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Learning with Missing Values

Missing values are very common in real datasets.

For example, we could have a dataset like this:

X =


N 33 5
L 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
We often want to learn with unobserved/missing/hidden/latent values.

We’ll focus on data that is missing at random (MAR):

Assume that the reason ? is missing does not depend on the missing value.
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Expectation Maximization: Optimization with MAR Variables

Expectation maximization (EM) is an optimization algorithm for MAR values:

Applies to problems that are easy to solve with “complete” data (i.e., you knew ?).
Based on probabilistic or “soft” assignments to MAR variables.
For many problems it leads to simple closed-form updates.

EM is among the most cited papers across all fields (around 54,000 citations).

Some common applications:

Filling in missing data.
Semi-supervised learning.
Mixture of Gaussians.
Hidden Markov models.

In the two latter problems, statisticians introduce MAR variables to use EM.
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Example: Mixture of Gaussians

Application: modeling multi-modal data with mixture of Gaussians

We introduce an MAR variable for each sample, represent “which Gaussian it came from”.
EM updates just compute weighted mean and variance of data based on these values.

As in typical applications of EM, the problem is highly non-convex.
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Expectation Maximization (Picture Version)

Expectation maximization is a “bound-optimization” method:

At each iteration t we optimize a bound on the function.

Unlike gradient descent and Newton, the “surrogate” Q is not quadratic.

In EM, our bound comes from expectation over hidden variables.
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Expectation Maximization (Equation Version)

We want to maximize likelihood of data X with MAR values z, and parameters λ,

arg min
λ∈Λ

p(X | λ) =
∑
z∈Z

p(X, z | λ),

where I’m assuming z is discrete (you use an integral for continuous z).

Instead of maximizing likelihood, we can equivalently minimize negative log-likelihood,

f(λ) = − log

{∑
z∈Z

p(X, z | λ)

}
.

Unfortunately, this has a sum inside the log:

This will be non-convex even in common settings where − log p(X, z | λ) is convex.
This won’t have closed-form solution even in common settings where minimizer given z does.
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Expectation Maximization (Equation Version)

At each iteration k, the expectation maximization algorithm optimizes a surrogate gk,

gk(λ) = Ez | X, λk [p(z | X,λ)] + const.

=
∑
z∈Z

p(z | X,λk) log p(X, z | λ) + const.,

the expected negative log-probabilities under the current guess of the parameters λk.

This has a closed-form solution in cases where knowing z would give a closed-form solution.
This is convex if − log p(X, z | λ) is convex.

Classic results regarding the relationship between function f and surrogate g:

Approximation: the functions g and f agree at λk. Formally, f(λk) = gk(λk).
Majorization: the function g bounds f from above. Formally, f(λ) ≤ gk(λ) for all λ ∈ Λ.

Together, these imply monotonic improvement in the objective (no step size needed).
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Related Work

We know less about EM convergence rate than standard optimization algorithms.

Convergence to stationary point in original paper [Dempster et al., 1977] had an error.
Wu [1983] showed convergence to stationary point under suitable continuity assumptions.
Wu [1983] and Figueiredo & Nowak [2003] discuss local vs. global optima (without rate).

In practice, it typically does not find a global optimum.

Tseng [2004] shows local linear convergence under suitable assumptions.

And conjectures that global rate is likely to be sublinear.

Salakhutdinov et al. [2002] show local superlinear local convergence.

Assumes ratio of hidden to observed data is small, which tends not to be satisfied.

Balakrishnan et al. [2017] discuss infinite data or sufficiently-large finite datasets.

If initial parameters are near global optima, then linear convergence to a global optimum.
But we know that EM usually doesn’t converge to a global optimum.

This work: simpler analyses, mild asumptions, true from any starting point.

Reza Babanezhad (UBC) Convergence of EM 8 / 18



Surrogate Optimization

We view EM as a surrogate optimization method [Mairal, 2013]:

Algorithm 1 Surrogate Optimization Scheme

1: Input: λ0 ∈ Λ, number of iterations t.
2: for k = 1 to t do
3: Compute a surrogate function gk of f near λk−1.
4: Update solution λk ∈ arg minλ∈Λ gk(λ).
5: end for
6: Output final estimate λt.

Our results hold in this general framework assuming that (Assumptions 1-3):

f(λk−1) = g(λk−1).

f(λ) ≤ g(λ) for all λ.

f(λ) ≥ f∗ for all λ.
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Convergence Analysis

To obtain a convergence rate we need additional assumptions.

Our first set of additional assumptions is that (Assumption 4a):

f is differentiable.
∇f(λk−1) = ∇gk(λk−1) (which is true fo EM).
∇gk is Lipschitz-continuous.

