## Convex Optimization Mark Schmidt - CMPT 419/726

## Motivation: Why Learn about Convex Optimization?

Why learn about optimization?

- Optimization is at the core of many ML algorithms.
- ML is driving a lot of modern research in optimization.

## Motivation: Why Learn about Convex Optimization?

Why learn about optimization?

- Optimization is at the core of many ML algorithms.
- ML is driving a lot of modern research in optimization.

Why in particular learn about convex optimization?

- Among only efficiently-solvable continuous problems.
- You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs)

• Empirically effective non-convex methods are often based methods with good properties for convex objectives.

(functions are locally convex around minimizers)





- 2 Smooth Optimization
- 3 Non-Smooth Optimization



A real-valued function is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y),$$

for all  $x, y \in \mathbb{R}^n$  and all  $0 \le \theta \le 1$ .

- Function is *below a linear interpolation* from x to y.
- Implies that all local minima are global minima.

### Convexity: Zero-order condition



- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.



### Convexity: Zero-order condition



- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.





- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.





- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.





- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.



## Convexity: Zero-order condition



- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.





- Function is below a linear interpolation from x to y.
- Implies that all local minima are global minima.



#### Convexity of Norms

We say that a function f is a **norm** if:

• 
$$f(0) = 0.$$

2 
$$f(\theta x) = |\theta|f(x).$$

$$f(x+y) \leq f(x) + f(y).$$

Examples:

$$\|x\|_{2} = \sqrt{\sum_{i} x_{i}^{2}} = \sqrt{x^{T}x}$$
$$\|x\|_{1} = \sum_{i} |x_{i}|$$
$$\|x\|_{H} = \sqrt{x^{T}Hx}$$

#### Convexity of Norms

We say that a function f is a **norm** if:

• 
$$f(0) = 0.$$
  
•  $f(\theta x) = |\theta| f(x).$ 

$$f(x+y) \leq f(x) + f(y).$$

Examples:

$$\|x\|_{2} = \sqrt{\sum_{i} x_{i}^{2}} = \sqrt{x^{T}x}$$
$$\|x\|_{1} = \sum_{i} |x_{i}|$$
$$\|x\|_{H} = \sqrt{x^{T}Hx}$$

Norms are convex:

$$\begin{aligned} f(\theta x + (1-\theta)y) &\leq f(\theta x) + f((1-\theta)y) \\ &= \theta f(x) + (1-\theta)f(y) \end{aligned} \tag{3}$$

#### Strict Convexity

A real-valued function is strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y),$$

for all  $x \neq y \in \mathbb{R}^n$  and all  $0 < \theta < 1$ .

• Strictly below the linear interpolation from x to y.

#### Strict Convexity

A real-valued function is strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y),$$

for all  $x \neq y \in \mathbb{R}^n$  and all  $0 < \theta < 1$ .

- Strictly below the linear interpolation from x to y.
- Implies at most one global minimum.

(otherwise, could construct lower global minimum)

A real-valued differentiable function is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

for all  $x, y \in \mathbb{R}^n$ .

• The function is globally *above the tangent* at *x*.

A real-valued differentiable function is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

for all  $x, y \in \mathbb{R}^n$ .

• The function is globally *above the tangent* at *x*.



A real-valued differentiable function is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

for all  $x, y \in \mathbb{R}^n$ .

• The function is globally *above the tangent* at *x*.



A real-valued differentiable function is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

for all  $x, y \in \mathbb{R}^n$ .

• The function is globally *above the tangent* at *x*.



A real-valued twice-differentiable function is convex iff

$$\nabla^2 f(x) \succeq 0$$

for all  $x \in \mathbb{R}^n$ .

• The function is *flat or curved upwards* in every direction.

A real-valued twice-differentiable function is convex iff

 $\nabla^2 f(x) \succeq 0$ 

for all  $x \in \mathbb{R}^n$ .

• The function is *flat or curved upwards* in every direction.

A real-valued function f is a quadratic if it can be written in the form:

$$f(x) = \frac{1}{2}x^T A x + b^T x + c.$$

Since  $\nabla f(x) = Ax + b$  and  $\nabla^2 f(x) = A$ , it is convex if  $A \succeq 0$ .

