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Learning with Missing Values

@ Missing values are very common in real datasets.

@ For example, we could have a dataset like this:

N 33 5 ~1
L o101l |+
X=1p 2 o= |
M 22 0 ?

e We often want to learn with unobserved/missing/hidden/latent values.

e We'll focus on data that is missing at random (MAR):
o Assume that the reason 7 is missing does not depend on the missing value.

Reza Babanezhad (UBC) Convergence of EM 2/18



Expectation Maximization: Optimization with MAR Variables

Expectation maximization (EM) is an optimization algorithm for MAR values:
o Applies to problems that are easy to solve with “complete” data (i.e., you knew 7).
o Based on probabilistic or “soft” assignments to MAR variables.
e For many problems it leads to simple closed-form updates.

EM is among the most cited papers across all fields (around 54,000 citations).

@ Some common applications:
e Filling in missing data.
o Semi-supervised learning.
e Mixture of Gaussians.
e Hidden Markov models.

@ In the two latter problems, statisticians introduce MAR variables to use EM.
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Example: Mixture of Gaussians

@ Application: modeling multi-modal data with mixture of Gaussians

Mixture of Gaussian (nll = 5.108)
0.08 20

@ We introduce an MAR variable for each sample, represent “which Gaussian it came from”.
e EM updates just compute weighted mean and variance of data based on these values.

@ As in typical applications of EM, the problem is highly non-convex.
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Expectation Maximization (Picture Version)

@ Expectation maximization is a “bound-optimization” method:
o At each iteration ¢ we optimize a bound on the function.

-Q(@[@") + st ~lay f016)

@ Unlike gradient descent and Newton, the “surrogate” @) is not quadratic.

@ In EM, our bound comes from expectation over hidden variables.
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Expectation Maximization (Equation Version)

@ We want to maximize likelihood of data X with MAR values z, and parameters )\,

argminp(X | \) = Zsz|)\
AEA ez

where I'm assuming z is discrete (you use an integral for continuous z).

@ Instead of maximizing likelihood, we can equivalently minimize negative log-likelihood,

f<A>:—1og{Zp<X,zw}.

z2EZ

@ Unfortunately, this has a sum inside the log:

e This will be non-convex even in common settings where —log p(X, z | \) is convex.
e This won't have closed-form solution even in common settings where minimizer given z does.
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Expectation Maximization (Equation Version)

@ At each iteration k, the expectation maximization algorithm optimizes a surrogate g,

gk(A) =E, | x x[p(2 | X, A)] + const.

= Zp(z | X, \¥)log p(X,z | A) + const.,
z€EZ

the expected negative log-probabilities under the current guess of the parameters \*.

e This has a closed-form solution in cases where knowing z would give a closed-form solution.
e This is convex if —logp(X,z | A) is convex.

@ Classic results regarding the relationship between function f and surrogate g:

o Approximation: the functions g and f agree at \*. Formally, f(\*) = grp(\F).
e Majorization: the function g bounds [ from above. Formally, f(X) < gx(A) for all A € A.

e Together, these imply monotonic improvement in the objective (no step size needed).
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Related Work

@ We know less about EM convergence rate than standard optimization algorithms.

Convergence to stationary point in original paper [Dempster et al., 1977] had an error.

Wu [1983] showed convergence to stationary point under suitable continuity assumptions.

Wu [1983] and Figueiredo & Nowak [2003] discuss local vs. global optima (without rate).
o In practice, it typically does not find a global optimum.

Tseng [2004] shows local linear convergence under suitable assumptions.

@ And conjectures that global rate is likely to be sublinear.
Salakhutdinov et al. [2002] show local superlinear local convergence.

@ Assumes ratio of hidden to observed data is small, which tends not to be satisfied.
Balakrishnan et al. [2017] discuss infinite data or sufficiently-large finite datasets.

o If initial parameters are near global optima, then linear convergence to a global optimum.
@ But we know that EM usually doesn’t converge to a global optimum.

@ This work: simpler analyses, mild asumptions, true from any starting point.
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Surrogate Optimization

We view EM as a surrogate optimization method [Mairal, 2013]:

Algorithm 1 Surrogate Optimization Scheme

1: Input: \° € A, number of iterations ¢.

