
Deep Kernel Mean Embeddings for
Generative Modeling and Feedforward

Style Transfer
by

Tian Qi Chen

B.Sc., The University of British Columbia, 2015

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2017

c© Tian Qi Chen 2017



Abstract

The generation of data has traditionally been specified using hand-crafted
algorithms. However, oftentimes the exact generative process is unknown
while only a limited number of samples are observed. One such case is
generating images that look visually similar to an exemplar image or as if
coming from a distribution of images. We look into learning the generating
process by constructing a similarity function that measures how close the
generated image is to the target image. We discuss a framework in which
the similarity function is specified by a pre-trained neural network without
fine-tuning, as is the case for neural texture synthesis, and a framework
where the similarity function is learned along with the generative process
in an adversarial setting, as is the case for generative adversarial networks.
The main point of discussion is the combined use of neural networks and
maximum mean discrepancy as a versatile similarity function.

Additionally, we describe an improvement to state-of-the-art style transfer
that allows faster computations while maintaining generality of the generating
process. The proposed objective has desirable properties such as a simpler
optimization landscape, intuitive parameter tuning, and consistent frame-
by-frame performance on video. We use 80,000 natural images and 80,000
paintings to train a procedure for artistic style transfer that is efficient but
also allows arbitrary content and style images.

ii



Lay Summary

While physical actions generate data in the real world, this thesis discusses
the problem of simulating this generation procedure with a computer. The
quality of the simulation can be determined by designing a suitable similarity
measure between a data set of real examples and the simulated data. We
contribute to this line of work by proposing and analyzing the performance
of a certain similarity measure that can be arbitrarily complex while still
being easy to compute. Furthermore, we contribute to the problem of
generating stylistic images by proposing an efficient approximation to the
existing state-of-the-art method.
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Chapter 1

Introduction

Augmenting real data with synthesis data can increase classification results
especially when data is scarce [78]. Conditionally generated data can be
used in applications such as fraud detection when there are few amounts
of customer data, or spam filtering due to the large imbalance of positive
and negative samples. It is also possible to simply generate images that are
aesthetically pleasing and entertaining. The generation process can be used
as an advanced image filter, such as a one that creates haunted buildings
and monster faces from normal photographs [92]. This kind of learned or
mimicked creativity allows fast production of artistic textures in creative
applications.

This thesis discusses methods for the synthesis or generation of data.
The act of creating new data requires sufficient knowledge of the underlying
properties of the real data. Though perfectly mimicking the data generating
process would require complete understanding of the real world, it is possible
to approximate the generating process with a simple model and few assump-
tions. For image data, it is possible to mimic the contours of a face, or the
artistic style of a painting. By using domain knowledge about the structure
of image patterns, recent methods have been able to synthesize compelling
new paintings of existing artistic styles. Methods that can create a seemingly
infinite number of new images from just a single exemplar painting can be
re-interpreted as mimicking particular patterns of the exemplar painting. By
only slightly perturbing the location of these patterns, new structure can be
injected into the painting. Existing methods for this task are slow or limited,
and in this thesis we propose a method to speedup the generating process
without sacrificing generality.

1.1 Generative modeling

A generative process describes how data are sampled and which factors
lead to specific changes in the samples. If the real underlying generative
process is known, then statistical properties and even causal relations can
be extracted. In an ideal setting, discriminative methods will no longer be
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1.1. Generative modeling

Figure 1.1: (Left) A latent variables model, where the observed data is
assumed to be a function of some hidden unobserved variables. (Right) A
generative model that approximates the generative process by first sampling
z then passing it through a learned function; the synthetic data is then
compared with real data to train the generative model.

hindered by limited number of samples, as samples can be generated freely.
Many detectors can become more robust to small changes by augmenting
the classifier with synthetic data. For instance, face detectors should not
be fixated on the specific shape or texture details of facial features. Such
overfitting can be avoided by having more data, but while real data is scarce,
synthetic data can be produced easily.

Typically the generative process is not known and only a finite number of
samples are present. When the generative process is not known or intractible
to infer, as is often the case for real world data, it is possible to approximate
the underlying process with a generative model. This generative model can
be trained using the finite samples that are available. Obviously the model
could be imperfect and can only replicate simple aspects of the generative
process. However, an approximate model can still be used to increase the
effectiveness of discriminative classifiers [78] and perform complex image
processing such as inpainting [93] or de-occlusion [96]. The generative model
can be further augmented to produce an approximate density estimation [13]
or extract cross-domain properties between pairs of datasets [42, 97]. This is
by no means an extensive list, and newer applications of generative models
are still being discovered.

Constructing a generative model and replicating the real generative
process can range from easy to incredibly difficult. Generating the outcome
of a coin toss or dice is much simpler than generating an image of a person’s
face or a piece of artwork. However, it may be possible that a complicated
image is composed of simpler components. For example, the structure of
a person’s face is fixed, with a set of facial features ranging in size and

2



1.2. Deep neural networks

shape. It may be possible to recreate, or at least approximate, the generative
process of a face image by flipping numerous coins. This is the idea that high-
dimensional data like images lie in a simpler lower-dimensional manifold. In
other words, the data is caused or described by a number of simpler variables.
An approximate model can then be constructed by first sampling these
simpler variables, then mapping or relating these samples to a point in the
high-dimensional space. This kind of generative model is often referred to as
a latent variable model, where an assumption is made that the data we want
to generate can be represented using a set of latent (hidden; unobservable)
random variables.

1.2 Deep neural networks

A model that maps a set of simple random variables to samples from the
data distribution can be a very complex function. The state-of-the-art model
for learning arbitrary relations is a deep neural network. The family of
models described by deep neural networks is extremely large, including
simpler models such linear or logistic regression. Recent works have shown
neural networks significantly outperforming other models in computer vision,
natural language processing, and generative modeling. Researchers have
only begun to understand the intricacies of properties that a neural network
learns. It is known that neural nets can be used to infer the latent variables
of a dataset [6] or be used to extract important properties of how humans
classify images [61]. For a history on the development of neural networks,
refer to a recent survey by Schmidhuber [80].

In simple terms, a neural network simply refers to a differentiable function.
Certain differentiable functions work better than others, or make different
assumptions on the input. A neural network f(θ) often has a fixed structure
or architecture f but tunable parameters θ. The output of f(θ) changes
accordingly depending on the values of θ. Training a neural net refers to
finding suitable parameters such that f(θ) has desirable properties. Due
to the large number of parameters available to a neural net, this versatility
has allowed networks to mimic highly complex functions. For the task of
approximating a generative process, a neural network’s output should be
samples from the data distribution.

In practice, certain neural network modules (functions) work better than
others. Certain modules make explicit assumptions on the input structure.
For example, a convolutional neural net extracts only translation-invariant
information from an image, as it makes the assumption that objects in an

3



1.3. Image synthesis tasks

image can appear in any spatial location and have the same meaning. A
convolutional layer can be seen as a trainable filter that slides across an image.
Prior to convolutional neural networks, computer vision researchers used
hand-designed algorithms that extract certain features (e.g. faces) from an
image. However, human engineered algorithms often do not perform as well
as a trained convolutional network when the true function is very complex.
In early research on texture synthesis, researchers defined texture using a set
of constraints such as periodicity and spatial homogeneity [17, 18, 72]. More
recent methods based on convolutional networks [22] have shown to work
with a larger set of images, especially colour images, though implicitly still
makes a spatial homogeneity assumption.

1.3 Image synthesis tasks

In this thesis, we discuss two related tasks, both regarding the generation
of images. The first task is to simply learn an approximate model of the
generative process of images, given a large set of examples. The examples
can be a dataset of natural images, faces, etc.

The second task is to learn a generative model of a certain type of artistic
style given only a single exemplar image. The first task is rather generic
and the methods can be applied to other forms of data, but the second task
requires more assumptions about the data, such that the painting style is
consistent throughout the image. A simpler extension of this task is style
transfer, where the artistic style of an image is transferred to the structural
content of another image.

Learning such generative processes is difficult. The most popular method
for training a neural net is gradient descent on a loss function L(f(θ)).
However, what is the correct loss function for these tasks? We look into a
very versatile and generic loss function called maximum mean discrepancy.
In simple terms, maximum mean discrepancy is a measure of difference
between two probability distributions, ie. the true data distribution and the
generative model distribution. This metric can be used for both tasks, makes
minimal assumptions about the data, and is easy to compute.

We combine maximum mean discrepancy with a neural network for both
tasks, though the first task is harder and requires an extra regularization
trick. We also discuss how a part of a recent popular style transfer algorithm
can be seen as minimizing the maximum mean discrepancy. We propose a
branch of fast style transfer algorithms by approximating the process with a
trained neural network.

4



1.3. Image synthesis tasks

The contributions of this thesis include:

• A generalization of generative moment matching networks, a certain
type of generative model, to make use of the representational power of
neural networks. We develop a regularization term to stabilize training
of the model, which shows improvement in generating colored images
compared to baseline generative moment matching networks.

• A new take on style transfer where a forced distributional alignment is
performed inside the feature space of a neural network, then inverted
back into image space. This process provides generalization to artistic
images not found in prior feedforward style transfer methods while
being faster than methods that are based on optimization.

5



Chapter 2

Background

2.1 Deep Learning

The works described in this thesis use deep neural networks as modeling
tools. These are flexible models that can express any multivariate continuous
function as long as the network has enough free parameters and enough
data to learn from [80]. Due to their unparalleled expressiveness, deep
neural networks are used extensively in computer vision, natural language
processing, and probabilistic modeling.

