
Let’s Make Block Coordinate Descent Go Fast!

Julie Nutini, Issam Laradji, Mark Schmidt

University of British Columbia

November 15, 2018

Why Block Coordinate Descent?

Block coordinate descent methods are key tools in large-scale optimization.

→ Easy to implement.
→ Low memory requirements.
→ Cheap iteration costs.
→ Adaptability to distributed settings.
→ Ability to exploit problem structure.
→ Good numerical performance.

Used for almost two decades to solve LASSO and SVM problems.

→ Any improvements on convergence will affect many applications.

This work: we propose several ways to make BCD much faster.

Block Coordinate Descent Framework

We consider the basic optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.

At each iteration of the BCD algorithm, we
Select a block bk ⊆ {1, 2, . . . , n}.
Update iterate according to

xk+1 = xk + Ubkd
k,

where dk ∈ IRM is a descent direction of the reduced dimensional subproblem,

argmin
d∈IRM

f(xk + Ubkd).

There are many possible ways to define the blocks bk and directions dk.
E.g., take random τ variables and set dk = −αk∇bkf(x

k) for some αk > 0.

Why use coordinate descent?

Theoretically, it is a provably bad algorithm:

The convergence rate is slower than gradient descent.
The iteration cost can be similar to gradient descent.

But it is widely-used in practice:

Nothing seems to work better for certain problems.
Certain fields think it is the ‘ultimate’ algorithm.

???

Renewed theoretical interest began with Nesterov [2010]:

Global convergence rate for randomized coordinate selection.
Faster than gradient descent if iterations are n times cheaper.

Problems Suitable for Coordinate Descent

BCD most effective when updating all variables costs similar to gradient step.

n∑
i=1

fi(xi)︸ ︷︷ ︸
separable

+

n∑
i=1

n∑
j=1

fij(xi, xj)︸ ︷︷ ︸
pairwise separable

+

(

f(Ax)

)

︸ ︷︷ ︸
linear composition

fi general convex functions (can be non-smooth).
fij and f are smooth.
A is a matrix and f is cheap.

Key implementation ideas:

Separable part costs O(1) for 1 partial derivative.
Pairwise part costs O(n) for 1 partial derivative, instead of O(n2).
Linear compositions costs O(1) for 1 partial derivative by tracking Ax.

Problems Suitable for Coordinate Descent

Examples: least squares, logistic regression, lasso, SVMs.

min
x∈IRn

1

2
‖Ax− b‖2 + λ

n∑
i=1

|xi|,

More examples: quadratics, graph-based label propagation, graphical models.

min
x∈IRn

1

2
xTAx+ bTx =

1

2

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi.

BCD also allows group-separable variations (group L1-regularization).

Fancier: tensor fact., log-det, convex extensions of submodular.

Cannonical Randomized BCD Algorithm

Usual assumption: each block b is Lb-blockwise Lipschitz continuous,

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, for all d,

where for twice-differentiable functions this is equivalent to ∇2
bbf(x) � LbI.

3 ingredients of a “canonical” randomized BCD method:
1 Partition the coordinates into n/τ blocks, using something like

B = {{1, 2, . . . , τ}, {τ + 1, τ + 2, . . . , 2τ}, . . . , {(n− τ) + 1, (n− τ) + 2, . . . , n}}.

2 Choose a block bk ∈ B, maybe uniformly at random.
3 Take the step dk, often a gradient step with 1/Lbk .

This is not a competitive algorithm for many problems.
This talk: ways to make it go faster.

Analysis of Uniform Random BCD and Existing Improved Rules

A blockwise version of the descent lemma is that

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ Lbk
2
‖xk+1 − xk‖2.

Plugging in our update gives the usual progress bound used for analysis,

f(xk+1) ≤ f(xk)− 1

2Lbk
‖∇bkf(x

k)‖22.

Taking expectation of bk gives us a bound for uniform random sampling.