## Examples of Convex Functions

Some simple convex functions:

• 
$$f(x) = \max_i \{x_i\}$$

# Examples of Convex Functions

Some simple convex functions:

• 
$$f(x) = \max_i \{x_i\}$$

Some other notable examples:

• 
$$f(x,y) = \log(e^x + e^y)$$

- $f(X) = \log \det X$  (for X positive-definite).
- $f(x, Y) = x^T Y^{-1} x$  (for Y positive-definite)

#### Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Opposition with affine mapping:

$$g(x)=f(Ax+b).$$

Ointwise maximum:

$$f(x) = \max_i \{f_i(x)\}.$$

#### Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Opposition with affine mapping:

$$g(x)=f(Ax+b).$$

Ointwise maximum:

$$f(x) = \max_i \{f_i(x)\}.$$

Show that least-residual problems are convex for any  $\ell_p$ -norm:

$$f(x) = ||Ax - b||_p$$

#### Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Opposition with affine mapping:

$$g(x)=f(Ax+b).$$

Ointwise maximum:

$$f(x) = \max_i \{f_i(x)\}.$$

Show that least-residual problems are convex for any  $\ell_p$ -norm:

$$f(x) = ||Ax - b||_p$$

We know that  $\|\cdot\|_p$  is a norm, so it follows from (2).

#### Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Opposition with affine mapping:

$$g(x)=f(Ax+b).$$

O Pointwise maximum:

$$f(x) = \max_i \{f_i(x)\}.$$

Show that SVMs are convex:

$$f(x) = \frac{1}{2} ||x||^2 + C \sum_{i=1}^n \max\{0, 1 - b_i a_i^T x\}.$$

#### Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Opposition with affine mapping:

$$g(x)=f(Ax+b).$$

Ointwise maximum:

$$f(x) = \max_i \{f_i(x)\}.$$

Show that SVMs are convex:

$$f(x) = \frac{1}{2} ||x||^2 + C \sum_{i=1}^n \max\{0, 1 - b_i a_i^T x\}.$$

The first term has Hessian  $I \succ 0$ , for the second term use (3) on the two (convex) arguments, then use (1) to put it all together.





- 2 Smooth Optimization
- 3 Non-Smooth Optimization
- 4 Stochastic Optimization

How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

## How hard is real-valued optimization?

How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)

How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

 $|f(x)-f(y)|\leq L||x-y||.$ 

How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)| \leq L||x-y||.$$



How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)|\leq L||x-y||.$$



How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)|\leq L||x-y||.$$


# How hard is real-valued optimization?

How long to find an  $\epsilon$ -optimal minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)|\leq L||x-y||.$$



# How hard is real-valued optimization?

How long to find an  $\epsilon\text{-optimal}$  minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion) We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x) - f(y)| \le L ||x - y||.$$

• After t iterations, the error of any algorithm is  $\Omega(1/t^{1/n})$ .

(this is in the worst case, and note that grid-search is nearly optimal)

# How hard is real-valued optimization?

How long to find an  $\epsilon\text{-optimal}$  minimizer of a real-valued function?

 $\min_{x\in\mathbb{R}^n}f(x).$ 

• General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion) We need to make some assumptions about the function:

• Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)|\leq L||x-y||.$$

• After t iterations, the error of any algorithm is  $\Omega(1/t^{1/n})$ .

(this is in the worst case, and note that grid-search is nearly optimal)

• Optimization is hard, but assumptions make a big difference. (we went from impossible to very slow)

Stochastic Optimization

# $\ell_2\text{-}\mathsf{Regularized}$ Logistic Regression

• Consider  $\ell_2$ -regularized logistic regression:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))) + \frac{\lambda}{2} ||x||^2.$$

- Objective *f* is convex.
- First term is Lipschitz continuous.
- Second term is not Lipschitz continuous.

Stochastic Optimization

# $\ell_2$ -Regularized Logistic Regression

• Consider  $\ell_2$ -regularized logistic regression:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))) + \frac{\lambda}{2} ||x||^2.$$

- Objective *f* is convex.
- First term is Lipschitz continuous.
- Second term is not Lipschitz continuous.
- But we have

$$\mu I \preceq \nabla^2 f(x) \preceq LI.$$

 $(L = \frac{1}{4} ||A||_2^2 + \lambda, \mu = \lambda)$ 

- Gradient is Lipschitz-continuous.
- Function is strongly-convex.

(implies strict convexity, and existence of unique solution)

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x)$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that  $\nabla^2 f(z) \preceq LI$ .

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

- Global quadratic upper bound on function value.
- Set  $x^+$  to minimize upper bound in terms of y:

$$x^+ = x - \frac{1}{L} \nabla f(x).$$

(gradient descent with step-size of 1/L)

• Plugging this value in:

$$f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2.$$

(decrease of at least  $\frac{1}{2L} \|\nabla f(x)\|^2$ )

• From Taylor's theorem, for some *z* we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x)$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

- Use that  $\nabla^2 f(z) \succeq \mu I$ .  $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} \|y - x\|^2$
- Global quadratic upper bound on function value.

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that 
$$\nabla^2 f(z) \succeq \mu I$$
.  
 $f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$ 



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that 
$$\nabla^2 f(z) \succeq \mu I$$
.  
 $f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$ 



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that 
$$\nabla^2 f(z) \succeq \mu I$$
.  
 $f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$ 



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

• Use that  $\nabla^2 f(z) \succeq \mu I$ .