Theorem (Convergence rate of EM for differentiable functions)

Under Assumptions 1-3 and 4a, the EM algorithm starting from any λ0 is guaranteed to find

parameters λ′ satisfying ‖∇f(λ′)‖2 ≤ ε once we have performed t ≥ 2L[f(λ0)−f∗]
ε iterations.

The same rate O(1/ε) rate as gradient descent (with a different constant L).
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Non-Asymptotic Convergence Rate

Proof:

We obtain faster rates under additional assumptions:

Rate in function values for convex f .
Linear rate for f satisfying PL.
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Non-Asymptotic Convergence Rate: Non-Differentiable f

EM is often used for non-smooth objectives like mixture of Gaussians.

To llow non-smooth objectives, we consider Assumption 4b:

The gk are strongly-convex (holds for mixture of Gaussians if we regularize).

We state result in terms of what we call the EM mapping,

Gk(λ
k−1) = λk−1 − arg min

λ
gk(λ),

which is analogous to the gradient mapping for proximal-gradient methods.

Theorem (Convergence rate of EM for non-differentiable functions)

Under Assumptions 1-3 and 4b, the EM algorithm is guaranteed to find parameters λ′ satisfying

‖Gk(λ′)‖2 ≤ ε once we have performed t ≥ 2[f(λ0)−f∗]
µε iterations.
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Discussion of EM as an Optimization Algorithm

We obtain the same O(1/ε) rate in the smooth and non-smooth case.

EM is appealing compared to subgradient methods because of monotonicity.

Given this optimization perspective on EM, many extensions are possible:

Generalized EM (can’t exactly minimize surrogate function).
Second-order optimality (variant that escapes saddle points).
Accelerated EM (faster rates for locally-convex objectives).
Coordinate-wise, stochastic, and stochastic variance-reduced EM (large-scale).
Proximal and mirror descent variants.

See the paper coming soon...
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Generalized EM

In many applications computing the arg minλ{gk(λ)} is not possible.

Generalized EM only tries to decrease gk.

This gives monotonicity but not a convergence rate.

We considered two assumptions that are sufficient to maintain the O(1/ε) rate:
1 Summable Errors: gk(λk) ≤ minλ{gk(λ)}+ εk, and

∑∞
k=1 εk <∞

2 Sufficient decrease: gk(λk) ≤ gk(λk−1)− α‖∇gk(λk−1)‖2 for some α > 0.

The latter condition is easy to check.
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Escaping Saddle Points

Similar to recent work on gradients methods, we can consider finding a (ε, γ)-solution,

‖∇f(λ)‖ ≤ ε, ∇2f(λ) � −γI.

Additional assumptions:

f is twice differentiable and its Hessian is M -Lipschitz continuous

‖∇2f(λ)−∇2f(λ′)‖ ≤M‖x− y‖

Theorem

SPESO return a (ε, γ)-solution after 3M2[f(λ0)−f∗]
γ3

t∗ total iterations, where t∗ is the number of
iterations of the first order algorithm for finding a point with gradient smaller than ε.
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Escaping Saddle Points

Algorithm 2 Saddle Point Escape for Surrogate Optimization (SPESO)

1: Input: λ0 ∈ Λ, ε > 0 and 0 < γ
2: for s = 1, .... do
3: find λ̄ such that ‖∇f(λ̄)‖ ≤ ε by executing one of the above algorithm for T ∗ iteration
4: if ∇2f(λ̄) � −γI then
5: λs = λ̄
6: return λs

7: else
8: λs = NCJ(λ, γ)
9: end if

10: end for

Reza Babanezhad (UBC) Convergence of EM 16 / 18



Escaping Saddle Points

Algorithm 3 NJC: Jump along the Negative Curvature

1: Input: λ ∈ Λ, 0 < γ
2: use an algorithm to compute the smallest negative eigenvalue and eigenvector of ∇2f(λ)

namely µmin and ν s.t. ‖ν‖ = 1
3: if ∇f(λ) 6= 0 then

4: return λ+ = λ− 〈ν,∇f(λ)〉
|〈ν,∇f(λ)〉|

γ
M ν

5: else
6: return λ+ = λ+ γ

M ν
7: end if

As in recent works, we can avoid Hessian computation by using Hessian-vector products.
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Summary

Expectation maximization (EM) is a popular algorithm for handling missing data.

It’s a special case of surrogate optimization.

We give non-asymptotic convergence rates for EM under fairly weak assumptions.

Differentiable objective and gradient of surrogate is Lipschitz.
Non-differentaible objective and surrogate is strongly-convex.

We’ve explored a variety of extensions, notably:

Generalized EM where we don’t exactly optimize the surrogate.
Variant that escapes saddle points.
Many more...
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