2.1.1 Modularity of neural networks

Neural networks are compositions of linear and non-linear functions, where
the non-linearities are typically applied element-wise and are differentiable.
The linear functions of the neural network introduce tunable weights, or
parameters, that change the output of the function. The composition of
functions lends to a high degree of modularity, as larger networks can be
created by composing smaller networks. In this context, the small networks
are often referred to as layers or modules. Intermediate outputs of the
each layer are called features or activations. In more complex applications,
networks modules can have separate use cases, be trained either independently
or altogether in an end-to-end fashion. For example, a variational autoencoder
[44] is a neural network where one module encodes data samples to samples
from a simple (e.g. Gaussian) prior distribution and another module decodes
samples from the prior distribution to data samples. Trained in an end-to-end
fashion, this network learns a latent variables model.

An important characteristic of neural nets is the differentiability of the
entire network by application of chain rule. In deep learning, the execution of
the function is called forward propagation and computing the gradient (first
derivatives) with respect to its input and weights is called backpropagation,
as gradients are propagated from the end of the network to the input layer.

6



2.1. Deep Learning

2.1.2 Learning by gradient descent

As the entire network is differentiable, the most popular method of finding
the best values for the weights of the network is through gradient descent,
a first-order optimization technique. Gradient descent in its simplest form
finds local minima of continuous functions

argmin
w

L(X,w) (2.1)

where X represents the data, w are the weights of the network, and L is a
loss function. The loss function can contain a neural network itself, whereby
after the optimal w is found, only the neural network is used for inference.

Gradient descent is a simple iterative method where at each iteration the
weights w are perturbed slightly to improve the loss function. The update
equation is

wnext = w − α∇wL(X,w) (2.2)

where ∇wL(X,w) is the gradient, denoting the multivariate first-order deriva-
tives of L(X,w) with respect to w, and α is the step size.

However, when the amount of data is large, even computing L(X,w) can
be intractable. As gradient descent is an iterative procedure, a few thousand
iterations are needed depending on the dimension of the weight vector w, ie.
the degree of freedom in the neural network.

To alleviate the problem of having a runtime being dependent on the
amount of data, stochastic gradient descent is used in practice. Assuming
the loss function can be decomposed as

argmin
w

N∑
i=1

Li(Xi, w) (2.3)

then stochastic gradient descent looks only at a single sample xi per iteration.

wnext = w − α∇wLi(xi, w) (2.4)

While the number of iterations required to find the best solution to (2.3) may
be higher than solving (2.1), stochastic optimization will typically find decent
solutions quickly, as the weights can be updated before even observing the
entire dataset. In practice, a small number of samples, called a minibatch, is
used per iteration.

One downfall of stochastic gradient descent is its performance near-
optimum is quite noisy. As the optimization only sees a handful of samples
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2.1. Deep Learning

each iteration, convergence is reliant of reducing the step size to zero; oth-
erwise, the optimization never converges. It is possible to have the best of
both the speed of stochastic gradient descent and the convergence proper-
ties of gradient descent by a branch of methods called stochastic average
gradient [81]. Other improvements on stochastic gradient descent exist,
such as momentum and per-element estimation of curvature. For survey
on numerical optimization algorithms in the context of machine learning
applications, see [4].

2.1.3 Choice of network modules

Though many functions are differentiable, not all are useful in practice.
Certain non-linear functions are more amenable to gradient descent opti-
mization, and linear functions can contain structural information that allow
training to progress faster. The problem of vanishing and exploding gradients
exists during backpropagation when certain modules significantly decrease
or increase the magnitude of the gradient from one module to another. As a
neural network becomes deeper (composed of more and more modules) the
gradient can entirely vanish to zero or explode to large enough values to cause
numerical instability. Architectural changes to neural networks have been
proposed to counter this problem, such as the use of batch normalization [38],
residual layers [30], and many others. These methods allow deeper neural
networks to be trained using just gradient descent.

Imposing structure in neural networks is another interesting direction.
The most popular structured linear layer is the convolutional layer, which
is widely used in computer vision and more recently in natural language
processing. Generic convolutional layers impose the constraints of locality
and translation-invariance. Each output neuron of a convolutional layer only
depends on a local region of the input, and the same function is applied
to each region. This formulation is particularly intuitive for images as the
convolutional layer learns filters that slide across the image and computes
a cross-correlation score at each region of the input, indicating whether a
particular pattern exists in that region of the input. Convolutional neural
networks are the standard in image processing [45, 82], where the winning
entry in ImageNet competitions [77] use cleverly designed convolutional
layers stacked with non-linear activation functions.

Transposed convolutional layers, a variant where the forward propagation
and backpropagation algorithms are reversed, are used to upsample image
activations. Transposed convolutions are used in applications for semantic
segmentation [59], super-resolution [49], image synthesis [74], and other

8
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problems where activations of a small spatial activation must be upsampled
to a larger spatial resolution. See [15] for illustrations.

2.2 Loss functions

Similar to the choice of network architecture, choosing an appropriate loss
function is essential to solving any problem with gradient descent. In a
supervised learning problem setting, each input xi is paired with an output
value yi. One can train a neural network f(x,w) to learn the relation between
each xi and yi. A common loss function is the squared L2 norm between the
neural network output and desired target yi

L(xi, yi, w) = ||f(xi, w)− yi||2. (2.5)

Variants include using a different norm or thresholding the loss if yi is
categorical.

The supervised learning setting typically use loss functions defined on
real-valued input/output vectors. However, in certain settings of generative
modeling, the set of inputs and outputs are not necessarily paired. When
the objective is to train the neural net such that f(x,w) follows a specific
distribution (where either one or both of x and w may be random), simple loss
functions used in supervised learning do not suffice. Instead, one must define
loss functions that differentiate between probability distributions rather than
real-valued samples.

It should be noted that using the mean squared error (2.5) to train a
supervised learning problem can be perceived as assuming elements of the
network output f(x,w) follow independent Normal distributions. Other loss
functions have similar implications, such as the L1 loss function and Laplace
distribution. However, the difference between a loss function defined on
real-valued vectors and a loss function defined on probability distributions
is that the particular sample of x is assumed to be random as well and
there is no corresponding value of y. Instead, f(x,w) is seen as a random
vector defined by the particular distribution of x. The neural network should
map the distribution of x to the distribution of y, rather than learning
the distribution of y conditioned on single samples of x. The two types of
modeling are referred to as generative and discriminative, which model the
distributions p(x, y) and p(y|x) respectively.

The latent variables model tries to learn how samples z from a simple
distribution distribution can be used to generate samples x from a complex
data distribution. This problem definition, contrary to a supervised learning
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setting, does not explicitly assume any particular pairing between individual
samples z and x but that any reasonable pairing will suffice. Thus in this
unpaired setting, a type of unsupervised learning, only loss functions defined
on the distributions of z and x can be used.

2.2.1 Divergences

Measuring the difference between probability distributions is not easy. Some
measures make the assumption that the distributions are known, some are
not proper metrics, and some are simply intractable to compute.

Let px and py be two continuous distributions while also representing
their density functions. One family of consists of f-divergences of the form

Df (px||py) = Es∼py
[
f

(
px(s)

py(s)

)]
(2.6)

where f must be a convex function such that f(1) = 0. Different divergences
can be constructed by the choice of the function f [71]. Intuitively, this
measure of difference computes the average of the odds ratio px/py weighted
by the function f . When f(t) = log t, (2.6) is the popular Kullback-Leibler
divergence, seen in variational inference.

The biggest disadvantage of using f-divergences is px/py must be com-
putable, and the expectation over py must be known. For the latter reason,
the reverse divergence Df (py||px) is some times used if the expectation under
px is easier to compute. However, f-divergences are typically asymmetric
and the choice of Df (px||py) or Df (py||px) can have implications that are
not fully understood.

2.2.2 Integral probability metrics

We describe a more general class of difference measures on probability distri-
butions called integral probability metrics (IPMs). Given two distributions
px, py on the same support, an IPM can be used to provide a proper metric
defined using the supremum over a function class F ,

IPM(F , px, py) = sup
f∈F

∣∣Ex∼px [f(x)]− Ey∼py [f(y)]
∣∣ . (2.7)

Intuitively the function f extracts meaningful statistics that can be used
to discriminate between the two distributions. Conversely, if px and py are
the same distribution, then the mean of any function under px and py are
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the same. The function class F must be chosen to be rich enough but also
tractable to compute.

Depending on the choice of F , different named metrics can be constructed.

• F = {f : ||f ||∞ ≤ 1} results in the total variation distance. These
functions are bounded between -1 and 1.

• F = {f : ||f ||L ≤ 1} results in the Wasserstein distance. These
functions are smooth 1-Lipschitz.

• F = {f : ||f ||H ≤ 1} results in the maximum mean discrepancy (MMD).
These functions are within the unit ball of a reproducing kernel Hilbert
space (RKHS) defined by a well-behaved kernel function.

Note that the constants 1 in the above definitions are merely convention and
can be any number. Using a different constant simply scales the metric by
the same amount. Note also that this is an non-exhaustive list.