Existing approaches to give tighter bounds (effecient for certain problems):

Lipschitz sampling: choosing bk proportional to Lbk .
Gauss-Southwell (GS): choosing bk maximizing ‖∇bkf(x

k)‖.

Gauss-Southwell???

How is computing max(gradient) n-times cheaper than computing gradient?

Consider a quadratic with a very-sparse Hessian.

Like 10 non-zeroes per column.
In this case, only 10 gradients change when you change one variable.
You can efficiently track the max using a max-heap structure.

For pairwise objectives, need max-degree ≈ average-degree.

So it works for dense quadratics, too.

For some problems, can approximate by nearest neighbours search.

Gauss-Southwell-Lipschitz

Consider maximizing the progress bound in terms of bk,

f(xk+1) ≤ f(xk)− 1

2Lbk
‖∇bkf(x

k)‖22.

We call the rule that results the Gauss-Southwell-Lipschitz (GSL) rule:

bk ∈ argmax
b∈B

‖∇bf(xk)‖2√
Lb

,

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

Prefers blocks with low Lipschitz constant if gradients are similar.

Fixed Blocks vs. Variable Blocks

Fixed blocks (FB): partition the the coordinates into n/τ blocks:

B = {{1, 2, . . . , τ}, {τ + 1, τ + 2, . . . , 2τ}, . . . , {(n− τ) + 1, (n− τ) + 2, . . . , n}}.

Variable blocks (VB): B contains all possible blocks of size τ .
B is the set of b such that |b| ≤ τ .

With greedy rules, VB guarantees more progress.
Use VB if doesn’t significantly increase the runtime.

Although for some problems VB doesn’t make sense:
Sparse multi-class logistic regression (VB is much more expensive).
Group L1-regularization (VB doesn’t respect non-smooth group structure).
GSL rule (need an approximation to implement VB).

Greedy Rules with Gradient Updates

Performance on least sqaures (left) and 50-class logistic regression (right):

0 100 200 300 400 500
Iterations with 5-sized blocks

7.9× 103

4.4× 104

2.4× 105

1.3× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

3.0× 103

3.2× 103

3.4× 103

3.6× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

Cyclic-FB Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VBRandom-VB

GS-VB

GSL-VB

Variable blocks give large improvement over fixed blocks for greedy rules.

All methods worked better with line-search (not shown).

As batch size increased:

Overall variance of methods decreased.
Benefit of line-search increased.
Benefit of GSL over GS increased.

Gauss-Southwell-Lipschitz vs. Maximum Improvement Rule

The ideal rule is the maximum improvement (MI) rule:

The update of τ coordinates that maximally decreases f .

GSL is equivalent to MI for quadratic functions when τ = 1.

But not for τ > 1.

And should we really be doing gradient steps anyways?

Newton-Steps and Quadratic-Norms

Assume that f is blockwise Lipschitz in a set of quadratic norms

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where the Hb are positive-definite matrices.

This isn’t a stronger assumption, just a change in how we measure.

The descent lemma now becomes

f(xk+1) ≤ f(xk) + 〈∇bkf(x
k), dk〉+ 1

2
‖dk‖2Hbk

,

and the optimal dk is

dk = − (Hbk)
−1∇bkf(x

k).

This matrix update is similar to Newton, but using upper-bound on Hessian.

Gauss-Southwell-Quadratic Rule

The optimal matrix update according to the progress bound is

bk ∈ argmax
b∈B

{
‖∇bf(xk)‖H−1

b

}
,

which we call the Gauss-Southwell-Quadratic (GSQ) rule.
Equivalent to MI rule for quadratics.
But memory/computationally expensive.

A practical alternative is a diagonal approximation (GSD),

bk ∈ argmax
b∈B

{∑
i∈b

|∇if(xk)|2

Di,b

}
,

although we still use the full matrix update after selecting block.
Has same cost as GS under constraint that Di,b = di for set of di values.

