, and S. Sra. Riemannian SVRG: Fast stochastic optimization on Rieman-
nian manifolds. In Advances in Neural Information Processing Systems 29, pages 4592–4600,
2016.

J. Zhang, A. G. Schwing, and R. Urtasun. Message passing inference for large scale graphical
models with high order potentials. In Advances in Neural Information Processing Systems
27, pages 1134–1142, 2014.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In Advances in Neural Information Processing Systems 16, pages 321–328, 2003.

Y. Zhou and Y. Liang. Characterization of gradient dominance and regularity conditions for
neural networks. arXiv:1710.06910, 2017.

Y. Zhou, H. Zhang, and Y. Liang. Geometrical properties and accelerated gradient solvers of
non-convex phase retrieval. In 54th Annual Allerton Conference on Communication, Control,
and Computing, pages 331–335. IEEE, 2016.

133

Z. Zhou and A. M.-C. So. A unified approach to error bounds for structured convex optimization
problems. arXiv:1512.03518, 2015.

A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for solving least-squares.
arXiv:1205.5770v3, 2013.

134

Appendix A

Chapter 2 Supplementary Material

A.1 Efficient Calculation of GS Rules for Sparse Problems

We first give additional details on how to calculate the GS rule efficiently for sparse instances

of problems h1 and h2. We will consider the case where each gi is smooth, but the ideas can

be extended to allow a non-smooth gi. Further, note that the efficient calculation does not rely

on convexity, so these strategies can also be used for non-convex problems.

A.1.1 Problem h2

Problem h2 has the form

h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where each gi and fij are differentiable and G = {V,E} is a graph where the number of vertices

|V | is the same as the number of variables n. If all nodes in the graph have a degree (number

of neighbours) bounded above by some constant d, we can implement the GS rule in O(d log n)

after an O(n+ |E|) time initialization by maintaining the following information about xk:

1. A vector containing the values ∇igi(xki).

2. A matrix containing the values ∇ifij(xki , xkj) in the first column and ∇jfij(xki , xkj) in the

second column.

3. The elements of the gradient vector ∇h2(xk) stored in a binary max heap data struc-

ture [see Cormen et al., 2001, Chapter 6].

Given the heap structure, we can compute the GS rule in O(1) by simply reading the index

value of the root node in the max heap. The costs for initializing these structures are:

1. O(n) to compute gi(x
0
i) for all n nodes.

2. O(|E|) to compute ∇ijfij(x0
i , x

0
j) for all |E| edges.

3. O(n + |E|) to sum the values in the above structures to compute ∇h(x0), and O(n) to

construct the initial max heap.

135

Thus, the one-time initialization cost is O(n+ |E|). The costs of updating the data structures

after we update xkik to xk+1
ik

for the selected coordinate ik are:

1. O(1) to compute gik(xk+1
ik

).

2. O(d) to compute ∇ijfij(xk+1
i , xk+1

j) for (i, j) ∈ E and i = ik or j = ik (only d such values

exist by assumption, and all other ∇ijfij(xi, xj) are unchanged).

3. O(d) to update up the d elements of ∇h(xk+1) that differ from ∇h(xk) by using the

differences in changed values of gi and fij , followed by O(d log n) to perform d updates of

the heap at a cost of O(log n) for each update.

The most expensive part of the update is modifying the heap, and thus the total cost is

O(d log n).27

A.1.2 Problem h1

Problem h1 has the form

h1(x) :=

n∑
i=1

gi(xi) + f(Ax),

where gi and f are differentiable, and A is an m by n matrix where we denote column i by ai

and row j by aTj . Note that f is a function from IRm to IR, and we assume ∇jf only depends

on aTj x. While this is a strong assumption (e.g., it rules out f being the product function),

this class includes a variety of notable problems like the least squares and logistic regression

models from our experiments. If A has z non-zero elements, with a maximum of c non-zero

elements in each column and r non-zero elements in each row, then with a pre-processing cost

of O(z) we can implement the GS rule in this setting in O(cr log n) by maintaining the following

information about xk:

1. A vector containing the values ∇igi(xki).

2. A vector containing the product Axk.

3. A vector containing the values ∇f(Axk).

4. A vector containing the product AT∇f(Axk).

5. The elements of the gradient vector ∇h1(xk) stored in a binary max heap data structure.

The heap structure again allows us to compute the GS rule in O(1), and the costs of initializing

these structures are:

1. O(n) to compute gi(x
0
i) for all n variables.

27For less-sparse problems where n < d logn, using a heap is actually inefficient and we should simply store
∇h(xk) as a vector. The initialization cost is the same, but we can then perform the GS rule in O(n) by simply
searching through the vector for the maximum element.

136

2. O(z) to compute the product Ax0.

3. O(m) to compute ∇f(Ax0) (using that ∇jf only depends on aTj x
0).

4. O(z) to compute AT∇f(Ax0).

5. O(n) to add the ∇igi(x0
i) to the above product to obtain ∇h1(x0) and construct the initial

max heap.

As it is reasonable to assume that z ≥ m and z ≥ n (e.g., we have at least one non-zero in each

row and column), the cost of the initialization is thus O(z). The costs of updating the data

structures after we update xkik to xk+1
ik

for the selected coordinate ik are:

1. O(1) to compute gik(xk+1
ik

).

2. O(c) to update the product using Axk+1 = Axk + (xk+1
ik
− xkik)ai, since ai has at most c

non-zero values.

3. O(c) to update up to c elements of ∇f(Axk+1) that have changed (again using that ∇jf
only depends on aTj x

k+1).

4. O(cr) to perform up to c updates of the form

AT∇f(Axk+1) = AT∇f(Axk) + (∇jf(Axk+1)−∇jf(Axk))(ai)
T ,

where each update costs O(r) since each ai has at most r non-zero values.

5. O(cr log n) to update the gradients in the heap.

The most expensive part is again the heap update, and thus the total cost is O(cr log n).

A.2 Relationship Between µ1 and µ

We can establish the relationship between µ and µ1 by using the known relationship between

the 2-norm and the 1-norm,

‖x‖1 ≥ ‖x‖ ≥
1√
n
‖x‖1.

In particular, if we assume that f is µ-strongly convex in the 2-norm, then for all x and y we

have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

≥ f(x) + 〈∇f(x), y − x〉+
µ

2n
‖y − x‖21,

137

implying that f is at least µ
n -strongly convex in the 1-norm. Similarly, if we assume that a

given f is µ1-strongly convex in the 1-norm then for all x and y we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21

≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖2,

implying that f is at least µ1-strongly convex in the 2-norm. Summarizing these two relation-

ships, we have
µ

n
≤ µ1 ≤ µ.

A.3 Analysis for Separable Quadratic Case

We first establish an equivalent definition of strong convexity in the 1-norm, along the lines

of Nesterov [2004, Theorem 2.1.9]. Subsequently, we use this equivalent definition to derive µ1

for a separable quadratic function.

A.3.1 Equivalent Definition of Strong Convexity

Assume that f is µ1-strongly convex in the 1-norm, so that for any x, y ∈ IRn we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21.

Reversing x and y in the above gives

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ1

2
‖x− y‖21,

and adding these two together yields

〈∇f(y)−∇f(x), y − x〉 ≥ µ1‖y − x‖21. (A.1)

Conversely, assume that for all x and y we have

〈∇f(y)−∇f(x), y − x〉 ≥ µ1‖y − x‖21,

138

and consider the function g(τ) = f(x+ τ(y − x)) for τ ∈ IR. Then

f(y)−f(x)−〈∇f(x), y−x〉=g(1)− g(0)− 〈∇f(x), y − x〉

=

∫ 1

0

dg

dτ
(τ)− 〈∇f(x), y − x〉 dτ

=

∫ 1

0
〈∇f(x+ τ(y − x)), y − x〉−〈∇f(x), y − x〉 dτ

=

∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

≥
∫ 1

0

µ1

τ
‖τ(y − x)‖21 dτ

=

∫ 1

0
µ1τ‖y − x‖21 dτ

=
µ1

2
τ2‖y − x‖21

∣∣∣∣1
0

=
µ1

2
‖y − x‖21.

Thus, µ1-strong convexity in the 1-norm is equivalent to having

〈∇f(y)−∇f(x), y − x〉 ≥ µ1‖y − x‖21 ∀ x, y. (A.2)

A.3.2 Strong Convexity Constant µ1 for Separable Quadratic Functions

Consider a strongly convex quadratic function f with a diagonal Hessian H = ∇2f(x) =

diag(λ1, . . . , λn), where λi > 0 for all i = 1, . . . , n. We show that in this case

µ1 =

(
n∑
i=1

1

λi

)−1

.

From the previous section, µ1 is the minimum value such that (A.2) holds,

µ1 = inf
x 6=y

〈∇f(y)−∇f(x), y − x〉
‖y − x‖21

.

139

Using ∇f(x) = Hx+ b for some b and letting z = y − x, we get

µ1 = inf
x 6=y

〈(Hy − b)− (Hx− b), y − x〉
‖y − x‖21

= inf
x 6=y

〈H(y − x), y − x〉
‖y − x‖21

= inf
z 6=0

zTHz

‖z‖21
= min
‖z‖1=1

zTHz

= min
eT z=1

n∑
i=1

λiz
2
i ,

where the last two lines use that the objective is invariant to scaling of z and to the sign of z

(respectively), and where e is a vector containing a one in every position. This is an equality-

constrained strictly-convex quadratic program, so its solution is given as a stationary point

(z∗, η∗) of the Lagrangian,

Λ(z, η) =
n∑
i=1

λiz
2
i + η(1− eT z).

Differentiating with respect to each zi for i = 1, . . . , n and equating to zero, we have for all i

that 2λiz
∗
i − η∗ = 0, or

z∗i =
η∗

2λi
. (A.3)

Differentiating the Lagrangian with respect to η and equating to zero we obtain 1− eT z∗ = 0,

or equivalently

1 = eT z∗ =
η∗

2

∑
j

1

λj
,

which yields

η∗ = 2

∑
j

1

λj

−1

.

Combining this result for η∗ with equation (A.3), we have

z∗i =
1

λi

∑
j

1

λj

−1

.

140

This gives the minimizer, so we evaluate the objective at this point to obtain µ1,

µ1 =
n∑
i=1

λi(z
∗
i)2

=
n∑
i=1

λi

 1

λi

 n∑
j=1

1

λj

−12

=
n∑
i=1

1

λi

 n∑
j=1

1

λj

−2

=

 n∑
j=1

1

λj

−2(
n∑
i=1

1

λi

)

=

 n∑
j=1

1

λj

−1

.

A.4 Gauss-Southwell-Lipschitz Rule: Convergence Rate

The coordinate-descent method with a constant step-size of Lik uses the iteration

xk+1 = xk − 1

Lik
∇ikf(xk)eik .

Because f is coordinate-wise Lik -Lipschitz continuous, we obtain the following bound on the

progress made by each iteration:

f(xk+1) ≤ f(xk) +∇ikf(xk)(xk+1 − xk)ik +
Lik
2

(xk+1 − xk)2
ik

= f(xk)− 1

Lik
(∇ikf(xk))2 +

Lik
2

[
1

Lik
∇ikf(xk)

]2

= f(xk)− 1

2Lik
[∇ikf(xk)]2

= f(xk)− 1

2

[∇ikf(xk)√
Lik

]2

.

(A.4)

By choosing the coordinate to update according to the Gauss-Southwell-Lipchitz (GSL) rule,

ik ∈ argmax
i

|∇if(xk)|√
Li

,

we obtain the tightest possible bound on (A.4). We define the following norm,

‖x‖L =
n∑
i=1

√
Li|xi|, (A.5)

141

which has a dual norm of

‖x‖∗L = max
i

1√
Li
|xi|.

Under this notation, and using the GSL rule, (A.4) becomes

f(xk+1) ≤ f(xk)− 1

2

(
‖∇f(xk)‖∗L

)2
,

Measuring strong convexity in the norm ‖ · ‖L we get

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µL
2
‖y − x‖2L.

Minimizing both sides with respect to y we get

f(x∗) ≥ f(x)− sup
y
{〈−∇f(x), y − x〉 − µL

2
‖y − x‖2L}

= f(x)−
(µL

2
‖ · ‖2L

)∗
(−∇f(x))

= f(x)− 1

2µL

(
‖∇f(x)‖∗L

)2
.

Putting these together yields

f(xk+1)− f(x∗) ≤ (1− µL)[f(xk)− f(x∗)]. (A.6)

A.5 Comparing µL to µ1 and µ

By the logic Appendix A.2, to establish a relationship between different strong convexity con-

stants under different norms, it is sufficient to establish the relationships between the squared

norms. In this section, we use this to establish the relationship between µL defined in (A.5)

and both µ1 and µ.

A.5.1 Relationship Between µL and µ1

We have

c‖x‖1 − ‖x‖L = c
∑
i

|xi| −
∑
i

√
Li|xi| =

∑
i

(c−
√
Li)|xi|,

Assuming c ≥
√
L, where L = maxi{Li}, the expression is non-negative and we get

‖x‖L ≤
√
L‖x‖1.

By using

c‖x‖L − ‖x‖1 =
∑
i

(c
√
Li − 1)|xi|,

142

and assuming c ≥ 1√
Lmin

, where Lmin = mini{Li}, this expression is nonnegative and we get

‖x‖1 ≤
1√
Lmin

‖x‖L.

The relationship between µL and µ1 is based on the squared norm, so in summary we have

µ1

L
≤ µL ≤

µ1

Lmin
.

A.5.2 Relationship Between µL and µ

Let ~L denote a vector with elements
√
Li, and we note that

‖~L‖ =

(∑
i

(
√
Li)

2

)1/2

=

(∑
i

Li

)1/2

=
√
nL̄, where L̄ =

1

n

∑
i

Li.

Using this, we have

‖x‖L = xT (sign(x) ◦ ~L) ≤ ‖x‖‖ sign(x) ◦ ~L‖ =
√
nL̄‖x‖.

This implies that
µ

nL̄
≤ µL.

Note that we can also show that µL ≤ µ
Lmin

, but this is less tight than the upper bound from

the previous section because µ1 ≤ µ.

A.6 Approximate Gauss-Southwell with Additive Error

In the additive error regime, the approximate Gauss-Southwell rule chooses an ik satisfying

|∇ikf(xk)| ≥ ‖∇f(xk)‖∞ − εk, where εk ≥ 0 ∀k,

and we note that we can assume εk ≤ ‖∇f(xk)‖∞ without loss of generality because we must

always choose an i with |∇ikf(xk)| ≥ 0. Applying this to our bound on the iteration progress,

we get

f(xk+1) ≤ f(xk)− 1

2L

[
∇ikf(xk)

]2

≤ f(xk)− 1

2L

(
‖∇f(xk)‖∞ − εk

)2
= f(xk)− 1

2L

(
‖∇f(xk)‖2∞ − 2εk‖∇f(xk)‖∞ + ε2k

)
= f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
‖∇f(xk)‖∞ −

ε2k
2L

(A.7)

143

We first give a result that assumes f is L1-Lipschitz continuous in the `1-norm. This implies

an inequality that we prove next, followed by a convergence rate that depends on L1. However,

note that L ≤ L1 ≤ Ln, so this potentially introduces a dependency on n. We subsequently

give a slightly less concise result that has a worse dependency on ε but does not rely on L1.

A.6.1 Gradient Bound in Terms of L1

We say that ∇f is L1-Lipschitz continuous in the `1-norm if we have for all x and y that

‖∇f(x)−∇f(y)‖∞ ≤ L1‖x− y‖1.

