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Motivation

I Viral marketing uses a social network to spread awareness about a product.

I Influence Maximization (IM):
I Select a fixed number of ‘influential’ users (seeds) to give free products or discounts.
I Try to maximize the number of people who become aware of the product (spread),

S∗ = argmax|S |≤kσD(S).

where S are the seeds, k is the budget, and σD(S) is expected spread under stochastic diffusion model D.

I Limitations of existing methods:
I assume you know the pairwise influence probabilities (could be hard to obtain in practice).
I assume edge-level feedback: know which user influenced each other user (often not realistic).

I Our contributions:
I Formulate as combinatorial multiarmed bandit problem.
I Aim to minimize regret as a new marketer learns the influence probabilities.

I Leads to classic exploration vs. exploitation trade-off.

I Consider node-level feedback: you only need to know who was influenced.

Background on Independent Cascade and Multiarmed Bandits

I Independent Cascade (IC) Model:
I Starting from seeds, influenced nodes get one chance to influence their neigbhours.
I Succeed with probability pu,v (live edge) and otherwise fail (dead).
I Newly-influence nodes can influence their neighbours.

I Multiarmed and Combinatorial Multiarmed Bandits:
I Each of m arms has reward distribution with unknown mean µ.
I Standard framework: in round t you choose one arm i and obtain reward ri ,t.
I Combinatorial framework: in round t you choose a subset of arms A and reward is function of these arms.

Mapping Influence Maximization to Combinatorial Multiarmed Bandits

We can write influence maximization in combinatorial multiarmed bandit framework:

CMAB Symbol Mapping to IM
Base arm i Edge (u, v)
Superarm ES Union of outgoing edges from nodes in set S
Reward for arm i in round s Xi ,s Status (live/dead) for edge (u, v)
Mean of distribution for arm i µi Influence probability pu,v
No. of times i is triggered in s rounds Ti ,s #times u becomes active in s diffusions
Reward in round s rs Spread σ̄ in the s th IM attempt

Algorithm 1: CMAB framework for IM (Graph G = (V ,E ), budget k , Feedback mechanism M , Algorithm A)

Initialize ~̂µ ;
∀i initialize Ti = 0 ;

for s = 1→ T do
IS-EXPLOIT is a boolean set by algorithm A ;
if IS-EXPLOIT then

ES = EXPLOIT(G ,~̂µ,O,k)
else
ES = EXPLORE(G ,k)

Play the superarm ES and observe the diffusion cascade c ;
~̂µ = UPDATE(c ,M) ;

Edge-Level and Node-Level Feedback Mechansim

I Edge Level Feedback (EL):
I Assumes you can view the status of edge i .

I Simple update of influence probabilities: µ̂i =
∑t

s=1 Xi ,s

Ti ,t
.

I Often not realistic: we can see whether user adopted a product, not who did/didn’t influence them.

I Node Level Feedback (NL):
I Assumes you can view the status of each node.
I More realistic: typically easy to observe in network.
I But updating influence probabilities requires assigning credit.

Bounding the error for node-level credit assignment

I We consider a simple heuristic credit assignment mechanism for node-level feedback:
I Each active node v randomly chooses one of its active parents u, and assigns full credit to edge (u, v).
I Makes node-level feedback effective in typical social networks where influence probabilities are typically low.

Theorem

Let pmin and pmax be the minimum and maximum true influence probabilities in the network. Consider a particular cascade c and
any active node v with Kc active parents. The failure probability ρ under our node-level feedback credit assignment scheme for
node v satsifies
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Suppose µ̂Ei and µ̂Ni are the inferred influence probabilities for the edge corresponding to arm i using edge-level and node-level
feedback respectively. Then the relative error in the learned influence probability is given by:∣∣∣∣µ̂Ni − µ̂Eiµ̂Ei
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Regret Minimization Algorithms

I Upper Confidence Bound (UCB): combinatorial UCB maintains an overestimate µi of the mean estimates µ̂i .

I Pure Exploitation: performs exploitation in every round.

I ε-Greedy: exploration with probability εs and exploitation with probability 1− εs.

Numerical Experiments

(a) NetHEPT (b) Flixster (c) Flickr

I Pure Exploitation (PE), ε-Greedy (EG) are effective and able to decrease the regret across all datasets.

I Node Level feedback (NL) has results comparable to Edge Level feedback (EL) for all algorithms across datasets.

Related Work

I Regret analysis under UCB for IM (Chen et al., 2014).

I Multiple IM attempts to maximize the number of distinct active nodes across rounds (Lei et al., 2015).