Greedy Rules with Matrix Updates

Performance on least sqaures (left) and 50-class logistic regression (right):

0 100 200 300 400 500
Iterations with 5-sized blocks

0.3× 10−1

4.0× 100

4.9× 102

6.1× 104

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A

GSQ-FB
GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 103

2.6× 103

3.0× 103

3.4× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

Here VB works much better than FB (difference larger for large batches).

There wasn’t a large advantage to using GSQ over simpler GSD.
“A little Lipschitz information is all that’s needed” (here we use di = Li).

Matrix vs. Newton Updates

The matrix update updates the block bk using

xk+1
bk

= xkbk − (Hbk)
−1∇bkf(x

k),

based on an upper-bound Hbk .

For non-quadratic functions, Newton updates might make more progress,

xk+1
bk

= xkbk − αk(∇
2
bkbk

f(xk))−1∇bkf(x
k),

for a step-size αk.

For example, we might have ∇2
bkbk

f(xk) ≺≺ Hbk .

Requires a line-search, but this is usually cheap on the block.

Greedy Rules with Newton Updates

Performance on 50-class logistic regression with matrix updates (left) and Newton updates (right):

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 103

2.6× 103

3.0× 103

3.4× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.8× 102

5.4× 102

1.1× 103

2.0× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FBGS-VB

GSD-VB

GSQ-VB

GSL-VB

Notice the difference in the y-axis.

For variable blocks, the difference increases with the block size.

Cost of Higher-Order Updates

Problem with matrix and Newton updates:

O(τ3) cost to solve a linear system with τ variables.

Can we do better for problems with sparse Hessians?

Gaussian elimination still requires O(τ3) due to “fill-in”.
Iterative solvers use sparsity but depend on condition number of block.

An alternative approach: choose the blocks to guarantee no “fill-in”.

Allows exact solution of Newton system in O(τ) to update “huge” blocks.

Graph-Colouring for Block Partitioning

Consider treating the non-zero pattern in ∇2f(xk) as an adjacency matrix:

A classic BCD approach is “red-black” ordering:

Partition the nodes via graph colouring.
Use the colouring as the blocks.
Guarantees that sub-Hessians ∇2

bbf(x
k) are diagonal.

So Newton step costs O(τ).

In the lattice example, we update blocks of size n/2 in O(n).

Tree-Partitioning for Block Partitioning

Diagonal matrices are not the only structure that allows O(τ) solutions.

We considered forest-structured blocks:

Allows dependencies within the block, but can be solved in O(τ).

Key idea: define an arbitrary “root” of each tree and divide nodes into “levels”.

Gaussian elimination starting from “leaves” guarantees no “fill-in”.

Solving Forest-Structured Linear Systems in Linear Time

Run Gaussian elimination from leaves to root:

Greedy Forest-Structured Blocks

Instead of partitioning nodes into forests (“fixed blocks”),

we could find a new forest to update at each iteration (“variable blocks”).

We give an O(n log n+ |E|)-time algorithm to approximate GS forest.

Based on sorting and using two levels of hashing.
In the lattice example it tends to update ≈ 2n/3 nodes.

Experiment: Sparse Quadratic Problem

Comparing different methods with O(n) cost on lattice (left) and label-prop (right):

0 100 200 300 400 500
Iterations

0.1× 10−4

0.4× 10−1

1.2× 102

3.5× 105

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

Random Tree

Greedy Tree

General

Red Black

Tree Partitions

0 100 200 300 400 500
Iterations

0.8× 10−4

0.4× 10−2

0.2× 100

1.3× 101

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Random Tree

Greedy Tree

General

Red Black Lipschitz

Tree Partitions Lipschitz

Tree Partitions Order

Red Black Order

Huge structured blocks improve significantly over GS rule with smaller blocks.

Superlinear Convergence?

When we think of Newton, we normally think superlinear convergence.

Does BCD have superlinear convergence?

No, not even with exact updates.

E.g., 2-variable non-separable quadratic

→ Possible to get superlinear convergence for problems with certain structures.

