Let’s Make Block Coordinate Descent Go Fast!

Julie Nutini, Issam Laradji, Mark Schmidt
University of British Columbia

November 15, 2018

Why Block Coordinate Descent?

o Block coordinate descent methods are key tools in large-scale optimization.

— Easy to implement.

— Low memory requirements.

— Cheap iteration costs.

— Adaptability to distributed settings.
— Ability to exploit problem structure.
— Good numerical performance.

@ Used for almost two decades to solve LASSO and SVM problems.

— Any improvements on convergence will affect many applications.

@ This work: we propose several ways to make BCD much faster.

Block Coordinate Descent Framework

@ We consider the basic optimization problem:
min f(z),
where f is differentiable and » is large.

o At each iteration of the BCD algorithm, we
o Select ablock b, C {1,2,...,n}.
o Update iterate according to

gt = oF 4 Ubkdk,
where d* € IRM is a descent direction of the reduced dimensional subproblem,

argmin f(z* + U, d).
delRM

o There are many possible ways to define the blocks b, and directions d*.
o E.g., take random 7 variables and set d* = —«;, V,, f(z*) for some a;, > 0.

Why use coordinate descent?

@ Theoretically, it is a provably bad algorithm:

o The convergence rate is slower than gradient descent.
o The iteration cost can be similar to gradient descent.

o But it is widely-used in practice:

o Nothing seems to work better for certain problems.
o Certain fields think it is the ‘ultimate’ algorithm.

@ ?77777°?72°77°?72?2??7?????7?????79?????72°7??°7????°?7?7

@ Renewed theoretical interest began with Nesterov [2010]:

o Global convergence rate for randomized coordinate selection.
o Faster than gradient descent if iterations are n times cheaper.

Problems Suitable for Coordinate Descent

@ BCD most effective when updating all variables costs similar to gradient step.

Zfz T +ZZfzg quj f(A-T)

=1 j=1 ——
A/—/ e
linear composition

separable pairwise separable

o f; general convex functions (can be non-smooth).
o f;; and f are smooth.
o Ais amatrix and f is cheap.

o Key implementation ideas:

o Separable part costs O(1) for 1 partial derivative.
o Pairwise part costs O(n) for 1 partial derivative, instead of O(n?).
o Linear compositions costs O(1) for 1 partial derivative by tracking Ax.

Problems Suitable for Coordinate Descent

o Examples: least squares, logistic regression, lasso, SVMs.

1 2 .
Inin || Az — | +A;\xz~\,

@ More examples: quadratics, graph-based label propagation, graphical models.

1op T
xrélﬁ%l 5‘75 Ax+b w——ZZalszxj—i—wal

=1 j=1

o BCD also allows group-separable variations (group L1-regularization).

o Fancier: tensor fact., log-det, convex extensions of submodular.

Cannonical Randomized BCD Algorithm

@ Usual assumption: each block b is L;-blockwise Lipschitz continuous,
IVof(x 4+ Upd) — Vi f(z)|| < Lp||d||, foralld,

where for twice-differentiable functions this is equivalent to V2, f(z) < Ls1.

@ 3 ingredients of a “canonical’ randomized BCD method:
@ Partition the coordinates into n /7 blocks, using something like

B={{1,2,...;7h{r+L7+2,....2t},....{(n—7)+1,(n—7) +2,...,n}}.

@ Choose a block b, € B, maybe uniformly at random.
Q Take the step dy, often a gradient step with 1/L, .
@ This is not a competitive algorithm for many problems.
o This talk: ways to make it go faster.

Analysis of Uniform Random BCD and Existing Improved R

o A blockwise version of the descent lemma is that
Ly
f(l‘k+1) S f(.%'k) + <Vf($k),.%'k+1 o .%'k> + 7’€ka+1 o kaQ

@ Plugging in our update gives the usual progress bound used for analysis,

1

_ kyp 2
Tl

F(a*h) < f(a¥)

o Taking expectation of b, gives us a bound for uniform random sampling.

o Existing approaches to give tighter bounds (effecient for certain problems):

o Lipschitz sampling: choosing b, proportional to Ly, .
o Gauss-Southwell (GS): choosing b, maximizing ||V, f(z*)]|.