A nice property of integral probability metrics is that they are proper
metrics, as opposed to f-divergences which do not satisfy all properties of a
metric. Importantly, the definition of IPMs does not require the computation
of px or py, only an expectation which can be approximated using only
samples. However, this also comes at the cost of increased computational
complexity, as finding the supremum over a class of functions is often in-
tractable. So far the only IPM that can be tractably computed is maximum
mean discrepancy.

2.2.3 Maximum mean discrepancy

When the set F is the unit ball in a reproducing kernel Hilbert space (RKHS)
H with kernel k(X ,X ) → R, the IPM metric (2.7) is known as maximum
mean discrepancy (MMD). For every positive definite kernel, the RKHS
is uniquely defined and there exists a feature mapping φ : X → H such
that k(x, y) = 〈φ(x), φ(y)〉H. This means that while H may be an infinite
dimensional function space, the inner product can still be tractable computed
using only the kernel function; this is known as the kernel trick.

The idea of feature maps is extended to probability distributions by
defining the kernel mean embedding of p as

φ(p) := µp =

∫
k(x, ·)p(x)dx = Ex∼pk(x, ·) (2.8)

An amazing property is the function attaining the supremum is known
up to a constant [26] as

f∗(·) ∝ Ex∼pxk(x, ·)− Ey∼pyk(y, ·) (2.9)

11



2.3. Generative adversarial networks

This is referred to as the witness function because it witnesses the difference
in distributions. Intuitively, the witness function puts high values on samples
from px and low values on samples from py. For samples from regions
where px and py have similar densities, the witness function is near zero. By
plugging (2.9) into (2.7), the squared MMD is computable in closed form [26],

MMD2(k, px, py) = Ex,x′∼px,px [k(x, x′)] + Ey,y′∼py ,py [k(y, y′)]

− 2Ex,y∼px,py [k(x, y)]
(2.10)

Maximum mean discrepancy as a measure of difference on probability
distributions can be extremely powerful as it is both tractable to compute
and satisfies properties of a metric. Specifically, for certain choices of kernels
known as characteristic kernels, MMD is zero if and only if px = py. However,
this often does not hold in practice as only a finite number of sample is
observed. Moreover, empirical uses of MMD typically involve manually
finding the “right” kernel function that works well for the specific data
distribution. In high dimensional spaces, choosing the kernel function often
requires heuristics and intuition. (For instance, the popular Gaussian kernel
relies on Euclidean distance to be meaningful, but the distance of images
represented in RGB do not accurately reflect semantic differences.) As
a result, MMD has not shown much progress in modeling complex high
dimensional distributions. See the recent survey by Muandet et al. [67] for
more information.

Instead of manually choosing a kernel function from a handful of functions,
it is possible to learn a kernel function that optimizes the discrepancy measure
for a specific task. The kernel function can be parameterized by a neural
network, then trained to optimize a specific objective. The neural net can
also be viewed as a feature extractor that maps the input space to a low-
dimensional manifold where a simpler kernel function can be used more
effectively. This is discussed further in Chapter 3.

2.3 Generative adversarial networks

Generative adversarial networks in its simplest form consists of a generator
network G and an auxiliary discriminator network D. The generator network
takes random samples from a prior distribution pz and outputs samples in
a single forward pass. The goal is to train the generator network to be a
powerful generative model that can directly learn the generating process of
the target data distribution px.
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2.3. Generative adversarial networks

Original GAN. The pioneering approach proposed by Goodfellow et
al. [25] trains the discriminator network to compare the generated samples
with real samples from the data distribution in a binary classification task,
while the generator network is trained to fool the discriminator in the
following objective function:

min
G

max
D

Ex∼px [logD(x)]− Ez∼pz [log(1−D(G(z)))] (2.11)

Ironically, in practice if the discriminator is able to perfectly distinguish
generated and real samples, then no information is passed to the generator
network and training stagnates. This is due in part to D having to squash
the output to be in (0,1) with a sigmoid layer, which results in vanishing
gradients if the output is close to 0 or 1. When the generator is far from the
optimum, the discriminator has a much easier time discriminating between
generated and real samples. This leads to the output of D being very close
to 0 or 1. This introduces instability during training and is only remedied
by careful tuning of network architectures and balancing between training D
and G.

Generative Moment Matching Networks. As an alternative to the
GAN two-player objective function, Dziugaite et al. [16] and Li et al. [55]
propose to remove the adversarial aspect and use the MMD objective.

min
G

Ex,x′∼px,px [k(x, x′)] + Ez,z′∼pz ,pz [k(G(z), G(z))]

− 2Ex,z∼px,pz [k(x,G(z))]
(2.12)

The biggest advantage of MMD is that the supremum is implicit, so an
adversary is not necessary. The proposed algorithm minimizes an empirical
estimate of (2.10) with an additive sum of fixed Gaussian kernels. An
alternative version proposed by [86] instead trains the discriminator to
maximize the power of the statistical test associated with MMD. While they
can also fine-tune the specific bandwidths of the Gaussian kernel to critic
a trained generative network, existing works are unable to simultaneously
train a generative model and optimize the kernel.

Approximate IPM GANs. Recently Arjovskyet al. [2] propose to use
the Wasserstein distance to train the generative network. This is equivalent to
minimizing an IPM with F the set of all 1-Lipschitz functions. An auxiliary
discriminiator network (also referred to as critic) is then used to approximate
the supremum over F . Note that if ∀f ∈ F =⇒ −f ∈ F , then the absolute
sign in (2.7) can be removed. This results in the following objective function

min
G

max
D:||D||L≤1

Ex∼px [D(x)]− Ez∼pz [D(G(z))] (2.13)
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2.4. Texture synthesis and style transfer

Another recent formulation called mcGAN proposes to use functions f that
are finite but multidimensional and match both the mean and covariance of
the output of f . This formulation is a special case of our proposed neural
MMD with a polynomial kernel of degree 2 and bias 1.

In practice, the resulting GAN algorithms no longer use log and sigmoid
functions, so problematic gradients due to asymptotes are gone. Additionally,
both WGAN and mcGAN seem to have reduced or even solved the problem
of mode collapse often seen in the original GAN formulation. This may be
attributed to IPMs being proper metrics rather than divergences.

However, the current IPM-based GAN algorithms do have some downsides.
The proposed WGAN algorithm clips the weights of the discriminator to
be within a pre-specified interval to enforce a Lipschitz constraint while
the mcGAN algorithm does the same to enforce a bounded constraint.
Weight clipping is a simple operation but using it can lead to failure in
training as existing stochastic optimization methods can conflict with such a
constraint [28].

Moreover, mcGAN performs QR decomposition at every update iteration
to ensure orthogonality of weights. An improved version of WGAN [28]
instead adds a regularization term that encourages the discriminator to be
1-Lipschitz along the path between the generated samples and real samples.
Both are additional computation that are more expensive than the original
GAN algorithm. Additionally, due to the need to approximate the unknown
supremum, the discriminator is trained for more iterations than the generator
network. This encourages stability during training but convergence is slower
than the original GAN [28].

2.4 Texture synthesis and style transfer

The generation of images started with synthesizing textures. These are
images that exhibit a homogeneous property, such that small patches of the
image look similar and often display the same pattern. Methods designed for
this task [18, 47, 56, 89] often specify an algorithmic approach that generates
the image one pixel or small patch at a time. To generate a new pixel, the
neighbouring region is typically matched with patches from the exemplar
texture image, and the new pixel is picked based on the best matching
texture patch. This often works well for simple patterns but does not work
as well for complicated artistic images. Even the choice of similarity function
between patches is important. For example, simple pointwise differences in
color images typically do not have any meaningful interpretaton. That is, it
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is difficult to create a similarity function that conveys visual perception.
More recent methods for texture synthesis operate by specifying a complex

similarity function between the generated texture and the real texture. This
is often done by taking texture patches as data points, and defining a
similarity function based on patches. Methods have been proposed for using
principal components [50], wavelet transformation [72], and neural networks
[22] that aid in defining such similarity functions by essentially shifting the
representation of images to a different domain. The new domain allows
conventional distance metrics to become more visually meaningful.

While it is harder to realize the generative process using the second
approach, better results are often achieved by these as they only implicitly
define the generative process. The key is in choosing a good similarity
function, which arguably is more adaptable to different textures and styles,
rather than designing the generative process directly which explicitly assumes
certain properties of the texture image such as periodicity or size of its
patterns.

2.4.1 Neural style transfer

We describe the work of [22] and [24] in more detail, as their method has
achieved surprising results and renewed interest in the area. The significant
increase in visual quality come from the use of convolutional neural networks
(CNN) for feature extraction [19, 21, 23, 51]. The success of these methods has
even created a market for mobile applications that can stylize user-provided
images on demand [37, 73, 85].

For texture synthesis, we are given a style image S and we want to
synthesize an output image Y . These images are passed through a CNN,
resulting in intermediate activations for some layer l which we denote by
Sl ∈ RMl×Dl and Yl ∈ RNl×Dl . Here Dl is the number of feature maps for
layer l and Nl,Ml are the sizes (height times width) of each feature map for
the output and style images respectively. The style reconstruction loss for
layer l as defined by [24] is as follows:

L(l)style =
1

4NlMlD
2
l

||G(Sl)−G(Yl)||2F (2.14)

where G(F ) := F TF ∈ RDl×Dl is the Gram matrix. The complete style
reconstruction loss is a sum over multiple layers with differing sizes of
receptive fields,

Lstyle =
∑
l∈Ls

αlL
(l)
style (2.15)
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where Ls is a set of layers and αl is an additional tuning parameter, though
typically al is simply set to 1. To adapt this loss for style transfer, an
additional content image C is provided. With Cl ∈ RNl×Dl denoting the
content activations, the output image is asked to minimize the following
content reconstruction loss best m

Lcontent =
1

2
||Cl − Yl||2F (2.16)

for some layer l. Note that while the style reconstruction requires the use
of multiple layers, in practice only a single layer is used for the content
reconstruction. The complete loss for neural style transfer is then formulated
as a weighted sum of the style and content reconstruction losses.