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$$

- Global quadratic upper bound on function value.
- Minimize both sides in terms of *y*:

$$f(x^*) \ge f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

• Upper bound on how far we are from the solution.

Stochastic Optimization

#### Linear Convergence of Gradient Descent

• We have bounds on  $x^+$  and  $x^*$ :

$$f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

• We have bounds on  $x^+$  and  $x^*$ :

 $f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$ 



• We have bounds on  $x^+$  and  $x^*$ :

 $f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$ 



• We have bounds on  $x^+$  and  $x^*$ :

 $f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$ 



• We have bounds on  $x^+$  and  $x^*$ :

$$f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$



• We have bounds on  $x^+$  and  $x^*$ :

$$f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$



Stochastic Optimization

#### Linear Convergence of Gradient Descent

• We have bounds on  $x^+$  and  $x^*$ :

$$f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

combine them to get

$$f(x^+) \le f(x) - rac{\mu}{L} [f(x) - f(x^*)]$$
  
 $f(x^+) - f(x^*) \le \left(1 - rac{\mu}{L}\right) [f(x) - f(x^*)]$ 

Stochastic Optimization

### Linear Convergence of Gradient Descent

• We have bounds on  $x^+$  and  $x^*$ :

$$f(x^+) \leq f(x) - \frac{1}{2L} \|\nabla f(x)\|^2, \quad f(x^*) \geq f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

combine them to get

$$f(x^+) \le f(x) - rac{\mu}{L}[f(x) - f(x^*)]$$
  
 $f(x^+) - f(x^*) \le \left(1 - rac{\mu}{L}\right)[f(x) - f(x^*)]$ 

• This gives a linear convergence rate:

$$f(x^{t}) - f(x^{*}) \leq \left(1 - \frac{\mu}{L}\right)^{t} [f(x^{0}) - f(x^{*})]$$

• Each iteration multiplies the error by a fixed amount.

(very fast if  $\mu/L$  is not too close to one)

• What maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^{T}a_i))).$$

• What maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

• We now only have

$$0 \preceq \nabla^2 f(x) \preceq LI.$$

• Convexity only gives a linear upper bound on  $f(x^*)$ :  $f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$ 

• What maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

• We now only have

$$0 \preceq \nabla^2 f(x) \preceq LI.$$

• Convexity only gives a linear upper bound on  $f(x^*)$ :

 $f(x^*) \leq f(x) + \nabla f(x)^T (x^* - x)$ 



• What maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

• We now only have

$$0 \preceq \nabla^2 f(x) \preceq LI.$$

• Convexity only gives a linear upper bound on  $f(x^*)$ :

 $f(x^*) \leq f(x) + \nabla f(x)^T (x^* - x)$ 



• What maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

• We now only have

$$0 \preceq \nabla^2 f(x) \preceq LI.$$

• Convexity only gives a linear upper bound on  $f(x^*)$ :

 $f(x^*) \leq f(x) + \nabla f(x)^T (x^* - x)$ 



• Consider maximum-likelihood logistic regression:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \preceq \nabla^2 f(x) \preceq LI.$$

• Convexity only gives a linear upper bound on  $f(x^*)$ :

$$f(x^*) \leq f(x) + \nabla f(x)^T (x^* - x)$$

• If some  $x^*$  exists, we have the sublinear convergence rate:

$$f(x^t) - f(x^*) = O(1/t)$$

(compare to slower  $\Omega(1/t^{-1/N})$  for general Lipschitz functions)

• Consider maximum-likelihood logistic regression:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \preceq \nabla^2 f(x) \preceq LI.$$

• Convexity only gives a linear upper bound on  $f(x^*)$ :

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$

• If some  $x^*$  exists, we have the sublinear convergence rate:

$$f(x^t) - f(x^*) = O(1/t)$$

(compare to slower  $\Omega(1/t^{-1/N})$  for general Lipschitz functions)

• If f is convex, then  $f + \lambda ||x||^2$  is strongly-convex.

## Gradient Method: Practical Issues

• In practice, searching for step size (line-search) is usually much faster than  $\alpha = 1/L$ .