Gauss-Southwell???

@ How is computing max(gradient) n-times cheaper than computing gradient?

o Consider a quadratic with a very-sparse Hessian.

o Like 10 non-zeroes per column.
o In this case, only 10 gradients change when you change one variable.
@ You can efficiently track the max using a max-heap structure.

o For pairwise objectives, need max-degree ~ average-degree.
o So it works for dense quadratics, too.

o For some problems, can approximate by nearest neighbours search.

Gauss-Southwell-Lipschitz

@ Consider maximizing the progress bound in terms of by,

) < fak) -

-~ k(2
T

@ We call the rule that results the Gauss-Southwell-Lipschitz (GSL) rule:

k
by, € argmax —“vbf(x 2

beBB VL,

Gauss-Southwell

o Prefers blocks with low Lipschitz constant if gradients are similar.

Fixed Blocks vs. Variable Blocks

o Fixed blocks (FB): partition the the coordinates into n/7 blocks:
B={{1,2,....7},{r+1L,7+2,....27},....{(n—7)+ 1, (n—7)+2,...,n}}.

@ Variable blocks (VB): B contains all possible blocks of size 7.
o Bisthe set of b such that |b| < 7.

@ With greedy rules, VB guarantees more progress.
o Use VB if doesn’t significantly increase the runtime.

@ Although for some problems VB doesn’t make sense:
o Sparse multi-class logistic regression (VB is much more expensive).
o Group L1-regularization (VB doesn’t respect non-smooth group structure).
o GSL rule (need an approximation to implement VB).

Greedy Rules with Gradient Updates

Performance on least sqaures (left) and 50-class logistic regression (right):

3.9x10*

G R

pschitz-ve =
i 3

1.3x 100 - 3.6 x 10° -

2.4 x10° -

3.4x10° -

4.4x10" - 3.2x10° -

f(z) — f* for Least Squares on Dataset A
f(z)— f* for Softmax on Dataset C

3 I I I I 3 I I I I
9 x L .0 % L
7.9x10 0 100 200 300 400 500 3010 0 100 200 300 400 500

Iterations with 5-sized blocks Iterations with 5-sized blocks
@ Variable blocks give large improvement over fixed blocks for greedy rules.
@ Al methods worked better with line-search (not shown).

@ As batch size increased:
@ Overall variance of methods decreased.
@ Benefit of line-search increased.
@ Benefit of GSL over GS increased.

Gauss-Southwell-Lipschitz vs. Maximum Improvement Rule

@ The ideal rule is the maximum improvement (Ml) rule:
o The update of T coordinates that maximally decreases f.

o GSL is equivalent to Ml for quadratic functions when = = 1.
o But not for 7 > 1.

@ And should we really be doing gradient steps anyways?

Newton-Steps and Quadratic-Norms

@ Assume that f is blockwise Lipschitz in a set of quadratic norms

IVof (@ + Usd) = Vo f (@)l g1 < lldlla, = VAT Hyd,

where the H,, are positive-definite matrices.

o This isn’'t a stronger assumption, just a change in how we measure.

@ The descent lemma now becomes
1
P < Fa) + (U S@0),d5) + Sl

and the optimal d* is
d* = — (Hy) ™" Vi, f(a").

@ This matrix update is similar to Newton, but using upper-bound on Hessian.

Gauss-Southwell-Quadratic Rule

@ The optimal matrix update according to the progress bound is
by € argmax { [V f ()] ;1 }
beB b

which we call the Gauss-Southwell-Quadratic (GSQ) rule.
o Equivalent to Ml rule for quadratics.
o But memory/computationally expensive.

@ A practical alternative is a diagonal approximation (GSD),
Vif(z¥)]?
br, € argmax e
g %EB {% D

although we still use the full matrix update after selecting block.
o Has same cost as GS under constraint that D, ;, = d; for set of d; values.