Ltotal = λLcontent + (1− λ)Lstyle (2.17)

It is clear that the texture synthesis formulation is matching some statistics
of the style image, while using a CNN to map images to a more meaningful
manifold. However, this had not been rigorously investigated until recently
by [54], who showed that the style reconstruction loss is equivalent to a
biased estimate of maximum mean discrepancy, a family of (pseudo-)metrics
defined on probability distributions.

Patch-based MMD Minimization

The loss function (2.14) may appear unintuitive, but the underlying similarity
function is maximum mean discrepancy, as was shown by Li et al. [54]. The
CNN is applied to patches of the input image, and for each patch a sample
vector representation is extracted. The loss function (2.14) assumes these
vector samples are from a certain distribution and compares them between
the generated image and the exemplar image.

With k(x, y) = (xT y)2, the squared MMD defined on patch samples
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2.4. Texture synthesis and style transfer

Figure 2.1: Illustration of neural texture synthesis [22] and style transfer
[24]. Multiple losses are defined at different layers of a convolutional neural
network. The synthetic image must match minimize the L2 norm between
its features and those of the content image, while also minimizing the MMD
(2.18) between its features and those of the style image.
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S = {si} and Y = {yj} is proportional to the style reconstruction loss.

MMD2
b [X,Y ] =

1

N2

 N∑
i,i′=1

k(si, si′) +
N∑

j,j′=1

k(yj , yj′)− 2
N∑

i,j=1

k(si, yj)


=

1

N2

 N∑
i,i′=1

(sTi si′)
2 +

N∑
j,j′=1

(yTj yj′)
2 − 2

N∑
i,j=1

(sTi yj)
2


=

1

N2

[
||SST ||2F + ||Y Y T ||2F − 2||SY T ||2F

]
=

1

N2
||STS − Y TY ||2F

(2.18)

The last line is proportional to (2.14), indicating that texture synthesis is
taking activations from an image and viewing these activations as a dataset.
The neural texture synthesis method then creates a new synthetic set of
activations by minimizing the MMD between the original and synthesized
activations. Note that the activations are not independent, as the convolu-
tional layers of the CNN creates local dependencies in the outputs. In fact,
the method works precisely because the activations are dependent on each
other due to overlapping regions between the receptive fields. This allows
the method to create varying textures while remaining visually similar to
the original texture, assuming homogeneity.

It is possible to interpret the neural style transfer algorithm as using a
specific kernel on the pixels of the image. This kernel is a concatenation of
the polynomial kernel of degree 2 and the CNN. Specifically, small patches
of the image is passed through the CNN to obtain single activations, which
are then passed to a kernel as a similarity function. This interpretation is
in line with interpreting neural nets as learnabe complex feature extractors.
In this case, the CNN is trained on a fairly challenging dataset, then used
as a mapping between arbitrary images and an activation space where the
polynomial kernel more semantically meaningful than used directly on the
pixel space.

With this interpretation, the effectiveness of neural texture synthesis is
easy to understand. It assumes that the image has homogeneous patterns and
tries to generate a new image that contains similar homogeneous patterns.
Figure 2.2 illustrates this idea, though the actual distribution matching is
done at the feature-level inside multiple layers of a convolutional neural
network.
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Figure 2.2: Neural texture synthesis views patches of the exemplar texture
as samples and synthesizes a new image that minimizes the MMD between
the synthetic patches and the exemplar patches.

The constraints of a convolutional neural network acts in an interesting
manner for texture synthesis. If the patches of an image can be changed
without any constraints, then MMD to zero can be minimized by mimicking
the exact patches of the exemplar texture. However, different random noise
can result in different textures because the convolutional neural network
constrains that patches overlapping with each other must have the same
values. This is also due to gradient descent being able to only find local
optima. The use of a content reconstruction loss for style transfer acts
similarly to constrain specific textures in certain regions on the image such
that the generated image looks similar in structure to the content image.

Different choices of kernel and neural network

The authors of [22] recommend using the VGG-19 network architecture
[82]. We try out different network architectures and kernel functions and
find that this combination can lead to drastic changes in the generated
result. Generated samples are shown in Figures 2.3, 2.4, and 2.5. The
convolutional neural networks are trained on ImageNet. For each architecture,
every downsampling layer (pooling or strided convolution) is used in a style
reconstruction loss.

It seems that out of the four architectures tested, VGG19 with the
polynomial kernel of degree 2 does perform best. Perhaps the way that the
CNN was trained, or the architecture of the CNN itself, inhibits the use
of the RBF kernel. A similarity mertic based on the dot product between
CNN activations may more semantically align to our perception of visual
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features than a similarity metric based on the Euclidean distance between
CNN activations. It is yet unclear how to construct the optimal network
architecture and kernel function for this method.
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Figure 2.3: Comparison of texture synthesis results using different MMD
kernels defined by the composition of a classifical kernel and a convolutional
neural network. (Part I)
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Figure 2.4: Comparison of texture synthesis results using different MMD
kernels defined by the composition of a classifical kernel and a convolutional
neural network. (Part II)
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Figure 2.5: Comparison of texture synthesis results using different MMD
kernels defined by the composition of a classifical kernel and a convolutional
neural network . (Part III)
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Chapter 3

Kernelized GAN

This chapter describes the use of maximum mean discrepancy as a criteria
for training a generative model. Similar to generative adversarial networks
(GANs), the kernelized GAN uses a neural network to discriminate between
the real distribution and a distribution of outputs from a simultaneously-
trained generator network. Once trained, the distribution of generator
samples should be similar to the data generating distribution.

3.1 Motivation

Existing formulations of the GAN adversarial game are theorically equivalent
to minimizing some divergence or probability metric between the real distri-
bution (Section 2.3). The generator network minimizes this criterion while a
discriminator tries to maximize it. A powerful discriminator should ideally
be able to find discriminative features that separate the real data and the
generated data, while also providing meaningful gradients to the generator.

This isn’t always the case, however, when the discriminator is a fixed-
length neural network. The network is usually not be powerful enough
to exactly discriminate between the real and generated samples (even for
finite samples). We propose the use of kernels to efficiently improve the
complexity of the discriminator without requiring extra layers. This approach
is theoretically motivated by the use of maximum mean discrepancy with
a trained feature extractor, which is referred to as the discriminator in our
approach.

Figure 3.3 shows the use of GMMN and our approach with a trained
discriminator and Gaussian kernel. GMMN does not use a trained discrimi-
nator and already achieves superior performance compared to WGAN. For
the 25-Gaussians problem, our approach does not visibly show a significant
improvement upon GMMN, but one neat advantage is our approach is much
less sensitive to the kernel parameter whereas we had to tune the bandwidth
of the Gaussian kernel used in the toy GMMN illustration carefully to obtain
good results.
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3.2. MMD with a trained feature extractor

Near the completion of this thesis, [53] independently proposes a similar
method to combine MMD and adversarial training. However, their work
requires an additional autoencoder whereas we show here that having a
regularization term is sufficient to stabilize training. We also emphasize the
existence of training instability when this regularization term is omitted.

3.2 MMD with a trained feature extractor

First, we define the deep MMD objective by appending a discriminator to
the MMD criteria,

L(G,D) = Ex,x′∼px [k(D(x), D(x′))] + Ez,z′∼py [k(D(G(z)), D(G(z′)))]

− 2Ex,z∼px,pz [k(D(x), D(G(z)))]

(3.1)

where k is any kernel function, px is the data distribution, and pz is a fixed
prior distribution. However, naively appending a discriminator does
not work. To see why, first note that while integral probability metrics are
typically defined as

IPM(F , px, py) = sup
f∈F
|Ex∼pxf(x)− Ey∼pyf(y)| (3.2)

If ∀f ∈ F ,−f ∈ F , then the absolute value sign can be removed. The
simplified asymmetric1 version

IPM(F , px, py) = sup
f∈F

Ex∼pxf(x)− Ey∼pyf(y) (3.3)

is used in existing IPM-based GAN frameworks [2, 28, 66]. Intuitively
understanding the use of the asymmetric version (3.3) in a two-player GAN
framework is straightforward. The discriminator’s role is to approximate
the supremum, so we refer to it as f in the following. The generator and
discriminator both attempt to increase the value of f applied to the generated
and real samples, respectively. However, using (3.2) would not lend to such
simplification. The value of f for generated samples must “chase” the real
samples. This allows the discriminator to skirt around the generator at every
iteration, without necessarily providing any meaningful gradients
to the generator.

1We refer to this equation as the asymmetric version because IPM(px, py) is not
necessarily equal to IPM(py, px) for a fixed f .
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Figure 3.1: (a) Depiction of training instability with using the symmetric IPM.
(b) Plots of the values of Ef(x) and Ef(G(z)) during the course of training
WGAN on CIFAR-10. For the rightmost figure, we add an asymmetric
regularization described in (3.5) to stabilize training.