Similar to Nesterov [2004, Theorem 2.1.5], we now show that this implies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2L1
‖∇f(y)−∇f(x)‖2∞, (A.8)

and subsequently that

‖∇f(xk)‖∞ = ‖∇f(xk)−∇f(x∗)‖∞

≤
√

2L1(f(xk)− f(x∗))

≤
√

2L1(f(x0)− f(x∗)), (A.9)

where we have used that f(xk) ≤ f(xk−1) for all k and any choice of ik−1 (this follows from the

basic bound on the progress of coordinate descent methods).

We first show that ∇f being L1-Lipschitz continuous in the 1-norm implies that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L1

2
‖y − x‖21,

144

for all x and y. Consider the function g(τ) = f(x+ τ(y − x)) with τ ∈ IR. Then

f(y)− f(x)−〈∇f(x), y − x〉
= g(1)− g(0)− 〈∇f(x), y − x〉

=

∫ 1

0

dg

dτ
(τ)− 〈∇f(x), y − x〉 dτ

=

∫ 1

0
〈∇f(x+ τ(y − x)), y − x〉 − 〈∇f(x), y − x〉 dτ

=

∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

≤
∫ 1

0
‖∇f(x+ τ(y − x))−∇f(x)‖∞‖y − x‖1 dτ

≤
∫ 1

0
L1τ‖y − x‖21 dτ

=
L1

2
τ2‖y − x‖21

∣∣∣∣1
0

=
L1

2
‖y − x‖21.

To subsequently show (A.8), fix x ∈ IRn and consider the function

φ(y) = f(y)− 〈∇f(x), y〉,

which is convex on IRn and also has an L1-Lipschitz continuous gradient in the 1-norm, as

‖φ′(y)− φ′(x)‖∞ = ‖(∇f(y)−∇f(x))− (∇f(x)−∇f(x))‖∞
= ‖∇f(y)−∇f(x)‖∞
≤ L1‖y − x‖1.

As the minimizer of φ is x (i.e., φ′(x) = 0), for any y ∈ IRn we have

φ(x) = min
v
φ(v) ≤ min

v
φ(y) + 〈φ′(y), v − y〉+

L1

2
‖v − y‖21

= φ(y)− sup
v
〈−φ′(y), v − y〉 − L1

2
‖v − y‖21

= φ(y)− 1

2L1
‖φ′(y)‖2∞.

145

Substituting in the definition of φ, we have

f(x)− 〈∇f(x), x〉 ≤ f(y)− 〈∇f(x), y〉 − 1

2L1
‖∇f(y)−∇f(x)‖2∞

⇐⇒ f(x) ≤ f(y) + 〈∇f(x), x− y〉 − 1

2L1
‖∇f(y)−∇f(x)‖2∞

⇐⇒ f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2L1
‖∇f(y)−∇f(x)‖2∞.

A.6.2 Additive Error Bound in Terms of L1

Using (A.9) in (A.7) and noting that εk ≥ 0, we obtain

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
‖∇f(xk)‖∞ −

ε2k
2L

≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L

√
2L1(f(x0)− f(x∗))− ε2k

2L

≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ + εk

√
2L1

L

√
f(x0)− f(x∗).

Applying strong convexity (taken with respect to the 1-norm), we get

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)[
f(xk)− f(x∗)

]
+ εk

√
2L1

L

√
f(x0)− f(x∗),

which implies

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)k[
f(x0)− f(x∗)

]
+

k∑
i=1

(
1− µ1

L

)k−i
εi

√
2L1

L

√
f(x0)− f(x∗)

=

(
1− µ1

L

)k[
f(x0)− f(x∗) +

√
f(x0)− f(x∗)Ak

]
,

where

Ak =

√
2L1

L

k∑
i=1

(
1− µ1

L

)−i
εi.

A.6.3 Additive Error Bound in Terms of L

By our additive error inequality, we have

|∇ikf(xk)|+ εk ≥ ‖∇f(xk)‖∞.

146

Using this again in (A.7) we get

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
‖∇f(xk)‖∞ −

ε2k
2L

≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L

(
|∇ikf(xk)|+ εk

)
− ε2k

2L

= f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L
|∇ikf(xk)|+ ε2k

2L
.

Further, from our basic progress bound that holds for any ik we have

f(x∗) ≤ f(xk+1) ≤ f(xk)− 1

2L

[
∇ikf(xk)

]2

≤ f(x0)− 1

2L

[
∇ikf(xk)

]2

,

which implies

|∇ikf(xk)| ≤
√

2L(f(x0)− f(x∗)).

and thus that

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞ +

εk
L

√
2L(f(x0)− f(x∗)) +

ε2k
2L

= f(xk)− 1

2L
‖∇f(xk)‖2∞ + εk

√
2

L

√
f(x0)− f(x∗) +

ε2k
2L
.

Applying strong convexity and applying the inequality recursively we obtain

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)k[
f(x0)− f(x∗)

]
+

k∑
i=1

(
1− µ1

L

)k−i(
εi

√
2

L

√
f(x0)− f(x∗) +

ε2i
2L

)

=

(
1− µ1

L

)k[
f(x0)− f(x∗) +Ak

]
,

where

Ak =

k∑
i=1

(
1− µ1

L

)−i(√ 2

L
εi
√
f(x0)− f(x∗) +

ε2i
2L

)
.

Although uglier than the expression depending on L1, this expression will tend to be smaller

unless εk is not small.

147

A.7 Convergence Analysis of GS-s, GS-r, and GS-q Rules

In this section, we consider problems of the form

min
x∈IRn

F (x) = f(x) + g(x) = f(x) +

n∑
i=1

gi(xi),

where f satisfies our usual assumptions, but the gi can be non-smooth. We first introduce some

notation that will be needed to state our result for the GS-q rule, followed by stating the result

and then showing that it holds in two parts. We then turn to showing that the rate cannot

hold in general for the GS-s and GS-r rules.

A.7.1 Notation and Basic Inequality

To analyze this case, an important inequality we will use is that the L-Lipschitz-continuity of

∇if implies that for all x, i, and d that

F (x+ dei) = f(x+ dei) + g(x+ dei)

≤ f(x) + 〈∇f(x), dei〉+
L

2
d2 + g(x+ dei)

= f(x) + g(x) + 〈∇f(x), dei〉+
L

2
d2 + gi(xi + d)− gi(xi)

= F (x) + Vi(x, d),

(A.10)

where

Vi(x, d) ≡ 〈∇f(x), dei〉+
L

2
d2 + gi(xi + d)− gi(xi).

Notice that the GS-q rule is defined by

ik ∈ argmin
i
{min

d
Vi(x, d)}.

We use the notation dki ∈ argmind Vi(x
k, d) and we will use dk to denote the vector containing

these values for all i. When using the GS-q rule, the iteration is defined by

xk+1 = xk + dikeik

= xk + argmin
d
{Vik(x, d)}eik .

(A.11)

In this notation the GS-r rule is given by

jk ∈ argmax
i
|dki |.

148

We will use the notation xk+ to be the step that would be taken at xk if we update coordinate

jk according the GS-r rule

xk+ = xk + djkejk .

From the optimality of dki , we have for any i that

− L[(xki −
1

L
∇if(xk))− (xki + dki)] ∈ ∂gi(xki + dki), (A.12)

and we will use the notation skj for the unique element of ∂gj(x
k
j+dkj) satisfying this relationship.

We use sk to denote the vector containing these values.

A.7.2 Convergence Bound for GS-q Rule

Under this notation, we can show that coordinate descent with the GS-q rule satisfies the bound

F (xk+1)− F (x∗)

≤ min
{(

1− µ

Ln

)
[f(xk)− f(x∗)],

(
1− µ1

L

)
[f(xk)− f(x∗)] + εk

}
, (A.13)

where

εk ≤
µ1

L

(
g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− xk+〉

)
.

We note that if g is linear then εk = 0 and this convergence rate reduces to

F (xk+1)− F (x∗) ≤
(

1− µ1

L

)[
F (xk)− F (x∗)

]
.

Otherwise, εk depends on how far g(xk+) lies above a particular linear underestimate extending

from (xk + dk), as well as the conditioning of f . We show this result by first showing that the

GS-q rule makes at least as much progress as randomized selection (first part of the min), and

then showing that the GS-q rule also makes at least as much progress as the GS-r rule (second

part of the min).

A.7.3 GS-q is at Least as Fast as Random

Our argument in this section follows a similar approach to Richtárik and Takáč [2014]. In

particular, combining (A.10) and (A.11) we have the following upper bound on the iteration

149

progress

F (xk+1)

≤ F (xk) + min
i∈{1,2,...,n}

{
min
d∈IR

Vi(x
k, d)

}
,

= F (xk) + min
i∈{1,2,...,n}

{
min
y∈IRn

Vi(x
k, yi − xki)

}
,

= F (xk) + min
y∈IRn

{
min

i∈{1,2,...,n}
Vi(x

k, yi − xki)
}
,

≤ F (xk) + min
y∈IRn

{
1

n

n∑
i=1

Vi(x
k, yi − xk)

}

= F (xk) +
1

n
min
y∈IRn

{
〈∇f(xk), y − xk〉+

L

2
‖y − xk‖2 + g(y)− g(xk)

}
=

(
1− 1

n

)
F (xk)+

1

n
min
y∈IRn

{
f(xk)+〈∇f(xk), y − xk〉+L

2
‖y−xk‖2+g(y)

}
.

From strong convexity of f , we have that F is also µ-strongly convex and that

f(xk) ≤ f(y)− 〈∇f(xk), y − xk)〉 − µ

2
‖y − xk‖2,

F (αx∗ + (1− α)xk) ≤ αF (x∗) + (1− α)F (xk)− α(1− α)µ

2
‖xk − x∗‖2,

for any y ∈ IRn and any α ∈ [0, 1] [see Nesterov, 2004, Theorem 2.1.9]. Using these gives us

F (xk+1)

≤
(

1− 1

n

)
F (xk) +

1

n
min
y∈IRn

{
f(y)− µ

2
‖y − x‖2 +

L

2
‖y − xk‖2 + g(y)

}
=

(
1− 1

n

)
F (xk) +

1

n
min
y∈IRn

{
F (y) +

L− µ
2
‖y − xk‖2

}
≤
(

1− 1

n

)
F (xk)+

1

n
min
α∈[0,1]

{
F (αx∗ + (1− α)xk) +

α2(L− µ)

2
‖xk − x∗‖2

}
≤
(

1− 1

n

)
F (xk)+

1

n
min
α∈[0,1]

{
αF (x∗) + (1− α)F (xk) +

α2(L− µ)−α(1− α)µ

2
‖xk − x∗‖2

}
≤
(

1− 1

n

)
F (xk) +

1

n

[
α∗F (x∗) + (1− α∗)F (xk)

](
with α∗ =

µ

L
∈ (0, 1]

)
=

(
1− 1

n

)
F (xk) +

α∗

n
F (x∗) +

(1− α∗)
n

F (xk)

= F (xk)− α∗

n
[F (xk)− F (x∗)].

150

Subtracting F (x∗) from both sides of this inequality gives us

F (xk+1)− F (x∗) ≤
(

1− µ

nL

)
[F (xk)− F (x∗)].

A.7.4 GS-q is at Least as Fast as GS-r

In this section we derive the right side of the bound (A.13) for the GS-r rule, but note it also

applies to the GS-q rule because from (A.10) and (A.11) we have

F (xk+1) ≤ F (xk) + min
i
Vi(x, d

k
i) (GS-q rule)

≤ F (xk) + Vjk(x, dkjk) (jk selected by the GS-r rule).

Note that we lose progress by considering a bound based on the GS-r rule, but its connection

to the ∞-norm will make it easier to derive an upper bound.

By the convexity of gjk we have

gjk(xkjk) ≥ gjk(xkjk + dkjk) + skjk(xkjk − (xkjk + dkjk))

= gjk(xkjk + dkjk)− (−Ldkjk −∇jkf(xk))(dkjk)

= gjk(xkjk + dkjk) +∇jkf(xk)dkjk + L(dkjk)2,

where ski is defined by (A.12). Using this we have that

F (xk+1) ≤ F (xk) + Vj(x, d
k
jk

)

= F (xk) +∇jf(xk)(dkjk) +
L

2
(dkjk)2 + gi(x

k
jk

+ dkjk)− gi(xkjk)

≤ F (xk) +∇jf(xk)(dkjk) +
L

2
(dkjk)2 −∇jkf(xk)dkjk − L(dkjk)2

= F (xk)− L

2
(dkjk)2.

Adding and subtracting F (x∗) and noting that jk is selected using the GS-r rule, we obtain the

upper bound

F (xk+1)− F (x∗) ≤ F (xk)− F (x∗)− L

2
||dk||2∞. (A.14)

Recall that we use xk+ to denote the iteration that would result if we chose jk and actually

performed the GS-r update. Using the Lipschitz continuity of the gradient and definition of

151

the GS-q rule again, we have

F (xk+1)

≤ F (xk) +∇f(xk)T (xk+1 − xk) +
L

2
||xk+1 − xk||2 + g(xk+1)− g(xk)

≤ F (xk) +∇f(xk)T (xk+ − xk) +
L

2
||xk+ − xk||2 + g(x+

k)− g(xk)

= f(xk) +∇f(xk)T (xk+ − xk) +
L

2
‖dk‖2∞ + g(xk+)

By the strong convexity of f , for any y ∈ IRN we have

f(xk) ≤ f(y)−∇f(xk)T (y − xk)− µ1

2
‖y − xk‖21,

and using this we obtain

F (xk+1) ≤ f(y) +∇f(xk)T (xk+ − y)− µ1

2
‖y − xk‖21 +

L

2
‖dk‖2∞ + g(xk+). (A.15)

By the convexity of g and sk ∈ ∂g(xk + dk), we have

g(y) ≥ g(xk + dk) + 〈sk, y − (xk + dk)〉.

Combining (A.15) with the above inequality, we have

F (xk+1)− F (y) ≤ 〈∇f(xk), xk+ − y〉 −
µ1

2
‖y − xk‖21 +

L

2
‖dk‖2∞

+ g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− y〉.

We add and subtract 〈sk, xk+〉 on the right-hand side to get

F (xk+1)− F (y) ≤ 〈∇f(xk) + sk, xk+ − y〉 −
µ1

2
‖y − xk‖21 +

L

2
‖dk‖2∞

+ g(xk+)− g(xk + dk) + 〈sk, (xk + dk)− xk+〉.

Let ck = g(xk+) − g(xk + dk) + 〈sk, (xk + dk) − xk+〉, which is non-negative by the convexity g.

Making this substitution, we have

F (y) ≥ F (xk+1) + 〈−Ldk, y − xk+〉+
µ1

2
‖y − xk‖21 −

L

2
‖dk‖2∞ − ck.

Now add and subtract 〈−Ldk, xk〉 to the right-hand side and use (A.12) to get

F (y) ≥ F (xk+1) + 〈−Ldk, y − xk〉+
µ1

2
‖y − xk‖21 −

L

2
‖dk‖2∞ − L〈dk, xk − xk+〉 − ck.

152

Minimizing both sides with respect to y results in

F (x∗) ≥ F (xk+1)− L2

2µ1
‖dk‖2∞ −

L

2
‖dk‖2∞ − L〈dk, xk − xk+〉 − ck

≥ F (xk+1)− L2

2µ1
‖dk‖2∞ −

L

2
‖dk‖2∞ + L‖dk‖2∞ − ck

= F (xk+1)− L(L− µ1)

2µ1
‖dk‖2∞ − ck,

where we have used that xk+ = xk + dkjkejk and |dkjk | = ‖dk‖∞. Combining this with equation

(A.14), we get

F (xk+1)− F (x∗)

≤ F (xk)− F (x∗)− L

2
‖dk‖2∞

≤ F (xk)− F (x∗)− µ1

(L− µ1)

[
F (xk+1)− F (x∗)− ck

]
,

and with some manipulation and simplification, we have(
1 +

µ1

(L− µ1)

)[
F (xk+1)− F (x∗)

]
≤ F (xk)− F (x∗) + εk

µ1

(L− µ1)

F (xk+1)− F (x∗) ≤ (L− µ1)

L

[
F (xk)− F (x∗)

]
+ ck

µ1

L

F (xk+1)− F (x∗) ≤
(

1− µ1

L

)[
F (xk)− F (x∗)

]
+ ck

µ1

L
.