(and doesn't require knowledge of L)

## Gradient Method: Practical Issues

• In practice, searching for step size (line-search) is usually much faster than  $\alpha = 1/L$ .

```
(and doesn't require knowledge of L)
```

• Basic Armijo backtracking line-search:

**1** Start with a large value of  $\alpha$ .

2 Divide  $\alpha$  in half until we satisfy (typically value is  $\gamma = .0001$ )

$$f(x^+) \leq f(x) - \gamma \alpha ||\nabla f(x)||^2.$$
# Gradient Method: Practical Issues

• In practice, searching for step size (line-search) is usually much faster than  $\alpha = 1/L$ .

```
(and doesn't require knowledge of L)
```

• Basic Armijo backtracking line-search:

**(1)** Start with a large value of  $\alpha$ .

2 Divide  $\alpha$  in half until we satisfy (typically value is  $\gamma = .0001$ )

$$f(x^+) \leq f(x) - \gamma \alpha ||\nabla f(x)||^2.$$

• Practical methods may use Wolfe conditions (so  $\alpha$  isn't too small), and/or use interpolation to propose trial step sizes.

(with good interpolation, pprox 1 evaluation of f per iteration)

# Gradient Method: Practical Issues

• In practice, searching for step size (line-search) is usually much faster than  $\alpha = 1/L$ .

```
(and doesn't require knowledge of L)
```

• Basic Armijo backtracking line-search:

**(1)** Start with a large value of  $\alpha$ .

2 Divide  $\alpha$  in half until we satisfy (typically value is  $\gamma = .0001$ )

$$f(x^+) \leq f(x) - \gamma \alpha ||\nabla f(x)||^2.$$

• Practical methods may use Wolfe conditions (so  $\alpha$  isn't too small), and/or use interpolation to propose trial step sizes.

(with good interpolation, pprox 1 evaluation of f per iteration)

• Also, check your derivative code!

$$abla_i f(x) pprox rac{f(x + \delta e_i) - f(x)}{\delta}$$

• For large-scale problems you can check a random direction d:

$$\nabla f(x)^T d \approx \frac{f(x+\delta d)-f(x)}{\delta}$$

### Convex Optimization Zoo

We are going to explore the 'convex optimization zoo':

| Algorithm | Assumptions                        | Rate               |
|-----------|------------------------------------|--------------------|
| Gradient  | Lipshitz Gradient, Convex          | O(1/t)             |
| Gradient  | Lipshitz Gradient, Strongly-Convex | $O((1-\mu/L)^{t})$ |

# Convex Optimization Zoo

We are going to explore the 'convex optimization zoo':

| Algorithm | Assumptions                        | Rate             |
|-----------|------------------------------------|------------------|
| Gradient  | Lipshitz Gradient, Convex          | O(1/t)           |
| Gradient  | Lipshitz Gradient, Strongly-Convex | $O((1-\mu/L)^t)$ |

- Rates are the same if only once-differentiable.
- Line-search doesn't change the worst-case rate.

(strongly-convex slightly improved with  $\alpha=2/(\mu+L))$ 

# Convex Optimization Zoo

We are going to explore the 'convex optimization zoo':

| Algorithm | Assumptions                        | Rate             |
|-----------|------------------------------------|------------------|
| Gradient  | Lipshitz Gradient, Convex          | O(1/t)           |
| Gradient  | Lipshitz Gradient, Strongly-Convex | $O((1-\mu/L)^t)$ |

- Rates are the same if only once-differentiable.
- Line-search doesn't change the worst-case rate.

(strongly-convex slightly improved with  $lpha=2/(\mu+L))$ 

• Is this the best algorithm under these assumptions?

### Accelerated Gradient Method

#### • Nesterov's accelerated gradient method:

$$x_{t+1} = y_t - \alpha_t f'(y_t), y_{t+1} = x_t + \beta_t (x_{t+1} - x_t),$$

for appropriate  $\alpha_t$ ,  $\beta_t$ .

### Accelerated Gradient Method

• Nesterov's accelerated gradient method:

$$x_{t+1} = y_t - \alpha_t f'(y_t), y_{t+1} = x_t + \beta_t (x_{t+1} - x_t),$$

for appropriate  $\alpha_t$ ,  $\beta_t$ .

• Motivation: "to make the math work"

(but similar to heavy-ball/momentum and conjugate gradient method)

# Convex Optimization Zoo

| Algorithm | Assumptions                        | Rate                    |
|-----------|------------------------------------|-------------------------|
| Gradient  | Lipshitz Gradient, Convex          | O(1/t)                  |
| Nesterov  | Lipshitz Gradient, Convex          | $O(1/t^{2})$            |
| Gradient  | Lipshitz Gradient, Strongly-Convex | $O((1-\mu/L)^t)$        |
| Nesterov  | Lipshitz Gradient, Strongly-Convex | $O((1-\sqrt{\mu/L})^t)$ |

•  $O(1/t^2)$  is optimal given only these assumptions.

(sometimes called the optimal gradient method)

- The faster linear convergence rate is close to optimal.
- Also faster in practice, but implementation details matter.

## Newton's Method

• The oldest differentiable optimization method is Newton's.