We show this instability in Figure 3.1. It is clear that when the generator
is nearing optimum, the discriminator simply switches the sign of f and this
causes the generator to become unstable. Let Sf be the subset of F that
achieves a higher value than f in either (3.2) or (3.3) depending on context.
We suspect that when the generator network shifts its outputs to minimize
the IPM defined by the current discriminator, |Sf | may actually increase
instead of decrease. Whereas when the asymmetric IPM is used, |Sf | should
clearly decrease if the generator improves.

Visual samples are shown in Figure 3.2. While the generator still learns
the general shapes and colors of the real data, there are visible large dark
spots in the generated samples when either the absolute IPM or squared
IPM is used.

For the same reason, naively adding a trained discriminator to the GMMN
framework creates instability during training as only the squared MMD is
computable in closed form.

MMD2(k, px, py) =Ex,x′∼pxk(x, x) + Ey,y′∼pyk(y, y′)

− 2Ex,y∼px,pyk(x, y).
(3.4)

3.2.1 Fixing instability with asymetric constraints

The aforementioned instability problem occurs when the discriminator has
multiple directions that can increase the IPM criterion. To fix this, we
propose adding an asymmetric regularization term to the criterion that
forces the discrimator to move in a single direction. This results in the
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3.2. MMD with a trained feature extractor

(a) supf∈F Ef(x)− Ef(G(z)) (b) supf∈F |Ef(x)− Ef(G(z))|

(c) supf∈F (Ef(x)− Ef(G(z)))
2

(d) supf∈F (Ef(x)− Ef(G(z)))
2

+
min(Ef(x)− Ef(f), 0)

Figure 3.2: Random samples after 100 epochs of training WGAN with weight
clipping (F = {f : ||f ||L ≤ 1}) on CIFAR-10. The specific loss function used
to train the discriminator is shown below each figure.

27



3.2. MMD with a trained feature extractor

following two-player GAN framework,

min
G

L(G,D)

max
D

L(G,D)− λ||min{Ex∼pxD(x)− Ez∼pzD(G(z)), 0}||2
(3.5)

where L(G,D) is as defined in (3.1). The added regularization term is nega-
tive whenever D(x) < D(G(z)), and zero otherwise. In order to maximize
this expression, D is constrained such that D(x) ≥ D(G(z)). We use the L2
norm to enact a larger penalty for large deviations so that the discriminator
can quickly move back into the constrained region, while only a smaller
penalty is given for small deviations so the discriminator does not focus on
this regularization term too much. We find that larger values of λ work
better, especially at the beginning of optimization as we want to force the
discriminator to be in the right direction as early as possible.

3.2.2 Empirical estimates

We use an unbiased estimate of MMD [26]. For each minibatch of real
samples {xi}ni=1 and prior samples {zi}ni=1, the empirical loss function is
defined as

L̂(G,D) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(D(xi), D(xj))

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(D(G(zi)), D(G(zj)))

− 2

nm

n∑
i=1

n∑
j=1

k(D(xi), D(G(zj)))

(3.6)

The generator and discriminator networks are then trained using

min
G

L̂(G,D)

max
D

L̂(G,D)− λ

∣∣∣∣∣∣
∣∣∣∣∣∣min

 1

n

∑
i

D(xi)−
1

n

∑
j

D(G(zj)), 0


∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.7)

3.2.3 Kernels and hyperparameters

We experiment with the linear and Gaussian kernels. The linear kernel is
the simplest and can be computed directly as a dot product,

kL(x, y) = xT y. (3.8)

28



3.2. MMD with a trained feature extractor

The Gaussian kernel is a popular radial-basis kernel with a tunable parameter
γ.

kG(x, y) = exp(γ||x− y||2) (3.9)

Note that one big advantage of combining a kernel with a deep neural network
is that the network can adapt to the kernel being used. This implies that
the parameter γ need not be manually specified, as the weights of the neural
network can simply learn to scale itself to effectively use any gamma.

We additionally experiment by approximating the Gaussian kernel with
random kitchen sinks (RKS) [75] features. Random kitchen sinks constructs
approximate explicit features Φ̂(·) such that Φ̂(x)T Φ̂(y) ≈ kG(x, y). This ap-
proximate computation allows MMD to be computed in linear time, allowing
larger minibatch sizes to be used in practice (see Appendix A for details).
In experiments, we show that this approximation does not lead to obvious
sample degradation. The RKS function Φ : Rd → Rs is defined as

Φ̂(x) =

√
2

s
cos
(√

2γWx+ b
)

(3.10)

where W ∼ Normal(0, 1), b ∼ Unif(0, 2π). The approximation quality
increases with s but is independent of d [75]. We fix s at 300 in our
experiments.

3.2.4 Intuitions behind the squared MMD objective

Let kD(·, ·) = k(D(·), D(·)). A kernel function can be intuitively understood
as a similarity measure between its two inputs. The squared MMD objective
contains three terms

MMD2(k, px, py) = Ex,x′∼px,px [kD(x, x′)]︸ ︷︷ ︸
kxx

+Ey,y′∼py ,py [kD(y, y′)]︸ ︷︷ ︸
kyy

− 2Ex,y∼px,py [kD(x, y)]︸ ︷︷ ︸
kxy

The discriminator tries to minimize kxx and kyy. The minimization of these
terms ensures that the discriminator places the data from each distribution
in a similar area of the activation space. The discriminator tries to maximize
kxy. This term contains the similarity between real and generated data, so
the discriminator will try to place them in different areas of the activation
space. This discriminator can be seen as clustering the two data distributions
based on the choice of kernel function.
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(a) WGAN (b) WGAN-GP (c) MMD (d) Kernelized GAN

Figure 3.3: IPM contours based on (a) approximate WGAN with weight
clipping [2], (b) approximate WGAN with gradient penalty [28], (c) maximum
mean discrepancy with Gaussian kernel, and (d) maximum mean discrepancy
with trained discriminator and Gaussian kernel. The contour lines for
kernelized GAN appear very close to the samples.

On the other hand, the generator tries to minimize kxy while maximizing
kxx. The minimization of kxy is the main objective that drives the generator to
produce similar samples to real data. The maximization of kxx is interesting
as the kernel function can be interpreted as a similarity function, so this
implies that the generator should generate dissimilar samples. If the generator
always creates the same samples, or a limited number of samples, then kxx
will be low, whereas if the generator creates different samples all the time,
then kxx will be high. This term explicitly enforces the generator distribution
to have high diversity.
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3.3. Experiments

3.3 Experiments

3.3.1 Toy distributions

We first show that the use of kernels do in fact help discriminate between
distributions when only a finite function approximator is used. Though this
property is difficult to observe in higher dimensions, it can be easily shown
for synthetic toy distributions.

Figure 3.3 shows the resulting IPM contours based on different IPM esti-
mates. The discriminator, when applicable, is a small multilayer perceptron
with 4 ReLU layers and 64 hidden units. The contour lines show the values
of f(·), which are either the discriminator output for WGAN methods or
the witness function (2.9) for MMD and kernelized GAN. The orange points
are samples from the real distribution while the “fake” distribution (not
shown) is fixed to be the real distribution plus a small Gaussian noise. This
implies that the boundary separating the real and fake distributions need to
be extremely tight in order to correctly discriminate between them. However,
only the MMD and kernelized GAN methods are able to discriminate between
different clusters due to the use of a radial-basis kernel function.

This experiment shows that for the same discriminator architecture,
kernelized GAN can provide a much more complex discriminative surface
compared to WGAN. This is because kernelized GAN uses an exact maxi-
mum mean discrepancy with an optimized kernel, whereas WGAN uses an
approximation to the Wasserstein distance. Note that in order to obtain
nice contours for MMD, we had to manually tune γ for the Gaussian kernel
(3.9). Whereas for kernelized GAN, we kept γ = 1 and only tuned the
discriminator.

3.3.2 Qualitative samples

We show some random qualitative samples from our trained generators. By
default, we use a minibatch size of 64 during training and the Gaussian
kernel. All generator and discriminators use the DCGAN architecture [74].

MNIST. This dataset contains handwritten digits centered at a resolu-
tion of 28× 28. Figure 3.4 shows random samples from trained generative
moment matching networks (GMMN) and a kernelized GAN. Note that the
GMMN algorithm requires using multiple Gaussian kernels with different val-
ues of γ and a large number of samples per iteration. In contrast, kernelized
GAN discriminator can adapt to any value of gamma and so only a single
Gaussian kernel is needed. The kernelized GAN can be successfully trained
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Real GMMN (64) GMMN (1024) Kernelized GAN

Figure 3.4: Random samples from MNIST dataset. GMMN requires a much
higher minibatch size to produce quality samples.

with the typical minibatch size of 64, owing to the effective representational
power of the discriminator.

LFW. The Labeled Faces in the Wild (LFW) dataset contains faces
of celebrities. We perform a center crop and resize the images to 64 × 64
resolution. Figure 3.5 shows random samples from the training dataset,
along with generators using the GMMN algorithm and kernelized GAN.
Generated images are mapped to values in (0, 1). As GMMN does not use a
neural network discriminator, it is unable to extract important features of
the dataset. For example, some samples have large smudges, a third eye, or a
disfigured mouth. The discriminator in kernelized GAN is able to transform
the image into a more meaningful space where the Gaussian kernel is able to
distinguish samples more easily, leading to a better trained generator.

