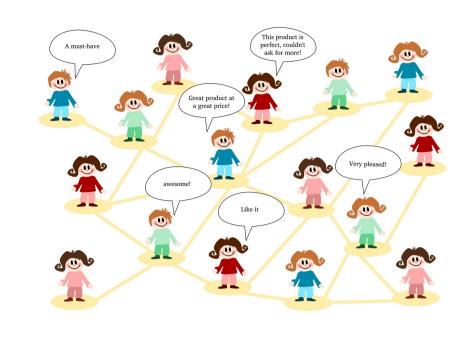


Motivation

Viral marketing uses a social network to spread awareness about



Influence Maximization (IM):

- Select a fixed number of 'influential' users (seeds) to give free products or discounts.
- ▶ Try to maximize the number of people who become aware of the product (spread),

 $S^* = \operatorname{argmax}_{|S| \leq k} \sigma_D(S).$

where S are the seeds, k is the budget, and $\sigma_D(S)$ is expected spread under stochastic diffusion model D. Limitations of existing methods:

- assume you know the pairwise influence probabilities (could be hard to obtain in practice).
- ► assume edge-level feedback: know which user influenced each other user (often not realistic).

Our contributions:

- Formulate as combinatorial multiarmed bandit problem.
- ► Aim to minimize regret as a new marketer learns the influence probabilities. ► Leads to classic exploration vs. exploitation trade-off.
- Consider node-level feedback: you only need to know who was influenced.

Background on Independent Cascade and Multiarmed Bandits

Independent Cascade (IC) Model:

- Starting from seeds, influenced nodes get one chance to influence their neighbours.
- Succeed with probability $p_{u,v}$ (*live* edge) and otherwise fail (*dead*).
- Newly-influence nodes can influence their neighbours.

Multiarmed and Combinatorial Multiarmed Bandits:

- \blacktriangleright Each of *m* arms has reward distribution with unknown mean μ .
- Standard framework: in round t you choose one arm i and obtain reward $r_{i,t}$.
- Combinatorial framework: in round t you choose a subset of arms A and reward is function of these arms.

Mapping Influence Maximization to Combinatorial Multiarr

We can write influe

CMAB	Symbol	Mapping to IM
Base arm	i	Edge (u, v)
Superarm	Es	Union of outgoing edges from nodes in set S
Reward for arm <i>i</i> in round <i>s</i>	Xi,s	Status (live/dead) for edge (u, v)
Mean of distribution for arm <i>i</i>	μ_i	Influence probability $p_{u,v}$
No. of times <i>i</i> is triggered in <i>s</i> rounds	$T_{i,s}$	#times u becomes active in s diffusions
Reward in round s	r _s	Spread $\bar{\sigma}$ in the s^{th} IM attempt

Algorithm 1: CMAB FRAMEWORK FOR IM (Graph G = (V, E), budget k, Feedback mechanism M, Algorithm A)

Initialize $\hat{\mu}$; $\forall i \text{ initialize } T_i = 0 ;$ for $s = 1 \rightarrow T$ do IS-EXPLOIT is a boolean set by algorithm \mathcal{A} ; if IS-EXPLOIT then $E_S = \mathsf{EXPLOIT}(G, \hat{\hat{\mu}}, O, k)$ else $E_S = \text{EXPLORE}(G,k)$ Play the superarm E_S and observe the diffusion cascade c; $\hat{\mu} = \mathsf{UPDATE}(c, M);$

Influence Maximization with Bandits

Sharan Vaswani, Laks.V.S.Lakshmanan, Mark Schmidt Department of Computer Science, University of British Columbia

+	~	product
L	d	product.

Edge-
► Ed
• (
► Nc ► /
E
Bound
► We
► N Theo
Let pm
any ac node v
Suppo feedba
Regre
► Up ► Pu
► ∈-C
Nume
Nume 9 8
9 8 7
9 8 7 5 4
9 8 7
9 8 7 6 5 4 3
9 8 7 6 5 4 3
9 8 7 6 5 4 3
9 8 7 6 5 9 8 7 9 1 9 1 9 1 1 1
9 8 7 6 8 9 8 7 9 8 7 1 3 2 1 1

Level and Node-Level Feedback Mechansim

dge Level Feedback (EL):

Assumes you can view the status of edge *i*.

Simple update of influence probabilities: $\hat{\mu}_i = \frac{\sum_{s=1}^{i} X_{i,s}}{T_{i,s}}$.

Often not realistic: we can see whether user adopted a product, not who did/didn't influence them. ode Level Feedback (NL):

Assumes you can view the status of each node. More realistic: typically easy to observe in network.