(also called IRLS for functions of the form f(Ax))

• Modern form uses the update

$$x^+ = x - \alpha d,$$

where d is a solution to the system

$$abla^2 f(x) d = 
abla f(x).$$
 (Assumes  $abla^2 f(x) \succ 0$ )

# Newton's Method

• The oldest differentiable optimization method is Newton's.

(also called IRLS for functions of the form f(Ax))

• Modern form uses the update

$$x^+ = x - \alpha d,$$

where d is a solution to the system

$$abla^2 f(x) d = 
abla f(x).$$
 (Assumes  $abla^2 f(x) \succ 0$ )

• Equivalent to minimizing the quadratic approximation:

$$f(y) \approx f(x) + \nabla f(x)^T (y - x) + \frac{1}{2\alpha} \|y - x\|_{\nabla^2 f(x)}^2.$$
(recall that  $\|x\|_H^2 = x^T Hx$ )

# Newton's Method

• The oldest differentiable optimization method is Newton's.

(also called IRLS for functions of the form f(Ax))

• Modern form uses the update

$$x^+ = x - \alpha d,$$

where d is a solution to the system

$$abla^2 f(x) d = 
abla f(x).$$
 (Assumes  $abla^2 f(x) \succ 0$ )

• Equivalent to minimizing the quadratic approximation:

$$f(y) \approx f(x) + \nabla f(x)^T (y-x) + \frac{1}{2\alpha} \|y-x\|_{\nabla^2 f(x)}^2.$$

(recall that  $||x||_H^2 = x^T H x$ )

• We can generalize the Armijo condition to

$$f(x^+) \leq f(x) + \gamma \alpha \nabla f'(x)^T d.$$

• Has a natural step length of  $\alpha = 1$ .

(always accepted when close to a minimizer)

















### Convergence Rate of Newton's Method

If ∇<sup>2</sup>f(x) is Lipschitz-continuous and ∇<sup>2</sup>f(x) ≽ µ, then close to x\* Newton's method has superlinear convergence:

$$f(x^{t+1}) - f(x^*) \le \rho_t [f(x^t) - f(x^*)],$$

with  $\lim_{t\to\infty} \rho_t = 0$ .

- Converges very fast, use it if you can!
- But requires solving  $\nabla^2 f(x)d = \nabla f(x)$ .

## Convex Optimization Zoo

| Algorithm | Assumptions                        | Rate                                    |
|-----------|------------------------------------|-----------------------------------------|
| Gradient  | Lipshitz Gradient, Convex          | O(1/t)                                  |
| Nesterov  | Lipshitz Gradient, Convex          | $O(1/t^{2})$                            |
| Gradient  | Lipshitz Gradient, Strongly-Convex | $O((1-\mu/L)^t)$                        |
| Nesterov  | Lipshitz Gradient, Strongly-Convex | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton    | Lipschitz Hessian, Strongly-Convex | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

- Here the classical analysis gives a local rate.
- Recent work gives global rates under various assumptions (cubic-regularization/accelerated/self-concordant).

## Newton's Method: Practical Issues

There are many practical variants of Newton's method:

- Modify the Hessian to be positive-definite.
- Only compute the Hessian every *m* iterations.
- Only use the diagonals of the Hessian.
- Quasi-Newton: Update a (diagonal plus low-rank) approximation of the Hessian (BFGS, L-BFGS).

# Newton's Method: Practical Issues

There are many practical variants of Newton's method:

- Modify the Hessian to be positive-definite.
- Only compute the Hessian every *m* iterations.
- Only use the diagonals of the Hessian.
- Quasi-Newton: Update a (diagonal plus low-rank) approximation of the Hessian (BFGS, L-BFGS).
- Hessian-free: Compute *d* inexactly using Hessian-vector products:

$$abla^2 f(x)^T d = \lim_{\delta \to 0} rac{
abla f(x + \delta d) - 
abla f(x)}{\delta}$$

• Barzilai-Borwein: Choose a step-size that acts like the Hessian over the last iteration:

$$\alpha = \frac{(x^{+} - x)^{T} (\nabla f(x^{+}) - \nabla f(x))}{\|\nabla f(x^{+}) - f(x)\|^{2}}$$

Another related method is nonlinear conjugate gradient.





- 2 Smooth Optimization
- 3 Non-Smooth Optimization
- 4 Stochastic Optimization

# Motivation: Sparse Regularization

• Consider  $\ell_1$ -regularized optimization problems,

$$\min_{x} f(x) = g(x) + \lambda ||x||_1,$$

where g is differentiable.

• For example,  $\ell_1$ -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

• Regularizes and encourages sparsity in x

# Motivation: Sparse Regularization

• Consider  $\ell_1$ -regularized optimization problems,

$$\min_{x} f(x) = g(x) + \lambda ||x||_1,$$

where g is differentiable.

• For example,  $\ell_1$ -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any  $x_i = 0$ .
- How can we solve non-smooth convex optimization problems?