LSUN Bedrooms. This dataset contains 3 million images of bedrooms,
which we resize to a resolution of 64× 64. Figure 3.6 shows samples from
kernelized GAN with different kernels. We show that the model trains
adequately with kernel functions other than the typical Gaussian kernel.
While the linear kernel is not characteristic, it still produces a good generative
model with no obvious deficiencies. An advantage of using random kitchen
sinks to approximate the Gaussian kernel is that it can be computed in linear
time whereas Gaussian kernel is quadratic with respect to the minibatch size.
This show that kernelized GAN can potentially scale up to large minibatch
sizes, unlike GMMN.

3.3.3 Latent space interpolation

A degenerate case of a trained generative model is to only memorize and
only generate samples from the training dataset. For latent variable models,
we can visualize how changing the latent state produces diverse samples. In
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Real GMMN

Kernelized GAN

Figure 3.5: Random samples from the LFW dataset. GMMN is trained using
a batchsize of 1024 whereas kernelized GAN uses a batchsize of 64.
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Real Gaussian kernel

RKS kernel Linear kernel

Figure 3.6: Random samples from the LSUN dataset. Kernelized GAN
can be trained using different kernels, with the discriminator appropriately
adapting to the specific manifold required to use the kernel.
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Figures 3.7 and 3.8, we show random samples on the leftmost and rightmost
columns with interpolated samples in-between. We see that in most cases,
there is a smooth transition showing that the model learns to generalize
instead of memorize. In 3.7, there are signs of a smooth transition from faces
with glasses to faces without glasses, and from neutral expressions to happier
expressions. In 3.8, we see transitions where windows turn to cabinets or
drapes, and chairs turning into beds.

3.3.4 Conditional generation

The simplest version of a conditional GAN [65] involves including image
labels to both the generator and discriminator networks. As there is no
discriminator network in GMMN, it is possible to implement a conditional
generative moment matching network. However, with kernelized GAN, we
can augment the generator and discriminator as described in [65] to create
conditional samples. Figure 3.9 shows conditional samples from a kernelized
GAN. It should also be possible to augment kernelized GAN with more
complicated conditional generation such as [6].
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Figure 3.7: Interpolation within latent space for Kernelized GAN trained on
LFW.
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Figure 3.8: Interpolation within latent space for Kernelized GAN trained on
LSUN bedrooms.
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Figure 3.9: Conditional generation of MNIST digits. Each row corresponds
to different label from 0 to 9.
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Chapter 4

Feedforward style transfer

Famous artists are typically renowned for a particular artistic style, which
takes years to develop. Even once perfected, a single piece of art can
take days or even months to create. This motivates us to explore efficient
computational strategies for creating artistic images. While there is a large
classical literature on texture synthesis methods that create artwork from a
blank canvas [18, 47, 56, 89], several recent approaches study the problem of
transferring the desired style from one image onto the structural content of
another image. This approach is known as artistic style transfer.

Methods for texture synthesis often create generative processes where
carefully chosen insertions of random variables creates diverse textures. The
neural texture synthesis algorithm described in Chapter 2 is an example
where the generative process involves sampling a noise image, then iteratively
refining the image to create a new texture sample. This method can be
adapted to style transfer by conditioning on a content image in the generative
process. The neural style transfer algorithm simply adds an appropriate
content reconstruction loss (2.14) to redirect the iterative process. See
Chapter 2 for a more thorough description for neural texture synthesis and
style transfer.

4.1 The need for faster algorithms

Despite renewed interest in the domain, the actual process of style transfer is
based on solving a complex optimization procedure, which can take minutes
on today’s hardware. A typical speedup solution is to train another neural
network that approximates the optimum of the optimization in a single feed-
forward pass [14, 41, 87, 88]. While much faster, existing works that use this
approach sacrifice the versatility of being able to perform style transfer with
any given style image, as the feed-forward network cannot generalize beyond
its trained set of images. Due to this limitation, existing applications are
either time-consuming or limited in the number of provided styles, depending
on the method of style transfer.
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4.1. The need for faster algorithms

Figure 4.1: Illustration of existing feedforward methods [14, 41, 87, 88] that
simply try to minimize (2.17) by training a separate neural network for each
style image, or a limited number of style images.

In this chapter we propose a method that addresses these limitations: a
new method for artistic style transfer that is efficient but is not limited to a
finite set of styles. To accomplish this, we define a new optimization objective
for style transfer that notably only depends on one layer of the CNN (as
opposed to existing methods that use multiple layers). The new objective
leads to visually-appealing results while this simple restriction allows us to
use an “inverse network” to deterministically invert the activations from the
stylized layer to yield the stylized image.

While it is possible to train a neural network that approximates the
optimum of Gatys et al.’s loss function (see Section 2.4) for one or more fixed
styles [14, 41, 87, 88]. This yields a much faster method, but these methods
need to be re-trained for each new style. Figure 4.1 highlights the limitation
of this method as a new neural network must be trained for each new style.
It should be noted that these works all minimize the objective defined by
[24].
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4.2. Style transfer as one-shot distribution alignment

Figure 4.2: We propose a one-shot concatenation method based on a simple
nearest neighbour alignment to combine the content and style activations.
The combined activations are then inverted back into an image by a trained
inverse network.

4.2 Style transfer as one-shot distribution
alignment

The main component of our style transfer method is a patch-based operation
for constructing the target activations in a single layer, given the style and
content images. We refer to this procedure as “swapping the style” of an
image, as the content image is replaced patch-by-patch by the style image.
We first present this operation at a high level, followed by more details on
our implementation.

4.2.1 Style Swap

Let C and S denote the RGB representations of the content and style
images (respectively), and let Φ(·) be the function represented by a fully
convolutional part of a pretrained CNN that maps an image from RGB to
some intermediate activation space. After computing the activations, Φ(C)
and Φ(S), the style swap procedure is as follows:

1. Extract a set of patches for both content and style activations, denoted
by {φi(C)}i∈nc and {φj(S)}j∈ns , where nc and ns are the number of
extracted patches. The extracted patches should have sufficient overlap,
and contain all channels of the activations.

2. For each content activation patch, determine a closest-matching style
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4.2. Style transfer as one-shot distribution alignment

patch based on the normalized cross-correlation measure,

φssi (C, S) := argmax
φj(S), j=1,...,ns

〈φi(C), φj(S)〉
||φi(C)|| · ||φj(S)||

. (4.1)

3. Swap each content activation patch φi(C) with its closest-matching
style patch φssi (C, S).

4. Reconstruct the complete content activations, which we denote by
Φss(C, S), by averaging overlapping areas that may have different
values due to step 3.

This operation results in hidden activations corresponding to a single image
with the structure of the content image, but with textures taken from the
style image.

4.2.2 Comparison with neural texture synthesis

The neural texture synthesis algorithm minimizes the maximum mean dis-
crepancy between the patches {φi(S)} and {φj(N)} where S is the style
image and N is a white noise image. The MMD kernel used in neural
texture synthesis is a polynomial kernel of degree 2. In contrast, style swap
takes two sets of patches {φi(S)} and {φj(N)} and performs a distribution
alignment by replacing each patch by their closest neighbour (Figure 4.3),
with a similarity metric related to the MMD kernel.

4.2.3 Parallelizable implementation

To give an efficient implementation, we show that the entire style swap
operation can be implemented as a network with three operations: (i) a 2D
convolutional layer, (ii) a channel-wise argmax, and (iii) a 2D transposed
convolutional layer. Implementation of style swap is then as simple as
using existing efficient implementations of 2D convolutions and transposed
convolutions2.

To concisely describe the implementation, we re-index the content activa-
tion patches to explicitly denote spatial structure. In particular, we’ll let d
be the number of feature channels of Φ(C), and let φa,b(C) denote the patch
Φ(C)a:a+s, b:b+s, 1:d where s is the patch size.

2The transposed convolution is also often referred to as a “fractionally-strided” convo-
lution, a “backward” convolution, an “upconvolution”, or a ”deconvolution”.
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4.2. Style transfer as one-shot distribution alignment

Figure 4.3: Style swap performs a forced distribution alignment by replacing
each content patch by its nearest neighbour style patch.

Content 
Activations

Target 
Activations

2D Convolution
With Normalized Style 

Patches as Filters

2D Transposed Convolution
With Style Patches 

as Filters

Channel-wise
Argmax

Figure 4.4: Illustration of a style swap operation. The 2D convolution
extracts patches of size 3 × 3 and stride 1, and computes the normalized
cross-correlations. There are nc = 9 spatial locations and ns = 4 feature
channels immediately before and after the channel-wise argmax operation.
The 2D transposed convolution reconstructs the complete activations by
placing each best matching style patch at the corresponding spatial location.
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4.2. Style transfer as one-shot distribution alignment

Notice that the normalization term for content activation patches φi(C)
is constant with respect to the argmax operation, so (4.1) can be rewritten
as

Ka,b,j =

〈
φa,b(C),

φj(S)

||φj(S)||

〉
φssa,b(C, S) = argmax

φj(S), j∈Ns

{Ka,b,j}
(4.2)

The lack of a normalization for the content activation patches simplifies
computation and allows our use of 2D convolutional layers. The following
three steps describe our implementation and are illustrated in Figure 4.4:

• The tensor K can be computed by a single 2D convolution by using the
normalized style activations patches {φj(S)/||φj(S)||} as convolution
filters and Φ(C) as input. The computed K has nc spatial locations
and ns feature channels. At each spatial location, Ka,b is a vector
of cross-correlations between a content activation patch and all style
activation patches.