A.7.5 Lack of Progress of the GS-s Rule

We now show that the rate (1 − µ1/L), and even the slower rate (1 − µ/Ln), cannot hold for

the GS-s rule. We do this by constructing a problem where an iteration of the GS-s method

does not make sufficient progress. In particular, consider the bound-constrained problem

min
x∈C

f(x) =
1

2
‖Ax− b‖22,

where C = {x : x ≥ 0}, and

A =

1 0

0 0.7

 , b =

−1

−3

 , x0 =

1

0.1

 , x∗ =

0

0

 .

153

We thus have that

f(x0) =
1

2
((1 + 1)2 + (.07 + 3)2) ≈ 6.7

f(x∗) =
1

2
((−1)2 + (−3)2) = 5

∇f(x0) = AT (Ax0 − b) ≈

2.0

2.1

∇2f(x) = ATA =

1 0

0 0.49

 .

The parameter values for this problem are

n = 2

µ = λmin = 0.49

L = λmax = 1

µ1 =

(
1

λ1
+

1

λ2

)−1

= 1 +
1

0.49
≈ 0.33,

where the λi are the eigenvalues of ATA, and µ and µ1 are the corresponding strong convexity

constants for the 2-norm and 1-norm, respectively.

The proximal operator of the indicator function is the projection onto the set C, which

involves setting negative elements to zero. Thus, our iteration update is given by

xk+1 = proxδC [xk − 1

L
∇ikf(xk)eik] = max(xk − 1

L
∇ikf(xk)eik , 0),

For this problem, the GS-s rule is given by

i ∈ argmax
i
|ηki |,

where

ηki =

∇if(xk), if xki 6= 0 or ∇if(xk) < 0

0, otherwise
.

Based on the value of ∇f(x0), the GS-s rule thus chooses to update coordinate 2, setting it to

zero and obtaining

f(x1) =
1

2
((1 + 1)2 + (−3)2) = 6.5.

154

Thus we have
f(x1)− f(x∗)

f(x0)− f(x∗)
≈ 6.5− 5

6.7− 5
≈ 0.88,

even though the bounds obtain the faster rates of(
1− µ

Ln

)
=

(
1− 0.49

2

)
≈ 0.76,(

1− µ1

L

)
≈ (1− 0.33) = 0.67.

Thus, the GS-s rule does not satisfy either bound. On the other hand, the GS-r and GS-q rules

are given in this context by

ik ∈ argmax
i

∣∣∣∣max

(
xk − 1

L
∇if(xk)ei, 0

)
− xk

∣∣∣∣ ,
and thus both these rules choose to update coordinate 1, setting it to zero to obtain f(x1) ≈ 5.2

and a progress ratio of
f(x1)− f(x∗)

f(x0)− f(x∗)
≈ 5.2− 5

6.7− 5
≈ 0.12,

which clearly satisfies both bounds.

A.7.6 Lack of Progress of the GS-r Rule

We now turn to showing that the GS-r rule does not satisfy these bounds in general. It will

not be possible to show this for a simple bound-constrained problem since the GS-r and GS-q

rules are equivalent for these problems. Thus, we consider the following `1-regularized problem

min
x∈IR2

1

2
‖Ax− b‖22 + λ‖x‖1 ≡ F (x).

We use the same A as the previous section, so that n, µ, L, and µ1 are the same. However, we

now take

b =

2

−1

 , x0 =

0.4

0.5

 , x∗ =

1

0

 , λ = 1,

so we have

f(x0) ≈ 3.1, f(x∗) = 2

The proximal operator of the absolute value function is given by the soft-threshold function,

and our coordinate update of variable ik is given by

xk+1
ik

= proxλ|·|[x
k+ 1

2
ik

] = sgn(x
k+ 1

2
ik

) ·max(x
k+ 1

2
ik
− λ/L, 0),

155

where we have used the notation

x
k+ 1

2
i = xki −

1

L
∇if(xk)ei.

The GS-r rule is defined by

ik ∈ argmax
i
|dki |,

where dki = proxλ|·|[x
k+ 1

2
i]− xki and in this case

d0 =

0.6

−0.5

 .

Thus, the GS-r rule chooses to update coordinate 1. After this update the function value is

F (x1) ≈ 2.9,

so the progress ratio is
F (x1)− F (x∗)

F (x0)− F (x∗)
≈ 2.9− 2

3.1− 2
≈ 0.84.

However, the bounds suggest faster progress ratios of(
1− µ

Ln

)
≈ 0.76,

(
1− µ1

L

)
≈ 0.67,

so the GS-r rule does not satisfy either bound. In contrast, in this setting the GS-q rule chooses

to update coordinate 2 and obtains F (x1) ≈ 2.2, obtaining a progress ratio of

F (x1)− F (x∗)

F (x0)− F (x∗)
≈ 2.2− 2

3.1− 2
≈ 0.16,

which satisfies both bounds by a substantial margin. Indeed, we used a genetic algorithm to

search for a setting of the parameters of this problem (values of x0, λ, b, and the diagonals

of A) that would make the GS-q not satisfy the bound depending on µ1, and it easily found

counter-examples for the GS-s and GS-r rules but was not able to produce a counter example

for the GS-q rule.

156

A.8 Proximal Gradient in the `1-Norm

Our argument in this section follows a similar approach to Richtárik and Takáč [2014]. Assuming

L1-Lipschitz continuity of ∇f , we have

F (x+ d) = f(x+ d) + g(x+ d)

≤ f(x) + 〈∇f(x), d〉+
L1

2
‖d‖21 + g(x+ d)

= F (x) + 〈∇f(x), d〉+
L1

2
‖d‖21 + g(x+ d)− g(x)

= F (x) + V (x, d),

where

V (x, d) ≡ 〈∇f(x), d〉+
L1

2
‖d‖21 + g(x+ d)− g(x).

Generalizing the GS-q rule defined by Song et al. [2017], we have

dk ∈ argmin
d∈IRn

V (x, d),

xk+1 = xk + argmin
d∈IRn

V (x, d).

Plugging this update into the above inequality with a change of variable, we have the following

upper bound on the iteration progress

F (xk+1) ≤ F (xk) +

{
min
d∈IRn

V (xk, d)

}
,

= F (xk) +

{
min
y∈IRn

V (xk, y − xk)
}
,

= F (xk) + min
y∈IRn

{
〈∇f(xk), y − xk〉+

L1

2
‖y − xk‖21 + g(y)− g(xk)

}
= min

y∈IRn

{
f(xk) + 〈∇f(xk), y − xk〉+

L1

2
‖y − xk‖21 + g(y)

}
.

By the strong convexity of f , we have that F is also µ1-strongly convex,

f(xk) ≤ f(y)− 〈∇f(xk), y − xk)〉 − µ1

2
‖y − xk‖21,

F (αx∗ + (1− α)xk) ≤ αF (x∗) + (1− α)F (xk)− α(1− α)µ1

2
‖xk − x∗‖21,

157

for any y ∈ IRn and α ∈ [0, 1] [see Nesterov, 2004, Theorem 2.1.9]. Therefore,

F (xk+1) ≤ min
y∈IRn

{
f(y)− µ1

2
‖y − xk‖21 +

L1

2
‖y − xk‖21 + g(y)

}
= min

y∈IRn

{
F (y) +

(L1 − µ1)

2
‖y − xk‖21

}
≤ min

α∈[0,1]

{
F (αx∗ + (1− α)xk) +

α2(L1 − µ1)

2
‖xk − x∗‖21

}
≤ min

α∈[0,1]

{
αF (x∗) + (1− α)F (xk) +

α2(L1 − µ1)− α(1− α)µ1

2
‖xk − x∗‖21

}
≤
[
α∗F (x∗) + (1− α∗)F (xk)

] (
choosing α∗ =

µ1

L1
∈ (0, 1]

)
= F (xk)− α∗[F (xk)− F (x∗)].

Subtracting F (x∗) from both sides of this inequality gives us

F (xk+1)− F (x∗) ≤
(

1− µ1

L1

)
[F (xk)− F (x∗)].

158

Appendix B

Chapter 3 Supplementary Material

B.1 Efficient Calculations for Sparse A

To compute the MR rule efficiently for sparse A ∈ IRm×n, we need to store and update the

residuals ri = (aTi x
k − bi) for all i. If we initialize with x0 = 0, then the initial values of the

residuals are simply the corresponding bi values. Given the initial residuals, we can construct a

max-heap structure on these residuals in O(m) time. The max-heap structure lets us compute

the MR rule in O(1) time. After an iteration of the Kaczmarz method, we can update the

max-heap efficiently as follows:

For each j where xk+1
j 6= xkj :

• For each i with aij 6= 0:

– Update ri using ri ← ri − aijxkj + aijx
k+1
j .

– Update max-heap using the new value of |ri|.

The cost of each update to an ri is O(1) and the cost of each heap update is O(logm). If

each row of A has at most r non-zeroes and each column has at most c non-zeroes, then the

outer loop is run at most r times while the inner loop is run at most c times for each outer

loop iteration. Thus, in the worst case the total cost is O(cr logm), although it might be much

faster if we have particularly sparse rows or columns. Thus, if c and r are sufficiently small, the

MR rule is not much more expensive than non-uniform random selection which costs O(logm).

For the MD rule, the cost is the same except there is an extra one-time cost to pre-compute

the row norms ‖ai‖.
Now consider the case where A may be dense but each row is orthogonal to all but at most g

other rows. In this setting it would be too slow to implement the above update of the residuals,

since the cost would be O(mn log(m)). In this setting, it makes more sense to use the following

alternative approach to update the max-heap after we have updated row ik:

For each i that is a neighbour of ik in the orthogonality graph:

• Compute the residual ri = aTi x
k − bi.

• Update max-heap using the new value of |ri|.

We can find the set of neighbours for each node in constant time by keeping a list of the

neighbours of each node. This loop would run at most g times and the cost of each iteration

would be O(n) to update the residual and O(logm) to update the heap. Thus, the cost to

159

track the residuals using this alternative approach would be O(gn + g log(m)) or the faster

O(gr + g log(m)) if each row has at most r non-zeros.

B.2 Randomized and Maximum Residual

In this section, we provide details of the convergence rate derivations for the non-uniform and

maximum residual (MR) selection rules. All the convergence rates we discuss use the following

relationship,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2

= ‖xk − x∗‖2 −
∥∥∥∥(bi − aTi xk)
‖ai‖2

· ai
∥∥∥∥2

= ‖xk − x∗‖2 −
(
aTi x

k − bi
)2

‖ai‖2
, (B.1)

which is equation (3.6).

Non-Uniform

We first review how the steps discussed by Vishnoi [2013] that can be used to derive the

convergence rate bound of Strohmer and Vershynin [2009] for non-uniform random selection

when row i is chosen according to the probability distribution determined by ‖ai‖/‖A‖F . Taking

the expectation of (B.1) with respect to i, we have

E[‖xk+1 − x∗‖2] = ‖xk − x∗‖2 − E
[

(aTi x
k − bi)2

‖ai‖2
]

= ‖xk − x∗‖2 −
m∑
i=1

‖ai‖2
‖A‖2F

(a>i (xk − x∗))2

‖ai‖2

= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2
‖A‖2F

≤
(

1− σ(A, 2)2

‖A‖2F

)
‖xk − x∗‖2, (B.2)

where σ(A, 2) is the Hoffman [1952] constant, which can be defined as the largest value such

that for any x that is not a solution to the linear system we have

σ(A, 2)‖x− x∗‖ ≤ ‖A(x− x∗)‖, (B.3)

where x∗ is the projection of x onto the set of solutions S. In other words, we can write it as

σ(A, 2) := inf
x 6∈S

‖A(x− x∗)‖
‖x− x∗‖ .

160

Strohmer and Vershynin [2009] consider the special case where A has independent columns,

and this result yields their rate in this special case since under this assumption σ(A, 2) is given

by the nth singular value of A. For general matrices, σ(A, 2) is given by the smallest non-zero

singular value of A.

Maximum Residual

We use a similar analysis to prove a convergence rate bound for the MR rule,

ik ∈ argmax
i

|aTi xk − bi|. (B.4)

Assuming that i is selected according to (B.4), then starting from (B.1) we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − maxi(a
T
i x

k − bi)2

‖ai‖2

≤ ‖xk − x∗‖2 − 1

‖A‖2∞,2
max
i

(aTi (xk − x∗))2

= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2∞
‖A‖2∞,2

≤
(

1− σ(A,∞)2

‖A‖2∞,2

)
‖xk − x∗‖2, (B.5)

where ‖A‖2∞,2 := maxi{‖ai‖2} and σ(A,∞) is the largest value such that

σ(A,∞)‖x− x∗‖ ≤ ‖A(x− x∗)‖∞, (B.6)

or equivalently

σ(A,∞) := inf
x 6∈S

‖A(x− x∗)‖∞
‖x− x∗‖ .

The existence of such a Hoffman-like constant follows from the existence of the Hoffman constant

and the equivalence between norms. Applying the norm equivalence ‖·‖∞ ≥ 1√
m
‖·‖ to equation

(B.3) we have

σ(A, 2)‖x− x∗‖ ≤ ‖A(x− x∗)‖ ≤ √m‖A(x− x∗)‖∞,

which implies that σ(A, 2)/
√
m ≤ σ(A,∞). Similarly, applying ‖ · ‖∞ ≤ ‖ · ‖ to (B.6) we have

σ(A,∞)‖x− x∗‖ ≤ ‖A(x− x∗)‖∞ ≤ ‖A(x− x∗)‖,

which implies that σ(A,∞) cannot be larger than σ(A, 2). Thus, σ(A,∞) satisfies the relation-

ship
σ(A, 2)√

m
≤ σ(A,∞) ≤ σ(A, 2). (B.7)

161

B.3 Tighter Uniform and MR Analysis

To avoid using the inequality ‖ai‖ ≤ ‖A‖∞,2 for all i, we want to ‘absorb’ the individual row

norms into the bound. We start with uniform selection.

Uniform

Consider the diagonal matrix D = diag(‖a1‖2, ‖a2‖2, . . . , ‖am‖2). By taking the expectation of

(B.1), we have

E[‖xk+1 − x∗‖2] = ‖xk − x∗‖2 − E

[(
aTi x

k − bi
)2

‖ai‖2

]

= ‖xk − x∗‖2 −
m∑
i=1

1

m

(aTi x
k − bi)2

‖ai‖2

= ‖xk − x∗‖2 − 1

m

m∑
i=1

([
ai
‖ai‖

]T
(xk − x∗)

)2

= ‖xk − x∗‖2 − ‖D
−1A(xk − x∗)‖2

m

≤
(

1− σ(Ā, 2)2

m

)
‖xk − x∗‖2, (B.8)

where recall that Ā = D−1A, and we used that Ax = b and D−1Ax = D−1b have the same

solution set.