Recall that for differentiable convex functions we have

$$f(y) \geq f(x) + \nabla f(x)^T (y-x), \forall x, y.$$

A vector d is a subgradient of a convex function f at x if  $f(y) \ge f(x) + d^{T}(y - x), \forall y.$ 

Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^T(y-x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \geq f(x) + \nabla f(x)^T (y-x), \forall x, y.$$

$$f(y) \geq f(x) + d^{T}(y-x), \forall y.$$

- f is differentiable at x iff  $\nabla f(x)$  is the only subgradient.
- At non-differentiable x, we have a set of subgradients.
- Set of subgradients is the sub-differential  $\partial f(x)$ .
- Note that  $0 \in \partial f(x)$  iff x is a global minimum.
• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$



• The sub-differential of the absolute value function:

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in  $\left[-1,1\right]$  at 0)

• The sub-differential of the maximum of differentiable *f<sub>i</sub>*:

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

(any convex combination of the gradients of the argmax)

#### Sub-gradient method

• The sub-gradient method:

$$x^+ = x - \alpha d,$$

for some  $d \in \partial f(x)$ .

## Sub-gradient method

• The sub-gradient method:

$$x^+ = x - \alpha d,$$

for some  $d \in \partial f(x)$ .

• The steepest descent step is given by  $\arg \min_{d \in \partial f(x)} \{ \|d\| \}$ .

(often hard to compute, but easy for  $\ell_1\text{-regularization})$ 

- Otherwise, may increase the objective even for small  $\alpha$ .
- But  $||x^+ x^*|| \le ||x x^*||$  for small enough  $\alpha$ .
- For convergence, we require  $\alpha \rightarrow 0$ .

## Sub-gradient method

• The sub-gradient method:

$$x^+ = x - \alpha d,$$

for some  $d \in \partial f(x)$ .

• The steepest descent step is given by  $\arg \min_{d \in \partial f(x)} \{ \|d\| \}$ .

(often hard to compute, but easy for  $\ell_1\text{-regularization})$ 

- Otherwise, may increase the objective even for small  $\alpha$ .
- But  $||x^+ x^*|| \le ||x x^*||$  for small enough  $\alpha$ .
- For convergence, we require  $\alpha \rightarrow 0$ .
- Many variants average the iterations:

$$\bar{x}^k = \sum_{i=0}^{k-1} w_i x^i.$$

• Many variants average the gradients ('dual averaging'):

$$\bar{d}^k = \sum_{i=0}^{k-1} w_i d^i.$$

| Algorithm   | Assumptions                  | Rate                                    |
|-------------|------------------------------|-----------------------------------------|
| Subgradient | Lipschitz Function, Convex   | $O(1/\sqrt{t})$                         |
| Subgradient | Lipschitz Function, Strongly | O(1/t)                                  |
| Gradient    | Lipshitz Gradient, Convex    | O(1/t)                                  |
| Nesterov    | Lipshitz Gradient, Convex    | $O(1/t^{2})$                            |
| Gradient    | Lipshitz Gradient, Strongly  | $O((1-\mu/L)^t)$                        |
| Nesterov    | Lipshitz Gradient, Strongly  | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton      | Lipschitz Hessian, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

| Algorithm   | Assumptions                  | Rate                                    |
|-------------|------------------------------|-----------------------------------------|
| Subgradient | Lipschitz Function, Convex   | $O(1/\sqrt{t})$                         |
| Subgradient | Lipschitz Function, Strongly | O(1/t)                                  |
| Gradient    | Lipshitz Gradient, Convex    | O(1/t)                                  |
| Nesterov    | Lipshitz Gradient, Convex    | $O(1/t^{2})$                            |
| Gradient    | Lipshitz Gradient, Strongly  | $O((1-\mu/L)^t)$                        |
| Nesterov    | Lipshitz Gradient, Strongly  | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton      | Lipschitz Hessian, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

- Alternative is cutting-plane/bundle methods:
  - Minimze an approximation based on *all* subgradients  $\{d_t\}$ .
  - But have the same rates as the subgradient method.

(tend to be better in practice)

| Algorithm   | Assumptions                  | Rate                                    |
|-------------|------------------------------|-----------------------------------------|
| Subgradient | Lipschitz Function, Convex   | $O(1/\sqrt{t})$                         |
| Subgradient | Lipschitz Function, Strongly | O(1/t)                                  |
| Gradient    | Lipshitz Gradient, Convex    | O(1/t)                                  |
| Nesterov    | Lipshitz Gradient, Convex    | $O(1/t^2)$                              |
| Gradient    | Lipshitz Gradient, Strongly  | $O((1-\mu/L)^t)$                        |
| Nesterov    | Lipshitz Gradient, Strongly  | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton      | Lipschitz Hessian, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

- Alternative is cutting-plane/bundle methods:
  - Minimze an approximation based on *all* subgradients  $\{d_t\}$ .
  - But have the same rates as the subgradient method.