Greedy Rules with Matrix Updates

Performance on least sqaures (left) and 50-class logistic regression (right):
7.4 x10° 3.9 x 10%
6.1x10% -

3.4x10% -

4.9 x10% - 3.0x 10% -

4.0 x10° - 2.6 x 10% -

f(z) — f* for Least Squares on Dataset A
f(z)— f* for Softmax on Dataset C

9 -1 L 1 1 1 1 3 L
0310 0 100 200 300 400 500 2310 0

i
400 500
Iterations with 5-sized blocks

i i
200 300
Iterations with 5-sized blocks

I
100

o Here VB works much better than FB (difference larger for large batches).
@ There wasn’t a large advantage to using GSQ over simpler GSD.
o “Alittle Lipschitz information is all that's needed” (here we use d; = L;).

Matrix vs. Newton Updates

o The matrix update updates the block b using
ot = ap — (Hy,) 'V, f (),

based on an upper-bound Hy, .

@ For non-quadratic functions, Newton updates might make more progress,
opt = b — (Vi f(25) 7'V, f(2Y),

for a step-size ay.
o For example, we might have V7 , f(z*) << Hy,.
o Requires a line-search, but this is usually cheap on the block.

Greedy Rules with Newton Updates

Performance on 50-class logistic regression with matrix updates (left) and Newton updates (right):

3.9%10° g 3.9% 10° &

3.4x10% - 2.0x 10% -

f(z)— f* for Softmax on Dataset C
f(x) - f* for Softmax on Dataset C

3.0x10% - 1.1x10% -
2.6 x 10% - 5.4%10% -
3 L i I ' ' 2 L i i i i
23x10% 100 200 300 400 500 28107 100 200 300 400 500

Iterations with 5-sized blocks Iterations with 5-sized blocks

@ Notice the difference in the y-axis.

@ For variable blocks, the difference increases with the block size.

Cost of Higher-Order Updates

o Problem with matrix and Newton updates:
o O(7?) cost to solve a linear system with 7 variables.

@ Can we do better for problems with sparse Hessians?

o Gaussian elimination still requires O(73) due to “fill-in”.
o lterative solvers use sparsity but depend on condition number of block.

@ An alternative approach: choose the blocks to guarantee no “fill-in”.
o Allows exact solution of Newton system in O(r) to update “huge” blocks.

Graph-Colouring for Block Partitioning

o Consider treating the non-zero pattern in V2 f(2") as an adjacency matrix:

o A classic BCD approach is “red-black” ordering:

o Partition the nodes via graph colouring.
o Use the colouring as the blocks.
o Guarantees that sub-Hessians V7, f(z*) are diagonal.

@ So Newton step costs O(r).

@ In the lattice example, we update blocks of size n/2 in O(n).

Tree-Partitioning for Block Partitioning

o Diagonal matrices are not the only structure that allows O(r) solutions.

@ We considered forest-structured blocks:

0000 eseded
> Y e 0 leieled
> 56 5 0lededed
) e e e ey
40 5658 58 58 5
? e el e ey
? L e el el ey
? e el el ey
> S e e ledeled
> 5 6 5 0ledeled
D 6 600060600

@ Allows dependencies within the block, but can be solved in O(7).

o Key idea: define an arbitrary “root” of each tree and divide nodes into “levels”.

o Gaussian elimination starting from “leaves” guarantees no “fill-in”.

Solving Forest-Structured Linear Systems in Linear Time

t \ P RN PN
1]] T 1
° . I Ay ’
,[X‘ e
() (@) :: T
4'[X'\
0010 90 SRRC

F1G. 1. Process of partitioning nodes into level sets. For the above graph we have the following
sets: L{1} = {8}, L{2} = {6,7}, L{3} = {3,4,5} and L{4} = {1,2} .

@ Run Gaussian elimination from leaves to root:

Greedy Forest-Structured Blocks

o Instead of partitioning nodes into forests (“fixed blocks”),
we could find a new forest to update at each iteration (“variable blocks”).

@ We give an O(nlogn + |E|)-time algorithm to approximate GS forest.

o Based on sorting and using two levels of hashing.
o In the lattice example it tends to update ~ 2n/3 nodes.

Experiment: Sparse Quadratic Problem

@ Comparing different methods with O () cost on lattice (left) and label-prop (right):

1.0 x 10° g 7.2% 107 g

o w

o o

@ @

oo . oo L

£ 35x10° - 8 13x10' -

© ©

o o

c c

S S

o o

© p ©

5 12x10°- 5 02x10°-

& ®

3 S

o (<4

& &

T‘ 04x107" - T‘ 0.4x1072 -

= =

= =

-4 L i I i -4 L i i i
011075 100 200 300 400 500 081075 100 200 300 400 500
Iterations Iterations

@ Huge structured blocks improve significantly over GS rule with smaller blocks.