• To prepare for the 2D transposed convolution, we replace each vector
Ka,b by a one-hot vector corresponding to the best matching style
activation patch.

Ka,b,j =

{
1 if j = argmaxj′{Ka,b,j′}
0 otherwise

(4.3)

• The last operation for constructing Φss(C, S) is a 2D transposed con-
volution with K as input and unnormalized style activation patches
{φj(S)} as filters. At each spatial location, only the best matching style
activation patch is in the output, as the other patches are multiplied
by zero.

Note that a transposed convolution will sum up the values from overlapping
patches. In order to average these values, we perform an element-wise division
on each spatial location of the output by the number of overlapping patches.
Consequently, we do not need to impose that the argmax in (4.3) has a
unique solution, as multiple argmax solutions can simply be interpreted as
adding more overlapping patches.
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4.3. Inverse network

4.2.4 Optimization formulation

The pixel representation of the stylized image can be computed by placing
a loss function on the activation space with target activations Φss(C, S).
Similar to prior works on style transfer [23, 51], we use the squared-error
loss and define our optimization objective as

Istylized(C, S) = argmin
I∈Rh×w×d

||Φ(I)− Φss(C, S)||2F

+λ`TV (I)
(4.4)

where we’ll say that the synthesized image is of dimension h by w by d, || · ||F
is the Frobenius norm, and `TV (·) is the total variation regularization term
widely used in image generation methods [1, 41, 61]. Because Φ(·) contains
multiple maxpooling operations that downsample the image, we use this
regularization as a natural image prior, obtaining spatially smoother results
for the re-upsampled image. The total variation regularization is as follows:

`TV (I) =

h−1∑
i=1

w∑
j=1

d∑
k=1

(Ii+1,j,k − Ii,j,k)2

+

h∑
i=1

w−1∑
j=1

d∑
k=1

(Ii,j+1,k − Ii,j,k)2
(4.5)

Since the function Φ(·) is part of a pretrained CNN and is at least once
subdifferentiable, (4.4) can be computed using standard subgradient-based
optimization methods.

4.3 Inverse network

Unfortunately, the cost of solving the optimization problem to compute the
stylized image might be too high in applications such as video stylization.
We can improve optimization speed by approximating the optimum using
another neural network. Once trained, this network can then be used to
produce stylized images much faster, and we will in particular train this
network to have the versatility of being able to use new content and new
style images.

The main purpose of our inverse network is to approximate an optimum
of the loss function in (4.4) for any target activations. We therefore define
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Figure 4.5: The inverse network takes the style swapped activations and
produces an image. This network is trained by minimizing the L2 norm
(orange line) between the style swapped activations and the activations of
the image after being passed through the pretrained network again.

the optimal inverse function as:

arginf
f

EH

[
||Φ(f(H))−H||2F + λ`TV (f(H))

]
(4.6)

where f represents a deterministic function and H is a random variable
representing target activations. The total variation regularization term is
added as a natural image prior similar to (4.4).

4.3.1 Training the inverse network

A couple problems arise due to the properties of the pretrained convolutional
neural network.

Non-injective. The CNN defining Φ(·) contains convolutional, max-
pooling, and ReLU layers. These functions are many-to-one, and thus do
not have well-defined inverse functions. Akin to existing works that use
inverse networks [11, 59, 95], we instead train an approximation to the inverse
relation by a parametric neural network.

min
θ

1

n

n∑
i=1

||Φ(f(Hi; θ))−Hi||2F + λ`TV (f(Hi; θ)) (4.7)

where θ denotes the parameters of the neural network f and Hi are activation
features from a dataset of size n. This objective function leads to unsupervised
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Figure 4.6: We propose the first feedforward method for style transfer that
can be used for arbitrary style images. We formulate style transfer using a
constructive procedure (Style Swap) and train an inverse network to generate
the image.

training of the neural network as the optimum of (4.4) does not need to be
known. We place the description of our inverse network architecture in the
appendix.

Non-surjective. The style swap operation produces target activations
that may be outside the range of Φ(·) due to the interpolation. This would
mean that if the inverse network is only trained with real images then the
inverse network may only be able to invert activations in the range of Φ(·).
Since we would like the inverse network to invert style swapped activations,
we augment the training set to include these activations. More precisely,
given a set of training images (and their corresponding activations), we
augment this training set with style-swapped activations based on pairs of
images.

4.3.2 Feedforward style transfer procedure

Once trained, the inverse network can be used to replace the optimization
procedure. Thus our proposed feedforward procedure consists of the following
steps:

1. Compute Φ(C) and Φ(S).

2. Obtain Φss(C, S) by style swapping.

3. Feed Φss(C, S) into a trained inverse network.

This procedure is illustrated in Figure 4.6. As described in Section 4.2.3, style
swapping can be implemented as a (non-differentiable) convolutional neural
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network. As such, the entire feedforward procedure can be seen as a neural net
with individually trained parts. Compared to existing feedforward approaches
[14, 41, 87, 88], the biggest advantage of our feedforward procedure is the
ability to use new style images with only a single trained inverse network.

4.4 Experiments

In this section, we analyze properties of the proposed style transfer and
inversion methods. We use the Torch7 framework [7] to implement our
method3, and use existing open source implementations of prior works
[40, 51, 76] for comparison.

4.4.1 Style swap results

Target Layer. The effects of style swapping in different layers of the VGG-19
network are shown in Figure 4.7. In this figure the RGB images are computed
by optimization as described in Section 4.2. We see that while we can style
swap directly in the RGB space, the result is nothing more than a recolor. As
we choose a target layer that is deeper in the network, textures of the style
image are more pronounced. We find that style swapping on the “relu3 1”
layer provides the most visually pleasing results, while staying structurally
consistent with the content. We restrict our method to the “relu3 1” layer in
the following experiments and in the inverse network training. Qualitative
results are shown in Figure 4.13.

Consistency. Our style swapping approach concatenates the content
and style information into a single target feature vector, resulting in an easier
optimization formulation compared to other approaches. As a result, we
find that the optimization algorithm is able to reach the optimum of our
formulation in less iterations than existing formulations while consistently
reaching the same optimum. Figures 4.8 and 4.9 show the difference in
optimization between our formulation and existing works under random
initializations. Here we see that random initializations have almost no effect
on the stylized result, indicating that we have far fewer local optima than
other style transfer objectives.

Straightforward Adaptation to Video. This consistency property
is advantageous when stylizing videos frame by frame. Frames that are the
same will result in the same stylized result, while consecutive frames will be
stylized in similar ways. As a result, our method is able to adapt to video

3Code available at https://github.com/rtqichen/style-swap
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Content Image RGB relu1 1 relu2 1

Style Image relu3 1 relu4 1 relu5 1

Figure 4.7: The effect of style swapping in different layers of VGG-19 [82],
and also in RGB space. Due to the naming convention of VGG-19, “reluX 1”
refers to the first ReLU layer after the (X − 1)-th maxpooling layer. The
style swap operation uses patches of size 3 × 3 and stride 1, and then the
RGB image is constructed using optimization.

Content Image Gatys et al.with random initializations

Style Image Our method with random initializations

Figure 4.8: Our method achieves consistent results compared to existing
optimization formulations. We see that Gatys et al.’s formulation [23] has
multiple local optima while we are able to consistently achieve the same
style transfer effect with random initializations. Figure 4.9 shows this
quantitatively.
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Figure 4.9: Standard deviation of the RGB pixels over the course of opti-
mization is shown for 40 random initializations. The lines show the mean
value and the shaded regions are within one standard deviation of the mean.
The vertical dashed lines indicate the end of optimization. Figure 4.8 shows
examples of optimization results.

without any explicit gluing procedure like optical flow [76]. We place stylized
videos in the code repository.

Simple Intuitive Tuning. A natural way to tune the degree of styl-
ization (compared to preserving the content) in the proposed approach is
to modify the patch size. Figure 4.10 qualitatively shows the relationship
between patch size and the style-swapped result. As the patch size increases,
more of the structure of the content image is lost and replaced by textures
in the style image.

4.4.2 CNN inversion

Here we describe our training of an inverse network that computes an
approximate inverse function of the pretrained VGG-19 network [82]. More
specifically, we invert the truncated network from the input layer up to layer
“relu3 1”. The network architecture is placed in the appendix.

Dataset. We train using the Microsoft COCO (MSCOCO) dataset [57]
and a dataset of paintings sourced from wikiart.org and hosted by Kaggle [12].
Each dataset has roughly 80, 000 natural images and paintings, respectively.
Since typically the content images are natural images and style images are
paintings, we combine the two datasets so that the network can learn to
recreate the structure and texture of both categories of images. Additionally,
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patch size 3× 3 patch size 7× 7 patch size 12× 12

Figure 4.10: We can tradeoff between content structure and style texture
by tuning the patch size. The style images, Starry Night (top) and Small
Worlds I (bottom), are shown in Figure 4.13.

the explicit categorization of natural image and painting gives respective
content and style candidates for the augmentation described in Section 4.3.1.

Training. We resize each image to 256× 256 pixels (corresponding to
activations of size 64× 64) and train for approximately 2 epochs over each
dataset. Note that even though we restrict the size of our training images
(and corresponding activations), the inverse network is fully convolutional
and can be applied to arbitrary-sized activations after training.