Optimization with Bound Constraints

Consider optimizing a smooth f plus a separable non-smooth g,

argmin
x∈IRd

f(x) +

n∑
i=1

gi(xi),

which includes bound constraints and L1-regularization.

In this context we can use proximal gradient steps,

xk+1 = proxαkgbk

[
xk − αkUbk∇bkf(x

k)
]
,

and most issues are similar:
FB vs. VB, gradient updates vs Newton updates, random vs. greedy selection.

Some differences:
There are 4 non-equivalent generalizations of the Gauss-Southwell.
The non-smoothness can lead to a faster convergence rate.

Manifold Identification Property

Consider a problem with non-negative constraints,

argmin
x∈IRd

f(x) + δ(x ≥ 0).

In this case proximal-gradient becomes projected-gradient:

xk+1 =
[
xk − αkUbk∇bkf(x

k)
]+
.

The non-negative constraints mean that we often obtain a sparse solution.
E.g., non-negative matrix factorization.

Manifold identification property:
For all k larger than some k′, sparsity pattern of xk is the same as optimal x∗.

Once you have the manifold, algorithm converges faster on this subspace.

Manifold Identification Property

Manifold identification for bound constraints requires a mild assumption:

∇if(x∗) ≥ δ > 0 if x∗i = 0.

We give a simple proof that greedy BCD finitely identifies manifold.

Previously known for cyclic and random BCD.

We give upper bounds on number of iterations before manifold is identified:

For projected-gradient it happens after at most κ log(2L‖x0 − x∗‖/δ) iterations.
Bound is slightly more complicated for BCD methods.

Similar results hold for other non-smooth gi like L1-regularization.

Assumption changes to ∇if(x
∗) ∈ int ∂gi(x∗i).

Superlinear Convergence and Proximal-Newton

Manifold property suggest an obvious strategy:

Run BCD for a fixed number iterations to identify manifold.
Then apply (unconstrained) Newton method on non-zero variables.

But don’t know how logn to run BCD (just have upper bounds).

Some alternatives to “switching”:

Hybrid methods: try BCD and Newton step, take best.
Proximal-Newton BCD steps (not too expensive if blocks are small).

Can be computed exactly for piecewise-linear gi via homotopy methods.

Two-metric projection BCD steps (compromise between cost/progress).

Superlinear convergence if using greedy rules with large-enough VB.

Superlinear Convergence and Proximal-Newton

Experiments with L1-regularized least squares:

0 50 100 150 200 250 300 350 400
Iterations with 5-sized blocks

0.7× 10−8

0.2× 10−4

0.7× 10−1

2.3× 102

7.1× 105

f(
x
)
−
f
∗
 fo

r N
on

-n
eg

at
iv

e
Le

as
t S

qu
ar

es
 o

n
Da

ta
se

t A

PN-VB

TM
P-VB

PG-VB
PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.2× 10−8

0.8× 10−5

0.4× 10−1

1.6× 102

7.1× 105

PN-VB
TM

P-VB

PG-VB

PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.4× 10−8

0.1× 10−4

0.5× 10−1

1.9× 102

7.1× 105

PN-VB
TM

P-VB

PG-VB

PN-FB

TMP-FB
PG-FB

Projected-Newton converges extremely quickly.

Two-metric projection is equally fast but with cheaper iterations.

For large greedy/variable blocks, both methods converge finitely.

Summary

We proposed improved greedy rules for BCD methods.

Incorporate gradient and Lipschitz information.
Make substantially more progress on some problems.

If you can afford to compute second-order information, you should.

Newton updates with line-search tend to outperform fixed-matrix updates.
Linear-time Newton steps for forest-structured blocks.
Two-metric projection can handle constrained/non-smooth cases.

We give non-asymptotic bounds on number of iterations to reach manifolds.

Superlinear or finite convergence of BCD in some special cases.
Bounds are probably useful in other settings.