Maximum Residual

For the tighter analysis of the MR rule we do not want to alter the selection rule. Thus, we

first evaluate the MR rule and then divide by the corresponding ‖aik‖2 for the selected ik at

iteration k. Starting from (B.1), this gives us

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 1

‖aik‖2
max
i

(aTi (xk − x∗))2

= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2∞
‖aik‖2

≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2. (B.9)

Applying this recursively over all k iterations yields the rate

‖xk − x∗‖2 ≤
k∏
j=1

(
1− σ(A,∞)2

‖aij‖2
)
‖x0 − x∗‖2. (B.10)

162

B.4 Maximum Distance Rule

If we can only perform one iteration of the Kaczmarz method, the optimal rule with respect to

iterate progress is the maximum distance (MD) rule,

ik ∈ argmax
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ . (B.11)

Starting again from (B.1) and using D as defined in the tight analysis for the U rule, we

have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −max
i

(
aTi x

k − bi
‖ai‖

)2

= ‖xk − x∗‖2 −max
i

([
ai
‖ai‖

]T
(xk − x∗)

)2

= ‖xk − x∗‖2 − ‖D−1A(xk − x∗)‖2∞
≤
(
1− σ(Ā,∞)2

)
‖xk − x∗‖2. (B.12)

We now show that

max

{
σ(Ā, 2)√

m
,
σ(A, 2)

‖A‖F
,
σ(A,∞)

‖A‖∞,2

}
≤ σ(Ā,∞) ≤ σ(Ā, 2). (B.13)

To derive the upper bound on σ(Ā,∞), and to derive the lower bound in terms of σ(Ā, 2), we

can use norm equivalence arguments as we did for σ(A,∞). This yields

σ(Ā, 2)√
m
≤ σ(Ā,∞) ≤ σ(Ā, 2).

The last argument in the maximum in (B.13), corresponding to the MR∞ rate, holds because

‖A‖∞,2 ≥ ‖ai‖ for all i so we have

σ(A,∞)

‖A‖∞,2
‖x− x∗‖ ≤ ‖A(x− x∗)‖∞

‖A‖∞,2

= max
i

{ |aTi (x− x∗)|
‖A‖∞,2

}
≤ max

i

{ |aTi (x− x∗)|
‖ai‖

}
= ‖Ā(x− x∗)‖∞.

163

For the second argument in the maximum in (B.13), the NU rate, we have

σ(A, 2)2

‖A‖2F
‖x− x∗‖2 ≤ ‖A(x− x∗)‖2

‖A‖2F
=

∑
i(a

T
i (x− x∗))2∑
i ‖ai‖2

≤ max
i

{
(aTi (x− x∗))2

‖ai‖2
}

= ‖Ā(x− x∗)‖∞.

The second inequality is true by noting that it is equivalent to the inequality

1 ≤ max
i

{
(aTi (x− x∗)2/

∑
j(a

T
j (x− x∗))2

‖ai‖2/
∑

j ‖aj‖2

}
,

and this true because the maximum ratio between two probability mass functions must be at

least 1,

1 ≤ max
i

pi/
∑

j pj

qi/
∑

j qj
, with all pi ≥ 0, qi ≥ 0.

Finally, we note that the MD rule obtains the tightest bound in terms of performing one

step. This follows from (B.1),

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 = ‖xk − x∗‖2 −
(
aTi x

k − bi
)2

‖ai‖2
,

and noting that the MD rule maximizes ‖xk+1 − xk‖ and thus it maximizes how much smaller

‖xk+1 − x∗‖ is than ‖xk − x∗‖.

B.5 Kaczmarz and Coordinate Descent

Consider the Kaczmarz update:

xk+1 = xk − (aTi x
k − bi)
‖ai‖2

ai.

This update is equivalent to one step of coordinate descent (CD) with step length 1/‖ai‖2
applied to the dual problem,

min
y

1

2
‖AT y‖2 − bT y, (B.14)

see Wright [2015]. Using the primal-dual relationship AT y = x, we can show the relationship

between the greedy Kaczmarz selection rules and applying greedy coordinate descent rules to

164

this dual problem. Consider the gradient of the dual problem,

∇f(y) = AAT y − b.

The Gauss-Southwell (GS) rule for CD on the dual problem is equivalent to the MR rule for

Kaczmarz on the primal problem since

ik ∈ argmax
i
|∇if(yk)|︸ ︷︷ ︸

Gauss-Southwell rule

≡ argmax
i
|aTi (AT yk)− bi| ≡ argmax

i
|aTi xk − bi|︸ ︷︷ ︸

Maximum residual rule

where aTi is the ith row of A. Similarly, the Gauss-Southwell-Lipschitz (GSL) rule applied to

the dual is equivalent to applying a Kaczmarz iteration with the MD rule,

ik ∈ argmax
i

|∇if(yk)|√
Li︸ ︷︷ ︸

Gauss-Southwell-Lipschitz rule

≡ argmax
i

|aTi (AT yk)− bi|
‖ai‖

≡ argmax
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣︸ ︷︷ ︸
Maximum distance rule

,

as the Lipschitz constants for the dual problem are Li = ‖ai‖2.

Figure B.1 shows the results of running Kaczmarz compared to using CD (on the least-

squares primal problem) for our 3 datasets from Section 3.9. In this figure we measure the

performance in terms of the number of “effective passes” through the data (one “effective” pass

would be the number of iterations needed for the cyclic variant of the algorithm to visit the

entire dataset). In the first experiment Kaczmarz and CD methods perform similarly, while

Kaczmarz methods work better in the second experiment and CD methods work better in the

third experiment.

B.6 Example: Diagonal A

Consider a square diagonal matrix A with aii > 0 for all i. In this case, the diagonal entries

are the eigenvalues λi of the A and σ(A, 2) = λmin. We give the convergence rate constants for

such a diagonal A in Table B.1, and in this section we show how to arrive at these rates. We

use U∞ for the slower uniform rate to differentiate from U (tight uniform) for rate (B.8), and

we use MR∞ for rate (B.5) to differentiate it from MR (tight) rate (B.9).

For U∞, the rate follows straight from ‖A‖∞,2 = maxi ‖ai‖ = maxi λi = λmax. For U, we

note that the weighted matrix Ā := D−1A is simply the identity matrix. The NU rate uses

that ‖A‖2F =
∑

i λ
2
i . For both MR∞ and MR, we have

σ(A,∞)2 := inf
y 6=z

‖A(y − z)‖2∞
‖y − z‖2 = inf

‖w‖=1
‖Aw‖2∞.

165

0 1 2 3 4 5

Passes

−6

−5

−4

−3

−2

−1

0

Lo
g

S
qu

ar
ed

E
rr

or CD
U CD

NU

CD GSL

CD
GS

U

NU

MR

MD

Ising model

0 1 2 3 4 5

Passes

−50

−40

−30

−20

−10

0

Lo
g

S
qu

ar
ed

E
rr

or

CD U CD
NU

CD GSL
CD GS

U

NU

MR

MD

Very Sparse Overdetermined Linear-System

0 1 2 3 4 5

Passes

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g

S
qu

ar
ed

E
rr

or

CD
U CD NU

CD GSL

CD
GS

U

NU

MR

MD

Label Propagation

Figure B.1: Comparison of Kaczmarz and Coordinate Descent.

Consider the equivalent problem

min
w∈IRm, y∈R

y

s.t. − y ≤ λ2
iw

2
i ≤ y for all i,

‖w‖ = 1,

From the first inequality, we get

− y

λ2
i

≤ w2
i ≤

y

λ2
i

∀i ⇒ (wi)
2 ≤ y

λ2
i

∀i.

It follows that

‖w‖2 =

m∑
i=1

w2
i ≤

m∑
i=1

y

λ2
i

,

166

Table B.1: Convergence Rate Constants for Diagonal A

Rule Rate Diagonal A

U∞

(
1− σ(A, 2)2

m‖A‖2∞,2

) (
1− λ2

min

mλ2
max

)
U

(
1− σ(Ā, 2)2

m

) (
1− 1

m

)
NU

(
1− σ(A, 2)2

‖A‖2F

) (
1− λ2

min∑
i λ

2
i

)
MR∞

(
1− σ(A,∞)2

‖A‖2∞,2

) 1− 1

λ2
1

[∑
i

1

λ2
i

]−1

MR

(
1− σ(A,∞)2

‖aik‖2
) 1− 1

λ2
ik

[∑
i

1

λ2
i

]−1

MD
(
1− σ(Ā,∞)2

) (
1− 1

m

)

which is equivalent to

y ≥ ‖w‖2∑m
i=1

1
λ2i

.

Because we are minimizing y this must hold with equality at a solution, and because of the

constraints ‖w‖ = 1 we have

σ(A,∞)2 =

(∑
i

1

λ2
i

)−1

.

For the MR∞ rate, we divide σ(A,∞)2 by the maximum eigenvalue squared. For the MR rate,

we divide by the specific λ2
ik

corresponding to the row ik selected at iteration k.

For the MD rule, following the argument we did to derive σ(A,∞)2 and using that Ā = I

gives us

σ(Ā,∞)2 =
1

m
.

B.7 Multiplicative Error

Suppose we have approximated the MR selection rule such that there is a multiplicative error

in our selection of ik,

|aTikx
k − bik | ≥ max

i
|aTi xk − bi|(1− εk),

167

for some εk ∈ [0, 1). In this scenario, we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 1

‖aik‖2
(∣∣∣aTikxk − bik ∣∣∣2)

≤ ‖xk − x∗‖2 − 1

‖aik‖2
(

max
i

∣∣∣aTi xk − bi∣∣∣ (1− εk))2

= ‖xk − x∗‖2 − (1− εk)2

‖aik‖2
‖A(xk − x∗)‖2∞

≤
(

1− (1− εk)2σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2.

We define a multiplicative approximation to the MD rule as an ik satisfying∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣ ≥ max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ (1− ε̄k),
for some ε̄k ∈ [0, 1). With such a rule we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −

∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≤ ‖xk − x∗‖2 −
(

max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ (1− ε̄k))2

= ‖xk − x∗‖2 − (1− ε̄k)2 max
i

∣∣∣∣aTi (xk − x∗)
‖ai‖

∣∣∣∣2
= ‖xk − x∗‖2 − (1− ε̄k)2‖D−1A(xk − x∗)‖2∞

≤
(

1− (1− ε̄k)2σ(Ā,∞)2

)
‖xk − x∗‖2.

B.8 Additive Error

Suppose we select ik using an approximate MR rule where

|aTikx
k − bik |2 ≥ max

i
|aTi xk − bi|2 − εk,

168

for some εk ≥ 0. Then we have the following convergence rate,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 1

‖aik‖2
∣∣∣aTikxk − bik ∣∣∣2

≤ ‖xk − x∗‖2 − 1

‖aik‖2
(

max
i

∣∣∣aTi xk − bi∣∣∣2 − εk)
= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2∞

‖aik‖2
+

εk
‖aik‖2

≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2 +

εk
‖aik‖2

.

For the MD rule with additive error, ik is selected such that∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≥ max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣2 − ε̄k,
for some ε̄k ≥ 0. Then we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −
∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≤ ‖xk − x∗‖2 −
(

max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣2 − ε̄k
)

= ‖xk − x∗‖2 − ‖D−1A(xk − x∗)‖2∞ + ε̄k

≤
(
1− σ(Ā,∞)2

)
‖xk − x∗‖2 + ε̄k.

B.9 Comparison of Rates for the Maximum Distance Rule

and the Randomized Kaczmarz via

Johnson-Lindenstrauss Method

In Eldar and Needell [2011], the authors assume that the rows of A are normalized and that we

are dealing with a homogeneous system (Ax = 0), which is not particularly interesting since we

can solve it in O(1) by setting x = 0. Their main convergence result is stated in Theorem 1.

Note that RKJL stands for Randomized Kaczmarz via Johnson-Lindenstrauss, which is a hybrid

technique using both random selection and an approximate MD rule using the dimensionality

reduction technique of Johnson and Lindenstrauss [1984]. In their work they give the result

below.

Theorem 1 Fix an estimation xk and denote by xk+1 and xk+1
RK the next estimations using

the RKJL and the standard RK method, respectively. Define γj = |〈aj , xk〉|2 and ordering these

so that γ1 ≥ γ2 ≥ · · · ≥ γm. Then, with δ being a constant affecting the error due to the JL

169

approximation we have

E‖xk+1 − x∗‖2 ≤ min

E‖xk+1
RK − x‖2 −

m∑
j=1

(
pj −

1

m

)
γj + 2δ, E‖xk+1

RK − x∗‖2
 ,

where

pj =

(m−j
n−1)
(mn)

, j ≤ m− n+ 1

0, j > m− n+ 1

are non-negative values satisfying
∑m

j=1 pj = 1 and p1 ≥ p2 ≥ · · · ≥ pm = 0.

First, we simplify this bound. Applying the nonuniform random rate of Strohmer and

Vershynin [2009] to the result of Theorem 1, we get

E
[
‖xk+1 − x‖2

]
≤ min

E [‖xk+1
RK − x∗‖2

]
−

m∑
j=1

(
pj −

1

m

)
γj + 2δ, E

[
‖xk+1

RK − x∗‖2
]

= min

[
‖xk − x∗‖2 − 1

‖A‖2F

m∑
j=1

γj −
m∑
j=1

pjγj +

m∑
j=1

1

m
γj + 2δ, ‖xk − x∗‖2 − 1

‖A‖2F

m∑
j=1

γj

]

= min

‖xk − x∗‖2 − m∑
j=1

pjγj + 2δ, ‖xk − x∗‖2 − 1

m

m∑
j=1

γj

 , (B.15)

where in the last line we use ‖A‖2F = m for a matrix A with normalized rows (in this case of

normalized rows non-uniform selection is simply uniform random selection). To compare this

to our rate in the setting of an additive error, suppose we define εk such that the ik selected

satisfies

γik ≥ max
i
γi − ε̄k.

Then, noting that ‖ai‖ = 1 for all i, our convergence rate with additive error is based on the

bound

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − γik
≤ ‖xk − x∗‖2 −max

i
γi + ε̄k. (B.16)

Comparing the bounds (B.15) and (B.16), we see that our MD bound is always faster in the

case of exact optimization (ε̄k = δ = 0), as the average and the weighted sum of the absolute

170

inner products squared is less than the maximum inner product squared,

max

 1

m

m∑
j=1

γj ,
m∑
j=1

pjγj

 ≤ max
i
γi.

If there is error present, then our rate is faster when

max
i
γi − εk ≥ max

 1

m

m∑
j=1

γj ,
m∑
j=1

pjγj − 2δ

 .

We note that even if our approximation is worse than the error resulting from the RKJL method,

εk ≥ 2δ, it is possible that maxi γi is significantly larger than 1
m

∑m
j=1 γj and

∑m
j=1 pjγj and in

this case our rate would be tighter. Further, our rate is more general as it does not specifically

assume the Johnson-Lindenstrauss dimensionality reduction technique, that the rows of A are

normalized, or that the linear system is homogeneous.

B.10 Systems of Linear Inequalities

Consider the system of linear equalities and inequalities,aTi x ≤ bi (i ∈ I≤)

aTi x = bi (i ∈ I=).
(B.17)

where the disjoint index sets I≤ and I= partition the set {1, 2, . . . ,m}. As presented by Lev-

enthal and Lewis [2010], a generalization of the Kaczmarz algorithm that accommodates linear

inequalities is given by

βkik =

(aTikx
k − bik)+ (ik ∈ I≤)

aTikx
k − bik (ik ∈ I=),

xk+1 = xk −
βkik
‖aik‖2

aik ,

where for x ∈ IRn we define x+ element-wise by

(x+)i = max{xi, 0}.