Superlinear Convergence?

@ When we think of Newton, we normally think superlinear convergence.

@ Does BCD have superlinear convergence?
@ No, not even with exact updates.
o E.g., 2-variable non-separable quadratic

— Possible to get superlinear convergence for problems with certain structures.

Optimization with Bound Constraints

@ Consider optimizing a smooth f plus a separable non-smooth g,
n
argmin f(z) + Zgi(xi)7
z€IRY i=1
which includes bound constraints and L1-regularization.
@ In this context we can use proximal gradient steps,

k41 k k
gkl = proxakgbk |:$ — akUkabkf(x)] s
and most issues are similar:

o FBvs. VB, gradient updates vs Newton updates, random vs. greedy selection.

@ Some differences:
o There are 4 non-equivalent generalizations of the Gauss-Southwell.
o The non-smoothness can lead to a faster convergence rate.

Manifold Identification Property

o Consider a problem with non-negative constraints,

argmin f(z) 4+ 6(x > 0).
z€R?

@ In this case proximal-gradient becomes projected-gradient:
l’
:Ek_H = [l‘k — akUkabkf(xk)

@ The non-negative constraints mean that we often obtain a sparse solution.
o E.g., non-negative matrix factorization.

@ Manifold identification property:
o For all k larger than some &/, sparsity pattern of z* is the same as optimal =*.

@ Once you have the manifold, algorithm converges faster on this subspace.

Manifold Identification Property

@ Manifold identification for bound constraints requires a mild assumption:
Vif(x*)>d>0ifzf =0.

@ We give a simple proof that greedy BCD finitely identifies manifold.
o Previously known for cyclic and random BCD.

o We give upper bounds on number of iterations before manifold is identified:

o For projected-gradient it happens after at most « log(2L|z° — x*||/9) iterations.
o Bound is slightly more complicated for BCD methods.

o Similar results hold for other non-smooth g; like L1-regularization.
o Assumption changes to V; f(z*) € int dg;(z}).

Superlinear Convergence and Proximal-Newton

o Manifold property suggest an obvious strategy:

o Run BCD for a fixed number iterations to identify manifold.

o Then apply (unconstrained) Newton method on non-zero variables.
@ But don’t know how logn to run BCD (just have upper bounds).
@ Some alternatives to “switching”:

o Hybrid methods: try BCD and Newton step, take best.
o Proximal-Newton BCD steps (not too expensive if blocks are small).

@ Can be computed exactly for piecewise-linear g; via homotopy methods.

o Two-metric projection BCD steps (compromise between cost/progress).

@ Superlinear convergence if using greedy rules with large-enough VB.

Superlinear Convergence and Proximal-Newton

o Experiments with L1-regularized least squares:

7.1%10° 7.1%10° 7.1%10°

<

]

&

5

a

<

§

B 23x10 1.6 19x10%

H

g 4

g

3 07x107 - 04 05x107

v 3

2 3]

®

&

8

<

2 3

&

B

|

SO ST w0 a0 a0 20 a0 om0 a0 02X 100 200 300 a00 soo 04X 107, 400 500
Iterations with 5-sized blocks Iterations with 50-sized blocks Iterations with 100-sized blocks

o Projected-Newton converges extremely quickly.
@ Two-metric projection is equally fast but with cheaper iterations.

o For large greedy/variable blocks, both methods converge finitely.

@ We proposed improved greedy rules for BCD methods.

o Incorporate gradient and Lipschitz information.
o Make substantially more progress on some problems.

o If you can afford to compute second-order information, you should.

o Newton updates with line-search tend to outperform fixed-matrix updates.
o Linear-time Newton steps for forest-structured blocks.
o Two-metric projection can handle constrained/non-smooth cases.

o We give non-asymptotic bounds on number of iterations to reach manifolds.

o Superlinear or finite convergence of BCD in some special cases.
o Bounds are probably useful in other settings.

