Conditional Random Fields (CRFs)

CRFs model probability of output \(y \in Y \) given input \(x \in X \) and features \(F(x, y) \) using

\[
p(y | x, w) = \exp(w^T F(x, y)) \sum_y \exp(w^T F(x, y))
\]

Given training examples \(\{(x_i, y_i)\}, \) standard approach is minimizing \(\ell_2\)-regularized NLL:

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, w) + \lambda \frac{1}{2} \|w\|^2.
\]

Evaluating each \(\log p(y_i | x_i, w) \) is expensive due to sum over \(Y \).

Related Work on Deterministic, Stochastic, and Hybrid Methods

- Deterministic gradient methods like L-BFGS [Wallach et al., 2008, Spa and Pereira, 2003]: Requires \(O(\log(1/\epsilon)) \) iterations but 1 gradient evaluation per iteration.
- Stochastic gradient methods [Vishwanathan et al., 2006, Finkel et al., 2008]: Requires \(O(1/\epsilon) \) iterations but only 1 gradient evaluation per iteration.
- Online exponentiated gradient [Collins et al., 2008]: Requires \(O(\log(1/\epsilon)) \) iterations in terms of dual and 1 gradient evaluation per iteration.
- Hybrid deterministic-stochastic [Friedlander & Schmidt, 2012]: Requires \(O(\log(1/\epsilon)) \) iterations and growing number of gradient evaluations per iteration.

Stochastic Average Gradient (SAG) for CRFs

- Stochastic average gradient [Le Roux et al., 2012]: Requires \(O(\log(1/\epsilon)) \) iterations and 1 gradient evaluation per iteration.
- SAG uses the iteration

\[
w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^{n} s_i^t,
\]

where we set \(s_i^t = -\nabla \log p(y_i | x_i, w^t) + \lambda w^t \) for one randomly-chosen training example.

- Challenge is the memory required for storing the \(s_i^t \):
 - \(\nabla \log p(y_i | x_i, w) \) often sparse but depends on number of features.
 - \(\lambda w \) is typically dense.

Implementation issues for CRFs:
- Sparse trick 1: to avoid storing \(\lambda w \), use the exact gradient of the regularizer.

\[
w^{t+1} = (1-\alpha)w^t - \frac{\alpha}{n} \sum_{i=1}^{n} s_i^t
\]

where we set \(s_i^t = -\nabla \log p(y_i | x_i, w^t) \) for one randomly-chosen example.

- Sparse trick 2: use the representation \(w^t - \frac{\alpha}{n} \sum_{i=1}^{n} s_i^t \) and ‘easy updates’ to avoid dense vector operations.
- Step size: set \(\alpha = 1/L \) with \(L = 4\lambda + \lambda \), and double approximation \(L \) when

\[
\ell(w - (1/\alpha)\hat{w}) > \ell(w) - \frac{\ell(w)}{2\alpha^2} \tag{1}
\]

but we multiply \(L \) by \(2^{1/4} \) after every iteration to slowly increase the step size.

- Convergence: we can stop if \(\|w^t - \frac{1}{n} \sum_{i=1}^{n} s_i^t\| \) is sufficiently small.
- Reducing the memory: for ‘part-based’ features, \(F(x, y) = F(x) |_{y = \hat{y}} \), the gradient has the form

\[
\nabla \log p(y_i | x_i, w) = \frac{F(x) |_{y = \hat{y}} - F(x) |_{y = y_i}}{p(y_i | x_i, w) - p(y_i | x_i, \hat{y})}
\]

and SAG update depends on approximations in gradients.

\[
\nabla \log p(y_i | x_i, w) - \nabla \log p(y_i | x_i, \hat{y}) = F(x) |_{y = \hat{y}} - F(x) |_{y = y_i}
\]

so we only need to store marginals \(p(y_i | x_i, \hat{y}) \) that are shared across features that depend on \(y_i = \hat{y} \).

SAG with Practical Non-Uniform Sampling (NUS) Strategy

- Assume each gradient has its own Lipschitz constant \(L_i \), a value such that

\[
\|\nabla f_i(w) - \nabla f_i(v)\| \leq L_i \|w - v\|.
\]

- Key idea behind NUS: bias sampling probability \(p_i \), towards Lipschitz constant \(L_i \):
 - Gradients that can change more quickly get updated more often.
 - Convergence rate depends on \(\frac{1}{L_i} \text{mean}(L_i) \) instead of \(\frac{1}{\text{max}(L_i)} \).
 - Practical ‘partially-based’ strategy:
 - With probability \(1/2 \) choose \(i \) uniformly.
 - Use a larger step-size of \(\alpha = \frac{1}{2} \frac{1}{L_1 + 1/2} \)
 - Initialize with \(L_i = L \) the first time an example is chosen.
 - Each time \(i \) is chosen, set \(L_i = 0.9L_i \) then double it \(w \) times.
 - If \(\{i\} \) holds \(2 \) times (without backtracking), do not change \(L_i \) for 2\(t \) next times \(\hat{i} \) is sampled.

Convergence Analysis for SAGA with Non-Uniform Sampling

- We analyze a NUS extension of SAGA, which has similar performance but easier analysis.
 - Let the sequences \(\{w_i\} \) and \(\{x_i\} \) be defined by

\[
\begin{align*}
w_i^{t+1} & = w_i^t - \frac{\alpha}{n} \sum_{i=1}^{n} s_i^t, \\
\end{align*}
\]

where \(j \) is chosen with probability \(p_j \).

- (a) \(p_j = \frac{1}{n} \) and \(\alpha = \frac{1}{8} \) we have

\[
\mathbb{E}[\|w_i - w^*\|^2] \leq (1 - 1/n^2) [\|x^* - x_i\|^2 + C_1],
\]

where

\[
C_1 = \frac{2(1+1/n)}{(1-1/n^2) \beta^2} \mathbb{E}[\|\nabla f_i(x_i)\|^2].
\]

- (b) \(p_j = \frac{1}{n} \) and \(\alpha = \frac{1}{8} \) we have

\[
\mathbb{E}[\|w_i - w^*\|^2] \leq (1 - 1/n^2) \left[\frac{1}{2 \beta^2} \mathbb{E}[\|\nabla f_i(x_i)\|^2] \right] [\|x^* - x_i\|^2 + C_1],
\]

where

\[
C_1 = \frac{n}{2 \beta^2} \mathbb{E}[\|\nabla f_i(x_i)\|^2] - \mathbb{E}[\nabla f(x_i)]^2.
\]

(a) SAGA has a linear convergence rate wherever \(p_i \gg 1 \) for all \(i \).

(b) SAGA has a faster rate with \(p_i \) proportional to \(L_i \) and generating a uniform sample.

Experiment Results

- Figure: Training objective sub-optimality against effective number of passes for OCR, CONLL-2000, POS.

- Figure: Test error against effective number of passes, for OCR, CONLL-2000, POS. (Dashed lines are stochastic with sub-optimal step-size.

Discussion

- If memory requirements prohibitive, use mini-batches or SVRG [Johnson & Zhang, 2013].
- Could use \(\ell_2 \)-regularization with proximal versions [Difazio et al., 2014].
- Algorithms applies to any graph structure and approximate inference could be used.
- Could use multi-core computation and distributed parallel implementations.