This leads to the following generalization of the MR and MD rules, respectively,

ik = max
∣∣∣βki ∣∣∣ = ‖βk‖∞, and ik = max

∣∣∣∣ βki‖ai‖
∣∣∣∣ = ‖D−1βk‖∞. (B.18)

Unlike for equalities where the Kaczmarz method converges to the projection of the initial

171

iterate x0 onto the intersection of the constraints, for inequalities we can only guarantee that

the Kaczmarz method converges to a point in the feasible set. Thus, in convergence rates

involving inequalities it is standard to use a bound for the distance from the current iterate xk

to the feasible region,

d(x, S) = min
z∈S
‖x− z‖2 = ‖x− PS(x)‖2,

where PS(x) is the projection of x onto the feasible set S.

Following closely the arguments of Leventhal and Lewis [2010] for systems of inequalities,

we next give the following result which they credit to Hoffman [1952].

Theorem 11. Let (B.17) be a consistent system of linear equalities and inequalities, then there

exists a constant σ(A,∞) such that

x ∈ IRn and S 6= ∅ ⇒ d(x, S) ≤ 1

σ(A,∞)
‖e(Ax− b)‖∞,

where S is the set of feasible solutions and where the function e : IRm 7→ IRm is defined by

e(y)i =

y+
i (i ∈ I≤)

yi (i ∈ I=).

From Leventhal and Lewis [2010], combining both cases (ik ∈ I≤ or ik ∈ I=), the following

relationship holds with respect to the distance measure d(x, S),

d(xk+1, S)2 ≤ d(xk, S)−
e(Axk − b)2

ik

‖aik‖2
. (B.19)

Following from this bound and Theorem 11, it is straightforward to derive analogous results for

all greedy selection rates derived in this chapter. For example, if we select ik according to the

generalized MR rule (B.18) then the analogous tight rate for the MR rule is given by

d(xk+1, S)2 ≤ d(xk, S)2 −
e(Axk − b)2

ik

‖aik‖2

= d(xk, S)2 − ‖β
k‖2∞

‖aik‖2

≤
(

1− σ(A,∞)2

‖aik‖2
)
d(xk, S)2.

B.11 Faster Randomized Kaczmarz Using the Orthogonality

Graph of A

In order for the adaptive methods to be efficient, we must be able to efficiently update the set

of selectable nodes at each iteration. To do this we use a tree structure that keeps track of

172

the number of selectable children in the tree (for uniform random selection) or the cumulative

sums of the selectable row norms of A (for non-uniform random selection). A similar structure

is used in the non-uniform sampling code of Schmidt et al. [2017].

Recall that the standard inverse-transform approach approach to sampling from a non-

uniform discrete probability distribution over m variables:

1. Compute the cumulative probabilities, ci =
∑i

j=1 pj for each i from 1 to m.

2. Generate a random number u uniformly distributed over [0, 1].

3. Return the smallest i such that ci ≥ u.

We can compute all m values of ci in Step 1 at a cost of O(m) by maintaining the running sum.

We assume that Step 2 costs O(1) and we can implement Step 3 in O(log(m)) using a binary

search. If we are sampling from a fixed distribution, then we only need to perform Step 1 once

and from that point we can generate samples from the distribution at a cost of O(log(m)).

In the adaptive randomized selection rules, the probabilities pj change at each iteration

and hence the ci values also change. This means we we cannot skip Step 1 as we can for

fixed probabilities. However, if the orthogonality graph is sparse then it is still possible to

efficiently implement these strategies. To do this, we consider a binary tree-structure that has

the probabilities pj as leaf nodes while each internal node is the sum of its two descendants

(and thus the root node has a value of 1). Given this structure, we can find the smallest ci ≥ u
in O(log(m)) by traversing the tree. Further, if we update one of the pj values then we can

update this data structure in O(log(m)) time since this only requires changing one node at each

depth of the tree. If each node has at most g neighbours in the orthogonality graph, then we

need to update g probabilities in the binary tree, leading to a cost of O(g log(m)) to update

the tree structure on each iteration.

Note that the above structure can be modified to work with unnormalized probabilities at

the leaf nodes, since the root node will contain the normalizing constant required to make these

unnormalized probabilities into a valid probability mass function. Using this, we can implement

the adaptive uniform method by setting the leaf nodes to 1 for selectable nodes and 0 for non-

selectable nodes. To implement the adaptive non-uniform method, we set the leaf nodes to 0

for non-selectable nodes and ‖ai‖2 for selectable nodes.

B.12 Additional Experiments

Formulating the Semi-Supervised Label Propagation Problem as a Linear

System

Our third experiment solves a label propagation problem for semi-supervised learning in the

‘two moons’ dataset [Zhou et al., 2003]. We use a variant of the quadratic labelling criterion of

173

Bengio et al. [2006],

min
yi∈S′

f(y) ≡ 1

2

n∑
i=1

n∑
j=1

wij(yi − yj)2,

where y is our label vector (each yi can take one of 2 values), S is the set of labels that we

do know, S′ is the set of labels that we do not know and wij ≥ 0 are the weights assigned to

each yi describing how strongly we want the labels yi and yj to be similar. We assume without

loss of generality that wii = 0 (since it does not affect the objective) and that wij = wji for all

i, j because by the symmetry in the objective the model only depends on these terms through

(wij + wji). We can express this quadratic problem as a linear system that is consistent by

construction. In other words, we can define A and b such that

∇f(y) = 0 ⇐⇒ Ay = b, with y ∈ S′.

Differentiating f with respect to some yk ∈ S′, we have

∇kf(y) =
∑
j 6=k

wkj(yk − yj)︸ ︷︷ ︸
i=k, j 6=k

−
∑
i 6=k

wik(yi − yk)︸ ︷︷ ︸
i 6=k, j=k

+
∑
i=k

wkk(yk − yk)︸ ︷︷ ︸
i=k, j=k

=

n∑
i=1

wki(yk − yi)−
n∑
i=1

wik(yi − yk)

= 2

n∑
i=1

wkiyk − 2

n∑
i=1

wkiyi.

Setting this equal to zero and splitting the summation over S and S′ separately, we have

n∑
i=1

wkiyk −
∑
i∈S′

wkiyi =
∑
i∈S

wkiyi.

Assuming the elements of S′ form the first |S′| elements of the matrix A, the above formulation

yields the |S′| × |S′| matrix with entries

Ak,i =

∑n

j=1wkj if i = k,

−wki if i 6= k,

where k and i ∈ S′ and

bk =
∑
i∈S

wkiyi.

Hybrid Methods

For the very sparse overdetermined dataset, we see very different performances between the MR

and MD rules with respect to squared error and distance. We see that the MR rule outperforms

174

0 100 200 300 400 500

Iteration

−10

−8

−6

−4

−2

0

Lo
g

S
qu

ar
ed

E
rr

or

MR

MD

hybrid-switch

U

NU

Very Sparse Overdetermined Linear-System

0 100 200 300 400 500

Iteration

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g

D
is

ta
nc

e

MR

MD

hybrid-switch

U

NU

Very Sparse Overdetermined Linear-System

Figure B.2: Comparison of MR, MD and Hybrid Method for Very Sparse Dataset.

the MD rule in the beginning with respect to squared-error and the MD rule outperforms the

MR rule significantly with respect to distance. These observations align with the respective

definitions of each greedy rule. However, if we want a method that converges well with respect

to both of these objectives, then we could consider ‘hybrid’ greedy rule. For example, we could

simply alternate between using the MR rule and the MD rule. As we see in Figure B.2, this

approach simultaneously exploits the convergence of the MR rule in terms of squared error

and the MD rule in terms of distance to the solution. However, computationally this approach

requires the maintenance of two max-heap structures.

175

Appendix C

Chapter 4 Supplementary Material

C.1 Relationships Between Conditions

Below we prove a subset of the implications in Theorem 2. The remaining relationships in

Theorem 2 follow from these results and transitivity.

• SC → ESC: The SC assumption implies that the ESC inequality is satisfied for all x

and y, so it is also satisfied under the constraint xp = yp.

• ESC→WSC: Take y = xp in the ESC inequality (which clearly has the same projection

as x) to get WSC with the same µ as a special case.

• WSC→ RSI: Re-arrange the WSC inequality to

〈∇f(x), x− xp〉 ≥ f(x)− f∗ +
µ

2
‖xp − x‖2.

Since f(x)− f∗ ≥ 0, we have RSI with µ
2 .

• RSI→ EB: Using Cauchy-Schwartz on the RSI we have

‖∇f(x)‖‖x− xp‖ ≥ 〈∇f(x), x− xp〉 ≥ µ‖xp − x‖2,

and dividing both sides by ‖x− xp‖ (assuming x 6= xp) gives EB with the same µ (while

EB clearly holds if x = xp).

• EB→ PL: By Lipschitz continuity we have

f(x) ≤ f(xp) + 〈∇f(xp), x− xp〉+
L

2
‖xp − x‖2,

and using EB along with f(xp) = f∗ and ∇f(xp) = 0 we have

f(x)− f∗ ≤ L

2
‖xp − x‖2 ≤

L

2µ2
‖∇f(x)‖2,

which is the PL inequality with constant µ2

L .

• PL→ EB: Below we show that PL implies QG. Using this result, while denoting the PL

176

constant with µp and the QG constant with µq, we get

1

2
‖∇f(x)‖2 ≥ µp(f(x)− f∗) ≥ µpµq

2
‖x− xp‖2,

which implies that EB holds with constant
√
µpµq.

• QG + Convex→ RSI: By convexity we have

f(xp) ≥ f(x) + 〈∇f(x), xp − x〉.

Re-arranging and using QG we get

〈∇f(x), x− xp〉 ≥ f(x)− f∗ ≥ µ

2
‖xp − x‖2,

which is RSI with constant µ
2 .

• PL→ QG: Define the function

g(x) =
√
f(x)− f∗.

If we assume that f satisfies the PL inequality then for any x 6∈ X ∗ we have

‖∇g(x)‖2 =
‖∇f(x)‖2
f(x)− f∗ ≥ 2µ,

or that

‖∇g(x)‖ ≥
√

2µ. (C.1)

By the definition of g, to show QG it is sufficient to show that

g(x) ≥
√

2µ‖x− xp‖. (C.2)

As f is assumed to satisfy the PL inequality we have that f is an invex function and

thus by definition g is a positive invex function (g(x) ≥ 0) with a closed optimal solution

set X ∗ such that for all y ∈ X ∗, g(y) = 0. For any point x0 6∈ X ∗, consider solving the

following differential equation:

dx(t)

dt
= −∇g(x(t))

x(t = 0) = x0, (C.3)

for x(t) 6∈ X ∗. (This is a flow orbit starting at x0 and flowing along the gradient of g.) By

(C.1), ∇g is bounded from below, and as g is a positive invex function g is also bounded

from below. Thus, by moving along the path defined by (C.3) we are sufficiently reducing

the function and will eventually reach the optimal set. Thus there exists a T such that

177

x(T) ∈ X ∗ (and at this point the differential equation ceases to be defined). We can show

this by starting from the gradient theorem for line integrals,

g(x0)− g(xt) =

∫ x0

xt

〈∇g(x), dx〉

= −
∫ xt

x0

〈∇g(x), dx〉 (flipping integral bounds)

= −
∫ T

0
〈∇g(x(t)),

dx(t)

dt
〉 dt (reparameterization)

(∗) =

∫ T

0
‖∇g(x(t))‖2 dt (from (C.3))

≥
∫ T

0
2µdt (from (C.1))

= 2µT.

As g(xt) ≥ 0, this shows we need to have T ≤ g(x0)/2µ, so there must be a T with

x(T) ∈ X ∗.
The length of the orbit x(t) starting at x0, which we denote by L(x0), is given by

L(x0) =

∫ T

0
‖dx(t)/dt‖dt =

∫ T

0
‖∇g(x(t))‖ dt ≥ ‖x0 − xp‖, (C.4)

where xp is the projection of x0 onto X ∗ and the inequality follows because the orbit is

a path from x0 to a point in X ∗ (and thus it must be at least as long as the projection

distance).

Starting from the line marked (∗) above we have

g(x0)− g(xT) =

∫ T

0
‖∇g(x(t))‖2 dt

≥
√

2µ

∫ T

0
‖∇g(x(t))‖ dt (by (C.1))

≥
√

2µ‖x0 − xp‖. (by (C.4))

As g(xT) = 0, this yields our result (C.2), or equivalently

f(x)− f∗ ≥ 2µ‖x− xp‖2,

which is QG with a different constant.

178

C.2 Relevant Problems

Strongly convex:

By minimizing both sides of the strong convexity inequality with respect to y we get

f(x∗) ≥ f(x)− 1

2µ
||∇f(x)||2,

which implies the PL inequality holds with the same value µ. Thus, Theorem 1 exactly matches

the known rate for gradient descent with a step-size of 1/L for a µ-strongly convex function.

Strongly convex composed with linear:

To show that this class of functions satisfies the PL inequality, we first define f(x) := g(Ax)

for a σ-strongly convex function g. For arbitrary x and y, we define u := Ax and v := Ay. By

the strong convexity of g, we have

g(v) ≥ g(u) +∇g(u)T (v − u) +
σ

2
‖v − u‖2.

By our definitions of u and v, we get

g(Ay) ≥ g(Ax) +∇g(Ax)T (Ay −Ax) +
σ

2
‖Ay −Ax‖2,

where we can write the middle term as (AT∇g(Ax))T (y − x). By the definition of f and its

gradient being ∇f(x) = AT∇g(Ax) by the multivariate chain rule, we obtain

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σ

2
||A(y − x)||2.

Using xp to denote the projection of x onto the optimal solution set X ∗, we have

f(xp) ≥ f(x) + 〈∇f(x), xp − x〉+
σ

2
||A(xp − x)||2

≥ f(x) + 〈∇f(x), xp − x〉+
σθ(A)

2
||xp − x||2

≥ f(x) + min
y

[
〈∇f(x), y − x〉+

σθ(A)

2
||y − x||2

]
= f(x)− 1

2θ(A)σ
||∇f(x)||2.

In the second line we use that X ∗ is polyhedral, and use the theorem of Hoffman [1952] to

obtain a bound in terms of θ(A) (the smallest non-zero singular value of A). This derivation

implies that the PL inequality is satisfied with µ = σθ(A).

179

C.3 Sign-Based Gradient Methods

Defining a diagonal matrix Λ with 1/
√
Li along the diagonal, the update can be written as

xk+1 = xk − ‖∇f(xk)‖L−1[1]Λ ◦ sign∇f(xk).

Consider the function g(τ) = f(x+ τ(y − x)) with τ ∈ IR. Then

f(y)− f(x)− 〈∇f(x), y − x〉
= g(1)− g(0)− 〈∇f(x), y − x〉

=

∫ 1

0

dg

dτ
(τ)− 〈∇f(x), y − x〉 dτ

=

∫ 1

0
〈∇f(x+ τ(y − x)), y − x〉 − 〈∇f(x), y − x〉 dτ

=

∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

≤
∫ 1

0
‖∇f(x+ τ(y − x))−∇f(x)‖L−1[1]‖y − x‖L[∞] dτ

≤
∫ 1

0
τ‖y − x‖2L[∞] dτ

= τ2 1

2
‖y − x‖2L[∞]

∣∣∣∣1
0

=
1

2
‖y − x‖2L[∞]

=
1

2
|y − x‖2L[∞].

where the second inequality uses the Lipschitz assumption, and in the first inequality we have

used the Cauchy-Schwarz inequality and that the dual norm of the L−1[1] norm is the L[∞]

norm. The above gives an upper bound on the function in terms of this L[∞]-norm,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
‖y − x‖2L[∞].