But updating influence probabilities requires assigning credit.

ding the error for node-level credit assignment

e consider a simple heuristic credit assignment mechanism for node-level feedback: Each active node v randomly chooses one of its active parents u, and assigns full credit to edge (u, v). Makes node-level feedback effective in typical social networks where influence probabilities are typically low.

orem

min and pmax be the minimum and maximum true influence probabilities in the network. Consider a particular cascade c and ctive node v with K_c active parents. The failure probability ρ under our node-level feedback credit assignment scheme for satsifies

$$\rho \leq \frac{1}{K_c} (1 - p_{min}) \left(1 - \prod_{k=1, k \neq i}^{K_c} [1 - p_{max}] \right) + \left(\frac{1}{K_c} \left[1 - \frac{1}{K_c} \left[1 - \frac{1}{K_c} \right] \right] \right)$$

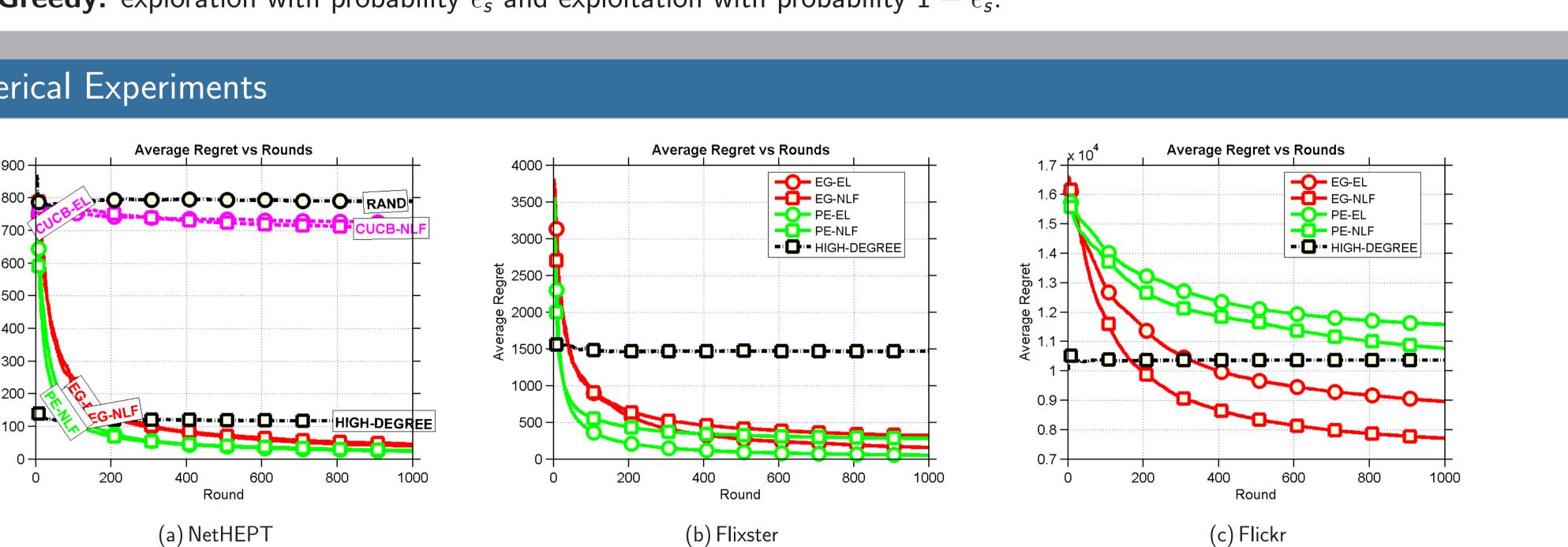
ose $\hat{\mu}_i^E$ and $\hat{\mu}_i^N$ are the inferred influence probabilities for the edge corresponding to arm i using edge-level and node-level ack respectively. Then the relative error in the learned influence probability is given by:

$$\left|\frac{\hat{\mu}_{i}^{N} - \hat{\mu}_{i}^{E}}{\hat{\mu}_{i}^{E}}\right| = \rho \left|\frac{1}{\hat{\mu}_{i}^{E}} - 2\right|$$

Minimization Algorithms

pper Confidence Bound (UCB): combinatorial UCB maintains an overestimate $\overline{\mu}_i$ of the mean estimates $\hat{\mu}_i$. ure Exploitation: performs exploitation in every round.

Greedy: exploration with probability ϵ_s and exploitation with probability $1 - \epsilon_s$.



are Exploitation (PE), ϵ -Greedy (EG) are effective and able to decrease the regret across all datasets. ode Level feedback (NL) has results comparable to Edge Level feedback (EL) for all algorithms across datasets.

ed Work

egret analysis under UCB for IM (Chen et al., 2014). ultiple IM attempts to maximize the number of distinct active nodes across rounds (Lei et al., 2015).

$$\left(\frac{1}{K_c}\right) p_{max}.$$
 (1)

(2)