We construct each minibatch by taking 2 activation samples from natural
images and 2 samples from paintings. We augment the minibatch with 4
style-swapped activations using all pairs of natural images and paintings in
the minibatch. We calculate subgradients using backpropagation on (4.7)
with the total variance regularization coefficient λ = 10−6 (the method is
not particularly sensitive to this choice), and we update parameters of the
network using the Adam optimizer [43] with a fixed learning rate of 10−3.

Result. Figure 4.11 shows quantitative approximation results using 2000
full-sized validation images from MSCOCO and 6 full-sized style images.
Though only trained on images of size 256 × 256, we achieve reasonable
results for arbitrary full-sized images. We additionally compare against
an inverse network that has the same architecture but was not trained
with the augmentation. As expected, the network that never sees style-
swapped activations during training performs worse than the network with
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Figure 4.11: We compare the average loss (4.7) achieved by optimization
and our inverse networks on 2000 variable-sized validation images and 6
variable-sized style images, using patch sizes of 3 × 3. Style images that
appear in the paintings dataset were removed during training.

the augmented training set.

4.4.3 Computation time

Computation times of existing style transfer methods are listed in Table 4.1.
Compared to optimization-based methods, our optimization formula is easier
to solve and requires less time per iteration, likely due to only using one
layer of the pretrained VGG-19 network. Other methods use multiple layers
and also deeper layers than we do.

We show the percentage of computation time spent by different parts of
our feedforward procedure in Figures 4.12a and 4.12c. For any nontrivial
image sizes, the style swap procedure requires much more time than the
other neural networks. This is due to the style swap procedure containing
two convolutional layers where the number of filters is the number of style
patches. The number of patches increases linearly with the number of pixels
of the image, with a constant that depends on the number of pooling layers
and the stride at which the patches are extracted. Therefore, it is no surprise
that style image size has the most effect on computation time (as shown in
Figures 4.12a and 4.12b).

Interestingly, it seems that the computation time stops increasing at
some point even when the content image size increases (Figure 4.12d), likely
due to parallelism afforded by the implementation. This suggests that our
procedure can handle large image sizes as long as the number of style patches
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Method N. Iters. Time/Iter. (s) Total (s)

Gatys et al.[23] 500 0.1004 50.20

Li and Wand [51] 200 0.6293 125.86

Style Swap (Optim) 100 0.0466 4.66

Style Swap (InvNet) 1 1.2483 1.25

Table 4.1: Mean computation times of style transfer methods that can
handle arbitary style images. Times are taken for images of resolution
300 × 500 on a GeForce GTX 980 Ti. Note that the number of iterations
for optimization-based approaches should only be viewed as a very rough
estimate.

is kept manageable. It may be desirable to perform clustering on the style
patches to reduce the number of patches, or use alternative implementations
such as fast approximate nearest neighbour search methods [29, 68].
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Figure 4.12: Compute times as (a,b) style image size increases and (c,d)
as content image size increases. The non-variable image size is kept at
500× 500. As shown in (a,c), most of the computation is spent in the style
swap procedure.
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Style
Small Worlds I,

Wassily
Kandinsky, 1922

Style
The Starry Night,

Vincent Van
Gogh, 1889

Style
Composition X,

Wassily
Kandinsky, 1939

Style
Mountainprism,
Renee Nemerov,

2007

Style
Butterfly Drawing

Style
La Muse,

Pablo Picasso,
1935

Content Ours Gatys et al. Content Ours Gatys et al.

Figure 4.13: Qualitative examples of our method compared with Gatys et
al.’s formulation of artistic style transfer.
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Chapter 5

Conclusion

We have discussed the use of maximum mean discrepancy in learning gen-
erative models in two different settings. The first setting covers a general
use case where the generative process for a training dataset is approximated.
The second setting covers a more specific use case of combining content and
style images in a generative process that produces a new artistic image. We
show generalization of our style transfer method to arbitrary style images,
as prior work focused on speed have not been successful at generalization.

For future work, it would be ideal to increase the quality or speed of
the style transfer without sacrificing generalization, as the proposed method
contains a three-way trade off between speed, quality, and generalization
with no outstanding performance in either speed or quality. Speed can be
achieved by replacing the patch-based distributional alignment with a faster
one, while quality can be increased by using existing neural style transfer loss
[24] instead of the autoencoder loss we use. This has been partly explored
by Huang and Belongie [35] by replacing the style swap operation with a
simpler mean and variance alignment.

The kernelized GAN is a straightforward replacement for the original
GAN objective, though it is difficult to show whether discriminative power is
increased by using maximum mean discrepancy as opposed to the arguably
simpler Wasserstein distance for real applications. It would be helpful to
generative modeling research if robust testing methods could be created
specifically for generative models.
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arXiv preprint arXiv:1701.07875, 2017.

[3] Guillaume Berger and Roland Memisevic. Incorporating long-
range consistency in cnn-based texture generation. arXiv preprint
arXiv:1606.01286, 2016.
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Appendices

Appendix A

Linear time and space
complexity kernel sums

It is often believed that the computation of MMD is prohibitive as the kernel
matrix requires quadratic time and space complexity with respect to the
number of samples. However, this isn’t always the case when the explicit
kernel matrix isn’t required. In maximum mean discrepancy, only the sum
of all elements of the kernel matrix is required. We describe a few simple
tricks to allow computation in linear time and space complexity. With the
use of parallel computation on graphics processing units (GPUs), linear time
may not affect the computation time much, but the linear space complexity
allows much higher minibatch sizes due to the restricted memory sizes on
current GPUs.

Let X and Y denote two n × d datasets in Rd. For simplicity, we’ve
assumed the two datasets have the same number of samples. However, this
is only required for the polynomial kernel we derive below.

Firstly, the linear kernel sum can be easily computed in O(nd) in both
space and time complexity. This is done by replacing summation with
multiplication by a vector of ones. Let e denote a vector of ones of length n.
Then

n∑
i,j

xTi yj = eTXY T e = (eTX)︸ ︷︷ ︸
1×d

(eTY )︸ ︷︷ ︸
d×1

(A.1)

Note eTX can also be computed as
∑

i xi and can be performed in linear
time.
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Appendix A. Linear time and space complexity kernel sums

The polynomial kernel of degree 2 with bias b:

n∑
i,j

(xTi yj + b)2 = ||XY T + bI||2F

= trace
[
(XY T + bI)T (XY T + bI)

]
= trace

[
(XY T )T (XY T ) + 2bXY T + b2I)

]
= trace

[
(XY T )T (XY T )

]
+ trace

[
2bXY T

]
+ trace

[
b2I
]

= trace
[
(XY T )(XY T )T

]
+ trace

[
2bXTY

]
+ trace

[
b2I
]

= ||XTY ||2F + 2b

d∑
j

n∑
i

xijyij + nb2

(A.2)

This changes the O(N2D) operation to a O(ND2) operation in both time
and space complexity. For the purposes of our method, D can be made very
small due to the use of a parametric neural net. (As opposed to computing
this directly on images, where the dimension of the image is 3HW . For even
medium sized images, the D2 cost can be intractible.)

For shift-invariant kernels such as the Gaussian RBF, Random Kitchen
Sinks (RKS) or the Fastfood method can be used to construct approximate
feature maps φ̂(xi)

T φ̂(yj) ≈ k(xi, yi). For other kernels, the Nystroem
method can be used, though it’s unknown how well it’ll perform in an
adversarial setting. Since these approximate using a linear kernel, the space
and time complexity are the same as linear kernels.
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Appendix B

Inverse network architecture

The architecture of the truncated VGG-19 network used in the experiments
is shown in Table B.1, and the inverse network architecture is shown in
Table B.2. It is possible that better architectures achieve better results,
as we did not try many different types of convolutional neural network
architectures.

– Convolutional layers use filter sizes of 3× 3, padding of 1, and stride
of 1.

– The rectified linear unit (ReLU) layer is an elementwise function
ReLU(x) = max{x, 0}.

– The instance norm (IN) layer standardizes each feature channel inde-
pendently to have 0 mean and a standard deviation of 1. This layer
has shown impressive performance in image generation networks [88].

– Maxpooling layers downsample by a factor of 2 by using filter sizes of
2× 2 and stride of 2.

– Nearest neighbor (NN) upsampling layers upsample by a factor of 2 by
using filter sizes of 2× 2 and stride of 2.

68



Appendix B. Inverse network architecture

Layer Type Activation Dimensions

Input H ×W × 3

Conv-ReLU H ×W × 64

Conv-ReLU H ×W × 64

MaxPooling 1/2H × 1/2W × 64

Conv-ReLU 1/2H × 1/2W × 128

Conv-ReLU 1/2H × 1/2W × 128

MaxPooling 1/4H × 1/4W × 128

Conv-ReLU 1/4H × 1/4W × 256

Table B.1: Truncated VGG-19
network from the input layer
to “relu3 1” (last layer in the
table).

Layer Type Activation Dimensions

Input 1/4H × 1/4W × 256

Conv-IN-ReLU 1/4H × 1/4W × 128

NN-Upsampling 1/2H × 1/2W × 128

Conv-IN-ReLU 1/2H × 1/2W × 128

Conv-IN-ReLU 1/2H × 1/2W × 64

NN-Upsampling H ×W × 64

Conv-IN-ReLU H ×W × 64

Conv H ×W × 3

Table B.2: Inverse network archi-
tecture used for inverting activa-
tions from the truncated VGG-19
network.
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