180

Plugging in our iteration update we have

f(xk+1)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2L[∞]

= f(xk)− ‖∇f(xk)‖L−1[1]〈∇f(xk),Λ ◦ sign∇f(xk)〉 +

‖∇f(xk)‖2L−1[1]

2
‖Λ ◦ sign∇f(xk)‖2L[∞]

= f(xk)−‖∇f(xk)‖2L−1[1]+
‖∇f(xk)‖2L−1[1]

2

(
max
i

1√
Li

√
Li| sign∇if(xk)|

)2

= f(xk)− 1

2
‖∇f(xk)‖2L−1[1].

Subtracting f∗ from both sides yields

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 1

2
‖∇f(xk)‖2L−1[1].

Applying the PL inequality with respect to the L−1[1]-norm (which, if the PL inequality is

satisfied, holds for some µL[∞] by the equivalence between norms),

1

2
‖∇f(xk)‖2L−1[1] ≥ µL[∞]

(
f(xk)− f∗

)
,

we have

f(xk+1)− f(x∗) ≤
(
1− µL[∞]

) (
f(xk)− f(x∗)

)
.

C.4 Proximal-PL Lemma

In this section we give a useful property of the function Dg.

Lemma 5. For any differentiable function f and any convex function g, given µ2 ≥ µ1 > 0 we

have

Dg(x, µ2) ≥ Dg(x, µ1).

We will prove Lemma 5 as a corollary of a related result. We first restate the definition

Dg(x, λ) = −2λmin
y

[
〈∇f(x), y − x〉+

λ

2
||y − x||2 + g(y)− g(x)

]
, (C.5)

181

and we note that we require λ > 0. By completing the square, we have

Dg(x, λ) = −min
y

[
− ‖∇f(x)‖2 + ‖∇f(x)‖2 + 2λ〈∇f(x), y − x〉+

λ2||y − x||2 + 2λ(g(y)− g(x))

]
= ||∇f(x)||2 −min

y

[
||λ(y − x) +∇f(x)||2 + 2λ(g(y)− g(x))

]
.

Notice that if g = 0, then Dg(x, λ) = ||∇f(x)||2 and the proximal-PL inequality reduces to the

PL inequality. We will define the proximal residual function as the second part of the above

equality,

Rg(λ, x, a) , min
y

[
||λ(y − x) + a||2 + 2λ(g(y)− g(x)

]
. (C.6)

Lemma 6. If g is convex then for any x and a, and for 0 < λ1 ≤ λ2 we have

Rg(λ1, x, a) ≥ Rg(λ2, x, a). (C.7)

Proof. Without loss of generality, assume x = 0. Then we have

Rg(λ, a) = min
y

[
||λy + a||2 + 2λ(g(y)− g(0)

]
= min

ȳ

[
||ȳ + a||2 + 2λ(g(ȳ/λ)− g(0)

]
, (C.8)

where in the second line we used a changed of variables ȳ = λy (note that we are minimizing

over the whole space of IRn). By the convexity of g, for any α ∈ [0, 1] and z ∈ IRn we have

g(αz) ≤ αg(z) + (1− α)g(0)

⇐⇒ g(αz)− g(0) ≤ α(g(z)− g(0)). (C.9)

By using 0 < λ1/λ2 ≤ 1 and using the choices α = λ1
λ2

and z = ȳ/λ1 we have

g(ȳ/λ2)− g(0) ≤ λ1

λ2
(g(ȳ/λ1)− g(0))

⇐⇒ λ2(g(ȳ/λ2)− g(0)) ≤ λ1(g(ȳ/λ1)− g(0)), (C.10)

Adding ||ȳ + a||2 to both sides, we get

||ȳ + a||2 + λ2(g(ȳ/λ2)− g(0)) ≤ ||ȳ + a||2 + λ1(g(ȳ/λ1)− g(0)). (C.11)

Taking the minimum over both sides with respect to ȳ yields Lemma 6 due to (C.8).

182

Corollary 2. For any differentiable function f and convex function g, given λ1 ≤ λ2, we have

Dg(x, λ2) ≥ Dg(x, λ1). (C.12)

By using Dg(x, λ) = ||∇f(x)||2 −Rg(λ, x,∇f(x)), Corollary 2 is exactly Lemma 5.

C.5 Relevant Problems

In this section we prove that the three classes of functions listed in Section 4.3.1 satisfy the

proximal-PL inequality condition. Note that while we prove these hold for Dg(x, λ) for λ ≤ L,

by Lemma 5 above they also hold for Dg(x, L).

1. f(x), where f satisfies the PL inequality (g is constant):

As g is assumed to be constant, we have g(y) − g(x) = 0 and the left-hand side of the

proximal-PL inequality simplifies to

Dg(x, µ) = −2µmin
y

{
〈∇f(x), y − x〉+

µ

2
‖y − x‖2

}
= −2µ

(
− 1

2µ
‖f(x)‖2

)
= ‖∇f(x)‖2,

Thus, the proximal PL inequality simplifies to f satisfying the PL inequality,

1

2
‖∇f(x)‖2 ≥ µ (f(x)− f∗) ,

as we assumed.

2. F (x) = f(x) + g(x) and f is strongly convex:

By the strong convexity of f we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
||y − x||2, (C.13)

which leads to

F (y) ≥ F (x) + 〈∇f(x), y − x〉+
µ

2
||y − x||2 + g(y)− g(x). (C.14)

Minimizing both sides respect to y,

F ∗ ≥ F (x) + min
y
〈∇f(x), y − x〉+

µ

2
||y − x||2 + g(y)− g(x)

= F (x)− 1

2µ
Dg(x, µ). (C.15)

Rearranging, we have our result.

183

3. F (x) = f(Ax) + g(x) and f is strongly convex, g is the indicator function for a polyhedral

set X , and A is a linear transformation:

By defining f̃(x) = f(Ax) and using strong convexity of f , we have

f̃(y) ≥ f̃(x) + 〈∇f̃(x), y − x〉+
µ

2
||A(y − x)||2, (C.16)

which leads to

F (y) ≥ F (x) + 〈∇f̃(x), y − x〉+
µ

2
||A(y − x)||2 + g(y)− g(x). (C.17)

Since X is polyhedral, it can be written as a set {x : Bx ≤ c} for a matrix B and a vector

c. As before, assume that xp is the projection of x onto the optimal solution set X ∗ which

in this case is {x : Bx ≤ c, Ax = z} for some z.

F ∗ − F (x) = F (xp)− F (x)

≥ 〈∇f̃(x), xp − x〉+
µ

2
||A(x− xp)||2 + g(xp)− g(x)

= 〈∇f̃(x), xp − x〉+
µ

2
||Ax− z||2 + g(xp)− g(x)

= 〈∇f̃(x), xp − x〉+
µ

2
||{Ax− z}+ + {−Ax+ z}+||2 + g(xp)− g(x)

= 〈∇f̃(x), xp − x〉+
µ

2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

A

−A

B

x−

z

−z

c

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ g(xp)− g(x)

≥ 〈∇f̃(x), xp − x〉+
µθ(A,B)

2
||x− xp||2 + g(xp)− g(x)

≥ min
y

[
〈∇f̃(x), y − x〉+

µθ(A,B)

2
||y − x||2 + g(y)− g(x)

]
= − 1

2µ θ(A)
Dg(x, µθ(A,B)).

where we have used the notation that {·}+ = max{0, ·}, the fourth equality follows because

x was projected onto X in the previous iteration (so Bx− c ≤ 0), and the line after that

uses Hoffman’s bound [Hoffman, 1952].

4. F (x) = f(x) + g(x), f is convex, and F satisfies the quadratic growth (QG) condition:

A function F satisfies the QG condition if

F (x)− F ∗ ≥ µ

2
||x− xp||2. (C.18)

184

For any λ > 0 we have,

min
y

[
〈∇f(x), y − x〉+

λ

2
||y − x||2 + g(y)− g(x)

]
≤ 〈∇f(x), xp − x〉+

λ

2
||xp − x||2 + g(xp)− g(x)

≤ f(xp)− f(x) +
λ

2
||xp − x||2 + g(xp)− g(x)

=
λ

2
||xp − x||2 + F ∗ − F (x)

≤
(

1− λ

µ

)
(F ∗ − F). (C.19)

The third line follows from the convexity of f , and the last inequality uses the QG

condition of F . Multiplying both sides by −2λ, we have

Dg(x, λ) = −2λmin
y

[
〈∇f̃(x), y − x〉+

λ

2
||y − x||2 + g(y)− g(x)

]
≥ 2λ

(
1− λ

µ

)
(F (x)− F ∗). (C.20)

This is true for any λ > 0, and by choosing λ = µ/2 we have

Dg(x, µ/2) ≥ µ

2
(F (x)− F ∗). (C.21)

C.6 Proximal Coordinate Descent

In this section, we show linear convergence of randomized coordinate descent for F (x) = f(x)+

g(x) assuming that F satisfies the proximal PL inequality, ∇f is coordinate-wise Lipschitz

continuous, and g is a separable convex function (g(x) =
∑

i gi(xi)).

From coordinate-wise Lipschitz continuity of ∇f and separability of g, we have

F (x+ yiei)− F (x) ≤ yi∇if(x) +
L

2
y2
i + gi(xi + yi)− g(xi). (C.22)

Given a coordinate i the coordinate descent step chooses yi to minimize this upper bound on

the improvement in F ,

yi = argmin
ti∈IR

{
ti∇if(x) +

L

2
t2i + gi(xi + ti)− g(xi).

}
We next use an argument similar to Richtárik and Takáč [2014] to relate the expected improve-

185

ment (with random selection of the coordinates) to the function Dg,

E
{

min
ti
ti∇if(x) +

L

2
t2i + gi(xi + ti)− gi(xi)

}
=

1

n

∑
i

min
ti
ti∇if(x) +

L

2
t2i + gi(xi + ti)− gi(xi)

=
1

n
min
t1,··· ,tn

∑
i

ti∇if(x) +
L

2
t2i + gi(xi + ti)− gi(xi)

=
1

n
min

y≡x+(t1,··· ,tn)
〈∇f(x), y − x〉+

L

2
||y − x||2 + g(y)− g(x)

= − 1

2Ln
Dg(L, x).

(Note that separability allows us to exchange the summation and minimization operators.) By

using this and taking the expectation of (C.22) we get

E
[
F (xk+1)

]
≤ F (xk)− 1

2Ln
Dg(L, x). (C.23)

Subtracting F ∗ from both sides and applying the proximal-PL inequality yields a linear con-

vergence rate of
(
1− µ

nL

)
.

186

Appendix D

Chapter 5 Supplementary Material

D.1 Cost of Multi-Class Logistic Regression

The typical setting where we expect coordinate descent to outperform gradient descent is when

the cost of one gradient descent iteration is similar to the cost of updating all variables via

coordinate descent. It is well known that for the binary logistic regression objective, one of the

most ubiquitous models in machine learning, coordinate descent with uniform random selection

satisfies this property. As seen in Appendix A.1.2 this property is also satisfied for the GS rule

in the case of logistic regression, provided that the data is sufficiently sparse.

In this section we consider multi-class logistic regression. We first analyze the cost of

gradient descent on this objective and how randomized coordinate descent is efficient for any

sparsity level. Then we show that a high sparsity level is not sufficient for the GS rule to be

efficient for this problem, but that it is efficient if we use a particular set of fixed blocks.

D.1.1 Cost of Gradient Descent

The likelihood for a single training example i with features ai ∈ IRd and a label bi ∈ {1, 2, . . . , k}
is given by

p(bi|ai, X) =
exp(xTbiai)∑k
c=1 exp(xTc ai)

,

where xc is column c of our matrix of parameters X ∈ IRd×k (so the number of parameters

n is dk). To maximize the likelihood over m independent and identically-distributed training

examples we minimize the negative log-likelihood,

f(X) =
m∑
i=1

[
−xTbiai + log

(
k∑
c=1

exp(xTc ai)

)]
, (D.1)

which is a convex function. The partial derivative of this objective with respect to a particular

Xjc is given by

∂

∂Xjc
f(X) = −

m∑
i=1

aij

[
I(bi = c)− exp(xTc ai)∑k

c′=1 exp(xTc′ai)

]
, (D.2)

where I is a 0/1 indicator variable and aij is feature j for training example i. We use A to

denote a matrix where row i is given by aTi . To compute the full gradient, the operations which

187

depend on the size of the problem are:

1. Computing xTc ai for all values of i and c.

2. Computing the sums
∑k

c=1 exp(xTc ai) for all values of i.

3. Computing the partial derivative sums (D.2) for all values of j and c.

The first step is the result of the matrix multiplication AX, so if A has z non-zeroes then this

has a cost of O(zk) if we compute it using k matrix-vector multiplications. The second step

costs O(mk), which under the reasonable assumption that m ≤ z (since each row usually has

at least one non-zero) is also in O(zk). The third step is the result of a matrix multiplication

of the form ATR for a (dense) m times k matrix R (whose elements have a constant-time cost

to compute given the results of the first two steps), which also costs O(zk) giving a final cost

of O(zk).

D.1.2 Cost of Randomized Coordinate Descent

Since there are n = dk variables, we want our coordinate descent iterations to be dk-times faster

than the gradient descent cost of O(zk). Thus, we want to be able to implement coordinate

descent iterations for a cost of O(z/d) (noting that we always expect z ≥ d since otherwise we

could remove some columns of A that only have zeroes). The key to doing this for randomized

coordinate descent is to track two quantities:

1. The values xTc ai for all i and c.

2. The values
∑k

c′=1 exp(xTc′ai) for all i.

Given these values we can compute the partial derivative in O(z/d) in expectation, because this

is the expected number of non-zero values of aij in the partial derivative sum (D.2) (A has z

total non-zeroes and we are randomly choosing one of the d columns). Further, after updating

a particular Xjc we can update the above quantities for the same cost:

1. We need to update xTc ai for the particular c we chose for the examples i where aij is

non-zero for the chosen value of j. This requires an O(1) operation (subtract the old

xjcaij and add the new value) for each non-zero element of column j of A. Since A has z

non-zeroes and d columns, the expected number of non-zeroes is z/d so this has a cost of

O(z/d).

2. We need to update
∑k

c′=1 exp(xTc′ai) for all i where aij is non-zero for our chosen j. Since

we expect z/d non-zero values of aij , the cost of this step is also O(z/d).

Note that BCD is also efficient since if we update τ elements, the cost is O(zτ/d) by just

applying the above logic τ times. In fact, step 2 and computing the final partial derivative has

some redundant computation if we update multiple Xjc with the same c, so we might have a

small performance gain in the block case.

188

D.1.3 Cost of Greedy Coordinate Descent (Arbitrary Blocks)

The cost of greedy coordinate descent is typically higher than randomized coordinate descent

since we need to track all partial derivatives. However, consider the case where each row has

at most zr non-zeroes and each column has at most zc non-zeroes. In this setting we previously

showed that for binary logistic regression it is possible to track all partial derivatives for a cost

of O(zrzc), and that we can track the maximum gradient value at the cost of an additional

logarithmic factor (see Appendix A.1).28 Thus, greedy coordinate selection has a similar cost

to uniform selection when the sparsity pattern makes zrzc similar to z/d (as in the case of a

grid-structured dependency graph like Figure 5.3).

Unfortunately, having zrzc similar to z/d is not sufficient in the multi-class case. In par-

ticular, the cost of tracking all the partial derivatives after updating an Xjc in the multi-class

case can be broken down as follows:

1. We need to update xTc ai for the examples i where aij is non-zero. Since there are at most

zc non-zero values of aij over all i the cost of this is O(zc).

2. We need to update
∑k

c=1 exp(xTc ai) for all i where aij is non-zero. Since there are at most

zc non-zero values of aij the cost of this is O(zc).