2: fork =1totdo

3. Compute a surrogate function g, of f near \¥=1.
4. Update solution \* € argmin, ¢, gr(N).

5. end for

6: Output final estimate A\’

Our results hold in this general framework assuming that (Assumptions 1-3):
o SN = (A
e f(N\) <g()) forall .
o f(A) > f* forall A
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Convergence Analysis

@ To obtain a convergence rate we need additional assumptions.
@ Our first set of additional assumptions is that (Assumption 4a):

o f is differentiable.
o Vf(A\F=1) = Vgr(A\*~1) (which is true fo EM).
e Vg is Lipschitz-continuous.

Theorem (Convergence rate of EM for differentiable functions)

Under Assumptions 1-3 and 4a, the EM algorithm starting from any \° is guaranteed to find

parameters \' satisfying |V f(\')||?> < € once we have performed t > w iterations.

@ The same rate O(1/e¢) rate as gradient descent (with a different constant L).

Reza Babanezhad (UBC) Convergence of EM 10 / 18



Non-Asymptotic Convergence Rate

@ Proof:

@ We obtain faster rates under additional assumptions:

e Rate in function values for convex f.
e Linear rate for f satisfying PL.
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Non-Asymptotic Convergence Rate: Non-Differentiable f

@ EM is often used for non-smooth objectives like mixture of Gaussians.
@ To llow non-smooth objectives, we consider Assumption 4b:
o The g, are strongly-convex (holds for mixture of Gaussians if we regularize).

@ We state result in terms of what we call the EM mapping,

G\ = A1 — arg min g, (V)
A

which is analogous to the gradient mapping for proximal-gradient methods.

Theorem (Convergence rate of EM for non-differentiable functions)

Under Assumptions 1-3 and 4b, the EM algorithm is guaranteed to find parameters \' satisfying
2[f(X%) = f*]
o

€

|Gr(N)||* < € once we have performed t > iterations.
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Discussion of EM as an Optimization Algorithm

@ We obtain the same O(1/¢) rate in the smooth and non-smooth case.
e EM is appealing compared to subgradient methods because of monotonicity.

@ Given this optimization perspective on EM, many extensions are possible:

Generalized EM (can't exactly minimize surrogate function).

Second-order optimality (variant that escapes saddle points).

Accelerated EM (faster rates for locally-convex objectives).

Coordinate-wise, stochastic, and stochastic variance-reduced EM (large-scale).
Proximal and mirror descent variants.

@ See the paper coming soon...
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Generalized EM

@ In many applications computing the arg miny,{gx(\)} is not possible.

@ Generalized EM only tries to decrease gj.
e This gives monotonicity but not a convergence rate.

@ We considered two assumptions that are sufficient to maintain the O(1/¢) rate:

@ Summable Errors: gi(A*) < miny{gr(\)} + €k, and >_po; ex < 00
@ Sufficient decrease: gr(N\*) < gr.(A\*~1) — || Vgr(A*~1)||? for some a > 0.

The latter condition is easy to check.
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Escaping Saddle Points

@ Similar to recent work on gradients methods, we can consider finding a (¢, y)-solution,
IVFOl < e V2O = =1

@ Additional assumptions:
e f is twice differentiable and its Hessian is M-Lipschitz continuous

IV2f(N) = V2N < Mz — ]|

SPESO return a (€, )-solution after wt* total iterations, where t* is the number of
iterations of the first order algorithm for finding a point with gradient smaller than e.
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Escaping Saddle Points

Algorithm 2 Saddle Point Escape for Surrogate Optimization (SPESO)

L Input: X A, e>0and0< 7~
2: fors=1,....do
3. find A such that ||V f(\)|| < € by executing one of the above algorithm for T* iteration

4 if V2f(\) = —yI then
5: = )

6: return \°

7. else

8: A =NCJ(\ )

9. endif

10: end for
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Escaping Saddle Points

Algorithm 3 NJC: Jump along the Negative Curvature

1 Input: Ae A, 0 <y

2: use an algorithm to compute the smallest negative eigenvalue and eigenvector of V2f()\)
namely fimin and v s.t. ||| =1

3. if Vf(A) #0 then

4:  return AT =\ — %%y

5: else

6: return AT =+ v

7: end if

@ As in recent works, we can avoid Hessian computation by using Hessian-vector products.
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e Expectation maximization (EM) is a popular algorithm for handling missing data.
o It's a special case of surrogate optimization.

@ We give non-asymptotic convergence rates for EM under fairly weak assumptions.

o Differentiable objective and gradient of surrogate is Lipschitz.
o Non-differentaible objective and surrogate is strongly-convex.

@ We've explored a variety of extensions, notably:

o Generalized EM where we don't exactly optimize the surrogate.
e Variant that escapes saddle points.
e Many more...
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