3. We need to update the partial derivatives ∂f/∂Xjc for all j and c. Observe that each

time we have aij non-zero, we change the partial derivative with respect to all features j′

that are non-zero in the example i and we must update all classes c′ for these examples.

Thus, for the O(zc) examples with a non-zero feature j we need to update up to O(zr)

other features for that example and for each of these we need to update all k classes. This

gives a cost of O(zrzck).

So while in the binary case we needed O(zrzc) to be comparable to O(z/d) for greedy coordinate

descent to be efficient, in the multi-class case we now need O(zrzck) to be comparable to O(z/d)

in the multi-class case. This means that not only do we need a high degree of sparsity but we

also need the number of classes k to be small for greedy coordinate descent to be efficient.

D.1.4 Cost of Greedy Coordinate Descent (Fixed Blocks)

Greedy rules are more expensive in the multi-class case because whenever we change an indi-

vidual variable Xjc, it changes the partial derivative with respect to Xj′c′ for a set of j′ values

and for all c′. But we can improve the efficiency of greedy rules by using a special choice of

fixed blocks that reduces the number of j′ values. In particular, BCD is more efficient for the

multi-class case if we put Xjc′ for all c′ into the same block. In other words, we ensure that

each row of X is part of the same block so that we apply BCD to rows rather than in an

28Note that the purpose of the quantity zrzc is to serve as a potentially-crude upper bound on the maximum
degree in the dependency graph we describe in Section 5.4. Any tighter bound on this degree would yield a
tighter upper bound on the runtime.

189

unstructured way. Below we consider the cost of updating the needed quantities after changing

an entire row of Xjc values:

1. Since we are updating k elements, the cost of updating the xTc ai is k-times larger giving

O(zck) when we update a row.

2. Similarly, the cost of updating the sums
∑k

c=1 exp(xTc ai) is k-times larger also giving

O(zck).

3. Where we gain in computation is the cost of computing the changed values of the partial

derivatives ∂f/∂Xjc. As before, each time we have aij non-zero for our particular row

j, we change the partial derivative with respect to all other j′ for this example and with

respect to each class c′ for these j′. Thus, for the O(zc) examples with a non-zero feature

j we need to update up to O(zr) other features for that example and for each of these we

need to update all k classes. But since j is the same for each variable we update, we only

have to do this once which gives us a cost of O(zrzck).

So the cost to update a row of the matrix X is O(zrzck), which is the same cost as only updating

a single element. Considering the case of updating individual rows, this gives us d blocks so in

order for BCD to be efficient it must be d-times faster than the gradient descent cost of O(zk).

Thus, we need a cost of O(zk/d) per iteration. This is achieved if O(zrzc) to be similar to

O(z/d), which is the same condition we needed in the binary case.

D.2 Blockwise Lipschitz Constants

In this section we show how to derive lower-bounds on the block-Lipschitz constants of the gra-

dient and Hessian for several common problem settings. We will use that a twice-differentiable

function has an L-Lipschitz continuous gradient if and only if the absolute eigenvalues of its

Hessian are upper-bounded by L,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ⇐⇒ ∇2f(x) � LI.

This implies that when considering blockwise constants we have

‖∇bf(x+ Ubd)−∇bf(x)‖ ⇐⇒ ∇2
bbf(x) � LbI.

Thus, bounding the blockwise eigenvalues of the Hessian bounds the blockwise Lipschitz con-

stants of the gradient. We also use that this equivalence extends to the case of general quadratic

norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

⇐⇒ ∇2
bbf(x) � Hb.

190

D.2.1 Quadratic Functions

Quadratic functions have the form

f(x) =
1

2
xTAx+ cTx,

for a positive semi-definite matrix A and vector c. For all x the Hessian with respect to block

b is given by the sub-matrix of A,

∇2
bbf(x) = Abb.

Thus, we have that Lb is given by the maximum eigenvalue of the submatrix, Lb = ‖Ab‖ (the

operator norm of the submatrix). In the special case where b only contains a single element i,

we have that Li is given by the absolute value of the diagonal element, Li = |Aii|. If we want

to use a general quadratic norm we can simply take Hb = Abb, which is cheaper to compute

than the Lb (since it does not require an eigenvalue calculation).

D.2.2 Least Squares

The least squares objective has the form

f(x) =
1

2
‖Ax− c‖2,

for a matrix A and vector c. This is a special case of a quadratic function, where the Hessian

is given by

∇2f(x) = ATA.

This gives us that Lb = ‖Ab‖2 (where Ab is the matrix containing the columns b of A). In the

special case where the block has a single element j, observe that Lj =
∑m

i=1 a
2
ij (sum of the

squared values in column j) so we do not need to solve an eigenvalue problem. When using a

quadratic norm we can take Hb = ATb Ab which similarly does not require solving an eigenvalue

problem.

D.2.3 Logistic Regression

The likelihood of a single example in a logistic regression model is given by

p(bi|ai, x) =
1

1 + exp(−bixTai)
,

where each ai ∈ IRd and bi ∈ {−1, 1}. To maximize the likelihood over m examples (sampled

independently) we minimize the negative log-likelihood,

f(x) =
m∑
i=1

log(1 + exp(−bixTai)).

191

Using A as a matrix where row i is given by aTi and defining hi(x) = p(bi|ai, x), we have that

∇2f(x) =

m∑
i=1

hi(x)(1− hi(x))aia
T
i

� 0.25

m∑
i=1

aia
T
i

= 0.25ATA.

The generalized inequality above is the binary version of the Bohning bound [Böhning, 1992].

This bound can be derived by observing that hi(x) is in the range (0, 1), so the quantity

hi(x)(1−hi(x)) has an upper bound of 0.25. This result means that we can use Lb = 0.25‖Ab‖2
for block b, Lj = 0.25

∑m
i=1 a

2
ij for single-coordinate blocks, and Hb = 0.25ATb Ab if we are using

a general quadratic norm (notice that computing Hb is again cheaper than computing Lb).

D.2.4 Multi-Class Logistic Regression

The Hessian of the multi-class logistic regression objective (D.1) with respect to parameter

vectors xc and xc′ can be written as

∂2

∂xc∂x′c
f(X) =

m∑
i=1

hi,c(X)(I(c = c′)− hi,c′(X))aia
T
i ,

where similar to the binary logistic regression case we have defined hi,c = p(c|ai, X). This gives

the full Hessian the form

∇2f(X) =
m∑
i=1

Hi(X)⊗ aiaTi ,

where we used ⊗ to denote the Kronecker product and where element (c, c′) of the k by k

matrix Hi(X) is given by hi,c(X)(I(c = c′) − hi,c′(X)). Bohning’s bound [Böhning, 1992] on

this matrix is that

Hi(X) � 1

2

(
I − 1

k
11T

)
,

where 1 is a vector of ones while recall that k is the number of classes. Using this we have

∇2f(X) �
m∑
i=1

1

2

(
I − 1

k
11T

)
⊗ aiaTi

=
1

2

(
I − 1

k
11T

)
⊗

m∑
i=1

aia
T
i

=
1

2

(
I − 1

k
11T

)
⊗ATA.

192

As before we can take submatrices of this expression as our Hb, and we can take eigenvalues

of the submatrices as our Lb. However, due to the 1/k factor we can actually obtain tighter

bounds for sub-matrices of the Hessian that do not involve at least two of the classes. In

particular, consider a sub-Hessian involving the variables only associated with k′ classes for

k′ < k. In this case we can replace the k by k matrix (I − (1/k)11T) with the k′ by k′ matrix

(I − (1/(k′+ 1))11T). The “+1” added to k′ in the second term effectively groups all the other

classes (whose variables are fixed) into a single class (the “+1” is included in Bohning’s original

paper as he fixes xk = 0 and defines k to be one smaller than the number of classes). This

means (for example) that we can take Lj = 0.25
∑m

i=1 a
2
ij as in the binary case rather than the

slightly-larger diagonal element 0.5(1− 1/k)
∑m

i=1 a
2
ij in the matrix above.29

D.3 Derivation of GSD Rule

In this section we derive a progress bound for twice-differentiable convex functions when we

choose and update the block bk according to the GSD rule with Db,i = Liτ (where τ is the

maximum block size). We start by using the Taylor series representation of f(xk+1) in terms of

f(xk) and some z between xk+1 and xk (keeping in mind that these only differ along coordinates

in bk),

f(xk+1) = f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2
(xk+1 − xk)T∇2

bkbk
f(z)(xk+1 − xk)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
|bk|
2

∑
i∈bk

∇2
iif(z)(xk+1

i − xki)2

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
τ

2

∑
i∈bk

∇2
iif(z)(xk+1

i − xki)2

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
τ

2

∑
i∈bk

Li(x
k+1
i − xki)2,

where the first inequality follows from convexity of f which implies that ∇2
bkbk

f(xk) is positive

semi-definite and by Lemma 1 of Nesterov’s coordinate descent paper [Nesterov, 2010]. The

second inequality follows from the definition of τ and the third follows from the definition of

Li. Now using our choice of Db,i = Liτ in the update we have for i ∈ bk that

xk+1
i = xki −

1

Liτ
∇if(xk),

29The binary logistic regression case can conceptually be viewed as a variation on the softmax loss where we
fix xc = 0 for one of the classes and thus are always only updating variables from class. This gives the special
case of 0.5(I − 1/(k + 1)11T)ATA = 0.5(1− 0.5)ATA = 0.25ATA, the binary logistic regression bound from the
previous section.

193

which yields

f(xk+1) ≤ f(xk)− 1

2τ

∑
i∈bk

|∇if(xk)|2
Li

= f(xk)− 1

2
max
b

∑
i∈b

|∇if(xk)|2
Liτ

= f(xk)− ‖∇f(xk)‖2B.

The first equality uses that we are selecting bk using the GSD rule with Db,i = Liτ and the

second inequality follows from the definition of of the mixed norm ‖ ·‖B from Section 5.2.5 with

Hb = Db. This progress bound implies that the convergence rate results in that section also

hold.

D.4 Efficiently Testing the Forest Property

In this section we give a method to test whether adding a node to an existing forest maintains

the forest property. In this setting our input is an undirected graph G and a set of nodes b

whose induced subgraph Gb forms a forest (has no cycles). Given a node i, we want to test

whether adding i to b will maintain that the induced subgraph is acyclic. In this section we

show how to do this in O(p), where p is the degree of the node i.

The method is based on the following simple observations:

• If the new node i introduces a cycle, then it must be part of the cycle. This follows

because Gb is assumed to be acyclic, so no cycles can exist that do not involve i.

• If i introduces a cycle, we can arbitrarily choose i to be the start and end point of the

cycle.

• If the new node i has 1 or fewer neighbours in b, then it does not introduce a cycle. With

no neighbours it clearly can not be part of a cycle. With one neighbour, we would have

to traverse its one edge more than once to have it start and end a path.

• If the new node i has at least 2 neighbours in b that are part of the same tree, then i

introduces a cycle. Specifically, we can construct a cycle as follows: we start at node i, go

to one of its neighbours, follow a path through the tree to another one of its neighbours

in the same tree (such a path exists because trees are connected by definition), and then

return to node i.

• If the new node i has at least 2 neighbours in b but they are all in different trees, then

i does not introduce a cycle. This is similar to the case where i has only one edge: any

path that starts and ends at node i would have to traverse one of its edges more than

once (because the disjoint trees are not connected to each other).

194

The above cases suggest that to determine whether adding node i to the forest b maintains the

forest property, we only need to test whether node i is connected to two nodes that are part of

the same tree in the existing forest. We can do this in O(p) using the following data structures:

1. For each of the n nodes, a list of the adjacent nodes in G.

2. A set of n labels in {0, 1, 2, . . . , t}, where t is the number of trees in the existing forest.

This number is set to 0 for nodes that are not in b, is set to 1 for nodes in the first tree,

is set to 2 for nodes in the second tree, and so on.

Note that there is no ordering to the labels {1, 2, . . . , t}, each tree is just assigned an arbitrary

number that we will use to determine if nodes are in the same tree. We can find all neighbours

of node i in O(p) using the adjacency list, and we can count the number of neighbours in each

tree in O(p) using the tree numbers. If this count is at least 2 for any tree then the node

introduces a cycle, and otherwise it does not.

In the algorithm of Section 5.4.2, we also need to update the data structures after adding

a node i to b that maintains the forest property. For this update we need to consider three

scenarios:

• If the node i has one neighbour in b, we assign it the label of its neighbour.

• If the node i has no neighbours in b, we assign it the label (t + 1) since it forms a new

tree.

• If the node i has multiple neighbours in b, we need to merge all the trees it is connected

to.

The first two steps cost O(1), but a naive implementation of the third step would cost O(n)

since we could need to re-label almost all of the nodes. Fortunately, we can reduce the cost of

this merge step to O(p). This requires a relaxation of the condition that the labels represent

disjoint trees. Instead, we only require that nodes with the same label are part of the same tree.

This allows multiple labels to be associated with each tree, but using an extra data structure

we can still determine if two labels are part of the same tree:

3. A list of t numbers, where element j gives the minimum node number in the tree that j

is part of.

Thus, given the labels of two nodes we can determine whether they are part of the same tree in

O(1) by checking whether their minimum node numbers agree. Given this data structure, the

merge step is simple: we arbitrarily assign the new node i to the tree of one of its neighbours,

we find the minimum node number among the p trees that need to be merged, and then we use

this as the minimum node number for all p trees. This reduces the cost to O(p).

Giving that we can efficiently test the forest property in O(p) for a node with p neighbours,

it follows that the total cost of the greedy algorithm from Section 5.4.2 is O(n log n+ |E|) given

195

the gradient vector and adjacency lists. The O(n log n) factor comes from sorting the gradient

values, and the number of edges |E| is 2 times the number of p values. If this cost is prohibitive,

one could simply restrict the number of nodes that we consider adding the forest to reduce this

time.

D.5 Full Experimental Results

In this section we first provide details on the datasets, and then we present our complete set of

experimental results.

D.5.1 Datasets

We considered these five datasets:

A A least squares problem with a data matrix A ∈ IRm×n and target b ∈ IRm,

argmin
x∈IRn

1

2
‖Ax− b‖2.

We set A to be an m by n matrix with entries sampled from a N (0, 1) distribution (with

m = 1000 and n = 10000). We then added 1 to each entry (to induce a dependency

between columns), multiplied each column by a sample from N (0, 1) multiplied by ten

(to induce different Lipschitz constants across the coordinates), and only kept each entry

of A non-zero with probability 10 log(m)/m. We set b = Ax + e, where the entries of

e were drawn from a N (0, 1) distribution while we set 90% of x to zero and drew the

remaining values from a N (0, 1) distribution.

B A binary logistic regression problem of the form

argmin
x∈IRn

n∑
i=1

log(1 + exp(−bixTai)).

We use the data matrix A from the previous dataset (setting row i of A to aTi), and bi to

be the sign of xTai using the x used in the generating the previous dataset. We then flip

the sign of each entry in b with probability 0.1 to make the dataset non-separable.

C A multi-class logistic regression problem of the form

argmin
x∈IRd×k

m∑
i=1

[
−xTbiai + log

(
k∑
c=1

exp(xTc ai)

)]
,

see (D.1). We generate a 1000 by 1000 matrix A as in the previous two cases. To

generate the bi ∈ {1, 2, . . . , k} (with k = 50), we compute AX +E where the elements of

196

the matrices X ∈ IRd×k and E ∈ IRm×k are sampled from a standard normal distribution.

We then compute the maximum index in each row of that matrix as the class labels.

D A label propagation problem of the form

min
xi∈S′

1

2

n∑
i=1

n∑
j=1

wij(xi − xj)2,

where x is our label vector, S is the set of labels that we do know (these xi are set to a

sample from a normal distribution with a variance of 100), S′ is the set of labels that we

do not know, and wij ≥ 0 are the weights assigned to each xi describing how strongly we

want the labels xi and xj to be similar. We set the non-zero pattern of the wij so that

the graph forms a 50 by 50 lattice-structure (setting the non-zero values to 10000). We

labeled 100 points, leading to a problem with 2400 variables but where each variable has

at most 4 neighbours in the graph.

E Another label propagation problem for semi-supervised learning in the ‘two moons’dataset

[Zhou et al., 2003]. We generate 2000 samples from this dataset, randomly label 100 points

in the data, and connect each node to its five nearest neighbours (using wij = 1). This

results in a very sparse but unstructured graph.

D.5.2 Greedy Rules with Gradients Updates

In Figure D.1 we show the performance of the different methods from Section 5.5.1 on all five

datasets with three different block sizes. In Figure D.2 we repeat the experiment but focusing

only on the FB methods. For each FB method, we plot the performance using our upper bounds

on Lb as the step-size (Lb) and using the Lipschitz approximation procedure from Section 5.3.3

(LA). Here we see the LA methods improves performance when using large block sizes and in

cases where the global Lb bound is not tight.

Our third experiment also focused on the FB methods, but considered different ways to

partition the variables into fixed blocks. We considered three approaches:

1. Order: just using the variables in their numerical order (which is similar to using a random

order for dataset except Dataset D, where this method groups variables that adjacent in

the lattice).

2. Avg: we compute the coordinate-wise Lipschitz constants Li, and place the largest Li

with the smallest Li values so that the average Li values are similar across the blocks.

3. Sort: we sort the Li values and place the largest values together (and the smallest values

together).

We compared many variations on cyclic/random/greedy rules with gradient or matrix updates.

In the case of greedy rules with gradient updates, we found that the Sort method tended to

197

perform the best while the Order method tended to perform the worst (see Figure D.3). When

using matrix updates or when using cyclic/randomized rules, we found that no partitioning

strategy dominated other strategies.

D.5.3 Greedy Rules with Matrix and Newton Updates

In Figure D.4 we show the performance of the different methods from Section 5.5.2 on all

five datasets with three different block sizes. In Figure D.5 we repeat this experiment on the

two non-quadratic problems, using the Newton direction and a line search rather than matrix

updates. We see that using Newton’s method significantly improves performance over matrix

updates.

198

0 100 200 300 400 500
Iterations with 5-sized blocks

7.9× 103

4.4× 104

2.4× 105

1.3× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.1× 10−1

1.8× 100

2.8× 102

4.6× 104

7.4× 106

Cyclic-FB Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.3× 10−5

0.4× 10−2

4.9× 100

6.0× 103

7.4× 106

Cyclic-FB Lipschitz-FB

Random-FB
GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

6.1× 101

1.1× 102

2.1× 102

3.8× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

1.6× 101

4.1× 101

1.1× 102

2.7× 102

6.9× 102

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.1× 101

3.1× 101

8.7× 101

2.5× 102

6.9× 102

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

3.0× 103

3.2× 103

3.4× 103

3.6× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

2.0× 103

2.4× 103

2.8× 103

3.3× 103

3.9× 103

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.6× 103

2.0× 103

2.5× 103

3.1× 103

3.9× 103

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB
GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

1.3× 108

2.2× 108

3.7× 108

6.2× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

2.0× 107

5.3× 107

1.4× 108

3.9× 108

1.0× 109

Cyclic-FB

Lipschitz-FB

Random-FBGS-FB
GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

8.2× 106

2.8× 107

9.3× 107

3.1× 108

1.0× 109

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB
Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.7× 102

3.4× 102

4.4× 102

5.6× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

1.1× 102

1.7× 102

2.7× 102

4.4× 102

7.2× 102

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

5.5× 101

1.0× 102

2.0× 102

3.8× 102

7.2× 102

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VBGS-VB

GSL-VB

Figure D.1: Comparison of different random and greedy block selection rules on five different
problems (rows) with three different blocks (columns) when using gradient updates.

199

0 100 200 300 400 500
Iterations with 5-sized blocks

8.4× 103

4.6× 104

2.5× 105

1.4× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz
Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

9.0× 101

1.5× 103

2.6× 104

4.4× 105

7.4× 106

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

0.1× 10−2

0.3× 100

9.2× 101

2.6× 104

7.4× 106

LA-GS Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

3.9× 101

8.0× 101

1.6× 102

3.4× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

LA-GS

Lb-GS

LA-GSL
Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

0.5× 100

2.8× 100

1.8× 101

1.1× 102

6.9× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

0.2× 100

1.6× 100

1.2× 101

9.1× 101

6.9× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

1.9× 103

2.3× 103

2.7× 103

3.3× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random
LA-CyclicLb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

5.8× 102

9.3× 102

1.5× 103

2.4× 103

3.9× 103

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

2.6× 101

9.2× 101

3.2× 102

1.1× 103

3.9× 103

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

2.6× 108

3.7× 108

5.2× 108

7.4× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz LA-Random

Lb-Random

LA-Cyclic
Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

1.6× 108

2.5× 108

4.0× 108

6.5× 108

1.0× 109

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

7.9× 107

1.5× 108

2.9× 108

5.5× 108

1.0× 109

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

3.2× 102

3.9× 102

4.8× 102

5.9× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

1.9× 102

2.6× 102

3.7× 102

5.1× 102

7.2× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

1.1× 102

1.7× 102

2.7× 102

4.4× 102

7.2× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

Figure D.2: Comparison of different random and greedy block selection rules with gradient
updates and fixed blocks, using two different strategies to estimate Lb.

200

0 100 200 300 400 500
Iterations with 5-sized blocks

8.2× 103

4.5× 104

2.5× 105

1.4× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg
GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

8.7× 101

1.5× 103

2.5× 104

4.4× 105

7.4× 106

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg
GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

4.4× 100

1.6× 102

5.7× 103

2.1× 105

7.4× 106

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg GSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

6.1× 101

1.1× 102

2.1× 102

3.8× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

3.6× 101

7.5× 101

1.6× 102

3.3× 102

6.9× 102

GS-Sort

GSD-Sort

GSL-Sort
GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

2.7× 101

6.2× 101

1.4× 102

3.1× 102

6.9× 102

GS-Sort

GSD-Sort

GSL-Sort GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

3.3× 103

3.5× 103

3.6× 103

3.8× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order
GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

3.1× 103

3.2× 103

3.5× 103

3.7× 103

3.9× 103

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

2.6× 103

2.9× 103

3.2× 103

3.5× 103

3.9× 103

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

2.6× 108

3.7× 108

5.2× 108

7.4× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

1.7× 108

2.7× 108

4.2× 108

6.7× 108

1.0× 109

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

9.7× 107

1.8× 108

3.2× 108

5.8× 108

1.0× 109

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-AvgGSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

3.2× 102

3.9× 102

4.8× 102

5.9× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

1.9× 102

2.6× 102

3.7× 102

5.1× 102

7.2× 102

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

1.1× 102

1.7× 102

2.7× 102

4.4× 102

7.2× 102

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

Figure D.3: Comparison of different random and greedy block selection rules with gradient
updates and fixed blocks, using three different ways to partition the variables into blocks.

201

0 100 200 300 400 500
Iterations with 5-sized blocks

0.3× 10−1

4.0× 100

4.9× 102

6.1× 104

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A GSQ-FB
GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.8× 10−8

0.5× 10−4

0.2× 100

1.4× 103

7.4× 106

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.8× 10−8

0.4× 10−4

0.2× 100

1.4× 103

7.4× 106

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB
GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 101

5.4× 101

1.3× 102

3.0× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

3.2× 100

1.2× 101

4.7× 101

1.8× 102

6.9× 102

GSQ-FB GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.8× 100

8.1× 100

3.6× 101

1.6× 102

6.9× 102

GSQ-FB

GS-FB

GSL-FB
GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 103

2.6× 103

3.0× 103

3.4× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C GSQ-FB

GS-FB

GSL-FB
GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

3.9× 102

6.9× 102

1.2× 103

2.2× 103

3.9× 103

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.7× 102

3.7× 102

8.1× 102

1.8× 103

3.9× 103

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

1.2× 108

2.0× 108

3.5× 108

6.1× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

4.8× 105

3.3× 106

2.3× 107

1.5× 108

1.0× 109

GSQ-FB
GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.4× 103

4.1× 104

1.2× 106

3.5× 107

1.0× 109

GSQ-FB
GS-FB

GSL-FB
GSD-FB

GS-VB
GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 102

3.0× 102

4.1× 102

5.4× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

4.1× 101

8.3× 101

1.7× 102

3.5× 102

7.2× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

9.7× 100

2.9× 101

8.4× 101

2.4× 102

7.2× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB
GSQ-VB

GSL-VB

Figure D.4: Comparison of different greedy block selection rules when using matrix updates.

202

0 100 200 300 400 500
Iterations with 5-sized blocks

0.9× 10−3

0.3× 10−1

0.8× 100

2.3× 101

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.9× 10−8

0.5× 10−5

0.3× 10−2

1.3× 100

6.9× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400
Iterations with 100-sized blocks

0.8× 10−8

0.4× 10−5

0.2× 10−2

1.3× 100

6.9× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.8× 102

5.4× 102

1.1× 103

2.0× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FBGS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

1.0× 10−4

0.8× 10−2

0.6× 100

4.9× 101

3.9× 103

GSQ-FB
GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.0× 10−8

0.8× 10−5

0.6× 10−2

4.9× 100

3.9× 103

GSQ-FB
GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

Figure D.5: Comparison of different greedy block selection rules when using Newton updates
and a line search.

203

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Big-Data: A Barrier to Learning?
	The Learning Problem/Algorithm
	Loss Functions

	First-Order Methods
	Gradient Descent
	Stochastic Gradient Descent
	Coordinate Descent Methods
	Linear Systems and Kaczmarz Methods
	Relaxing Strong Convexity
	Proximal First-Order Methods
	Summary of Contributions

	Greedy Coordinate Descent
	Problems of Interest
	Analysis of Convergence Rates
	Randomized Coordinate Descent
	Gauss-Southwell
	Refined Gauss-Southwell Analysis

	Comparison for Separable Quadratic
	`Working Together' Interpretation
	Fast Convergence with Bias Term

	Rates with Different Lipschitz Constants
	Rules Depending on Lipschitz Constants
	Lipschitz Sampling
	Gauss-Southwell-Lipschitz Rule
	Connection between GSL Rule and Normalized Nearest Neighbour Search

	Approximate Gauss-Southwell
	Multiplicative Errors
	Additive Errors

	Proximal Gradient Gauss-Southwell
	Experiments
	Discussion

	Greedy Kaczmarz
	Problems of Interest
	Kaczmarz Algorithm and Greedy Selection Rules
	Efficient Calculations for Sparse A
	Approximate Calculation

	Analyzing Selection Rules
	Randomized and Maximum Residual
	Tighter Uniform and MR Analysis
	Maximum Distance Rule

	Kaczmarz and Coordinate Descent
	Example: Diagonal A
	Approximate Greedy Rules
	Multiplicative Error
	Additive Error

	Systems of Linear Inequalities
	Faster Randomized Kaczmarz Methods
	Experiments
	Discussion

	Relaxing Strong Convexity
	Polyak-Łojasiewicz Inequality
	Relationships Between Conditions
	Invex and Non-Convex Functions
	Relevant Problems

	Convergence of Huge-Scale Methods
	Randomized Coordinate Descent
	Greedy Coordinate Descent
	Sign-Based Gradient Methods

	Proximal Gradient Generalization
	Relevant Problems
	Least Squares with L1-Regularization
	Proximal Coordinate Descent
	Support Vector Machines

	Discussion

	Greedy Block Coordinate Descent
	Block Coordinate Descent Algorithms
	Block Selection Rules
	Fixed vs. Variable Blocks
	Block Update Rules
	Problems of Interest

	Improved Greedy Rules
	Block Gauss-Southwell
	Block Gauss-Southwell-Lipschitz
	Block Gauss-Southwell-Quadratic
	Block Gauss-Southwell-Diagonal
	Convergence Rate under Polyak-Łojasiewicz
	Convergence Rate with General Functions

	Practical Issues
	Tractable GSD for Variable Blocks
	Tractable GSQ for Variable Blocks
	Lipschitz Estimates for Fixed Blocks
	Efficient Line Searches
	Block Partitioning with Fixed Blocks
	Newton Updates

	Message-Passing for Huge-Block Updates
	Partitioning into Forest-Structured Blocks
	Approximate Greedy Rules with Forest-Structured Blocks

	Numerical Experiments
	Greedy Rules with Gradient Updates
	Greedy Rules with Matrix Updates
	Message-Passing Updates

	Discussion

	Active-Set Identification and Complexity
	Notation and Assumptions
	Manifold Identification for Separable g
	Proximal Gradient Method
	Proximal Coordinate Descent Method

	Active-Set Complexity
	Superlinear and Finite Convergence of Proximal BCD
	Proximal-Newton Updates and Superlinear Convergence
	Practical Proximal-Newton Methods
	Optimal Updates for Quadratic f and Piecewise-Linear g

	Numerical Experiments
	Discussion

	Discussion
	Bibliography
	Chapter 2 Supplementary Material
	Efficient Calculation of GS Rules for Sparse Problems
	Problem h2
	Problem h1

	Relationship Between u1 and u
	Analysis for Separable Quadratic Case
	Equivalent Definition of Strong Convexity
	Strong Convexity Constant u1 for Separable Quadratic Functions

	Gauss-Southwell-Lipschitz Rule: Convergence Rate
	Comparing uL to u1 and u
	Relationship Between uL and u1
	Relationship Between uL and u

	Approximate Gauss-Southwell with Additive Error
	Gradient Bound in Terms of L1
	Additive Error Bound in Terms of L1
	Additive Error Bound in Terms of L

	Convergence Analysis of GS-s, GS-r, and GS-q Rules
	Notation and Basic Inequality
	Convergence Bound for GS-q Rule
	GS-q is at Least as Fast as Random
	GS-q is at Least as Fast as GS-r
	Lack of Progress of the GS-s Rule
	Lack of Progress of the GS-r Rule

	Proximal Gradient in the L1-Norm

	Chapter 3 Supplementary Material
	Efficient Calculations for Sparse A
	Randomized and Maximum Residual
	Tighter Uniform and MR Analysis
	Maximum Distance Rule
	Kaczmarz and Coordinate Descent
	Example: Diagonal A
	Multiplicative Error
	Additive Error
	MD Rule and Randomized Kaczmarz via Johnson-Lindenstrauss
	Systems of Linear Inequalities
	Faster Randomized Kaczmarz Using the Orthogonality Graph of A
	Additional Experiments

	Chapter 4 Supplementary Material
	Relationships Between Conditions
	Relevant Problems
	Sign-Based Gradient Methods
	Proximal-PL Lemma
	Relevant Problems
	Proximal Coordinate Descent

	Chapter 5 Supplementary Material
	Cost of Multi-Class Logistic Regression
	Cost of Gradient Descent
	Cost of Randomized Coordinate Descent
	Cost of Greedy Coordinate Descent (Arbitrary Blocks)
	Cost of Greedy Coordinate Descent (Fixed Blocks)

	Blockwise Lipschitz Constants
	Quadratic Functions
	Least Squares
	Logistic Regression
	Multi-Class Logistic Regression

	Derivation of GSD Rule
	Efficiently Testing the Forest Property
	Full Experimental Results
	Datasets
	Greedy Rules with Gradients Updates
	Greedy Rules with Matrix and Newton Updates