(tend to be better in practice)

• Bad news: Rates are optimal for black-box methods.

| Algorithm   | Assumptions                  | Rate                                    |
|-------------|------------------------------|-----------------------------------------|
| Subgradient | Lipschitz Function, Convex   | $O(1/\sqrt{t})$                         |
| Subgradient | Lipschitz Function, Strongly | O(1/t)                                  |
| Gradient    | Lipshitz Gradient, Convex    | O(1/t)                                  |
| Nesterov    | Lipshitz Gradient, Convex    | $O(1/t^2)$                              |
| Gradient    | Lipshitz Gradient, Strongly  | $O((1-\mu/L)^t)$                        |
| Nesterov    | Lipshitz Gradient, Strongly  | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton      | Lipschitz Hessian, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

- Alternative is cutting-plane/bundle methods:
  - Minimze an approximation based on *all* subgradients  $\{d_t\}$ .
  - But have the same rates as the subgradient method.

(tend to be better in practice)

- Bad news: Rates are optimal for black-box methods.
- But, we often have more than a black-box.

- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.

- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$x|\approx \sqrt{x^2+\nu}.$$



- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$x|\approx \sqrt{x^2+\nu}.$$



- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}.$$

• Smooth approximation to the max function:

 $\max\{a, b\} \approx \log(\exp(a) + \exp(b))$ 

• Smooth approximation to the hinge loss:

$$\max\{0,x\} pprox \begin{cases} 0 & x \ge 1 \\ 1-x^2 & t < x < 1 \\ (1-t)^2 + 2(1-t)(t-x) & x \le t \end{cases}$$

- Smoothing: replace non-smooth f with smooth  $f_{\epsilon}$ .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}.$$

• Smooth approximation to the max function:

 $\max\{a, b\} \approx \log(\exp(a) + \exp(b))$ 

• Smooth approximation to the hinge loss:

$$\max\{0,x\} pprox \begin{cases} 0 & x \ge 1 \ 1-x^2 & t < x < 1 \ (1-t)^2 + 2(1-t)(t-x) & x \le t \end{cases}$$

• Generic strategy for constructing  $\epsilon$  approximation with  $O(1/\epsilon)$ -Lipschitz gradient: strongly-convex regularization of convex conjugate. (but we won't discuss this in detail)

| Algorithm   | Assumptions                       | Rate                                    |
|-------------|-----------------------------------|-----------------------------------------|
| Subgradient | Lipschitz Function, Convex        | $O(1/\sqrt{t})$                         |
| Subgradient | Lipschitz Function, Strongly      | O(1/t)                                  |
| Gradient    | Smoothed to $1/\epsilon$ , Convex | $O(1/\sqrt{t})$                         |
| Nesterov    | Smoothed to $1/\epsilon$ , Convex | O(1/t)                                  |
| Gradient    | Lipshitz Gradient, Convex         | O(1/t)                                  |
| Nesterov    | Lipshitz Gradient, Convex         | $O(1/t^2)$                              |
| Gradient    | Lipshitz Gradient, Strongly       | $O((1-\mu/L)^t)$                        |
| Nesterov    | Lipshitz Gradient, Strongly       | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton      | Lipschitz Hessian, Strongly       | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

| Algorithm   | Assumptions                       | Rate                                    |
|-------------|-----------------------------------|-----------------------------------------|
| Subgradient | Lipschitz Function, Convex        | $O(1/\sqrt{t})$                         |
| Subgradient | Lipschitz Function, Strongly      | O(1/t)                                  |
| Gradient    | Smoothed to $1/\epsilon$ , Convex | $O(1/\sqrt{t})$                         |
| Nesterov    | Smoothed to $1/\epsilon$ , Convex | O(1/t)                                  |
| Gradient    | Lipshitz Gradient, Convex         | O(1/t)                                  |
| Nesterov    | Lipshitz Gradient, Convex         | $O(1/t^2)$                              |
| Gradient    | Lipshitz Gradient, Strongly       | $O((1-\mu/L)^t)$                        |
| Nesterov    | Lipshitz Gradient, Strongly       | $O((1-\sqrt{\mu/L})^t)$                 |
| Newton      | Lipschitz Hessian, Strongly       | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

- Smoothing is only faster if you use Nesterov's method.
- In practice, faster to slowly decrease smoothing level.
- You can get the O(1/t) rate for  $\min_x \max\{f_i(x)\}$  for  $f_i$  convex and smooth using Nemirosky's *mirror-prox* method.

## Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

# Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

$$\min_{x} g(x) + \lambda \|x\|_1,$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} g(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),$$

or the problems

$$\min_{-y \le x \le y} g(x) + \lambda \sum_{i} y_{i}, \quad \min_{\|x\|_{1} \le \tau} g(x) + \lambda \tau$$

# Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

$$\min_{x} g(x) + \lambda \|x\|_1,$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} g(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),$$

or the problems

$$\min_{-y \le x \le y} g(x) + \lambda \sum_{i} y_{i}, \quad \min_{\|x\|_{1} \le \tau} g(x) + \lambda \tau$$

• These are smooth objective with 'simple' constraints.

 $\min_{x\in\mathcal{C}}f(x).$ 

## Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

$$x^+ = \operatorname*{arg\,min}_{y} \left\{ f(x) + 
abla f(x)^T (y-x) + rac{1}{2lpha} \|y-x\|^2 
ight\}.$$

## Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

$$x^{+} = \operatorname*{arg\,min}_{y} \left\{ f(x) + 
abla f(x)^{T} (y - x) + rac{1}{2lpha} \|y - x\|^{2} 
ight\}.$$

• Consider minimizing subject to simple constraints:

$$x^+ = \operatorname*{arg\,min}_{y\in\mathcal{C}}\left\{f(x) + 
abla f(x)^T(y-x) + rac{1}{2lpha}\|y-x\|^2
ight\}.$$

# Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

$$x^{+} = \operatorname*{arg\,min}_{y} \left\{ f(x) + 
abla f(x)^{T} (y - x) + rac{1}{2lpha} \|y - x\|^{2} 
ight\}.$$

• Consider minimizing subject to simple constraints:

$$x^+ = \operatorname*{arg\,min}_{y\in\mathcal{C}}\left\{f(x) + 
abla f(x)^T(y-x) + rac{1}{2lpha}\|y-x\|^2
ight\}.$$

• Equivalent to projection of gradient descent:

$$\begin{aligned} x^{GD} &= x - \alpha \nabla f(x), \\ x^{+} &= \operatorname*{arg\,min}_{y \in \mathcal{C}} \left\{ \|y - x^{GD}\| \right\}, \end{aligned}$$












#### **Gradient Projection**



### Projection Onto Simple Sets

Projections onto simple sets:

- $\arg \min_{y \ge 0} \|y x\| = \max\{x, 0\}$ •  $\arg \min_{l \le y \le u} \|y - x\| = \max\{l, \min\{x, u\}\}$ •  $\arg \min_{a^T y = b} \|y - x\| = x + (b - a^T x)a/\|a\|^2$ . •  $\arg \min_{a^T y \ge b} \|y - x\| = \begin{cases} x & a^T x \ge b \\ x + (b - a^T x)a/\|a\|^2 & a^T x < b \end{cases}$ •  $\arg \min_{\|y\| \le \tau} \|y - x\| = \tau x/\|x\|$ .
- Linear-time algorithm for  $\ell_1$ -norm  $\|y\|_1 \leq \tau$ .
- Linear-time algorithm for probability simplex  $y \ge 0, \sum y = 1$ .
- Intersection of simple sets: Dykstra's algorithm.

| Algorithm      | Assumptions                       | Rate                                    |
|----------------|-----------------------------------|-----------------------------------------|
| P(Subgradient) | Lipschitz Function, Convex        | $O(1/\sqrt{t})$                         |
| P(Subgradient) | Lipschitz Function, Strongly      | O(1/t)                                  |
| P(Nesterov)    | Smoothed to $1/\epsilon$ , Convex | O(1/t)                                  |
| P(Gradient)    | Lipshitz Gradient, Convex         | O(1/t)                                  |
| P(Nesterov)    | Lipshitz Gradient, Convex         | $O(1/t^2)$                              |
| P(Gradient)    | Lipshitz Gradient, Strongly       | $O((1-\mu/L)^t)$                        |
| P(Nesterov)    | Lipshitz Gradient, Strongly       | $O((1-\sqrt{\mu/L})^t)$                 |
| P(Newton)      | Lipschitz Hessian, Strongly       | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

| Algorithm      | Assumptions                       | Rate                                    |
|----------------|-----------------------------------|-----------------------------------------|
| P(Subgradient) | Lipschitz Function, Convex        | $O(1/\sqrt{t})$                         |
| P(Subgradient) | Lipschitz Function, Strongly      | O(1/t)                                  |
| P(Nesterov)    | Smoothed to $1/\epsilon$ , Convex | O(1/t)                                  |
| P(Gradient)    | Lipshitz Gradient, Convex         | O(1/t)                                  |
| P(Nesterov)    | Lipshitz Gradient, Convex         | $O(1/t^{2})$                            |
| P(Gradient)    | Lipshitz Gradient, Strongly       | $O((1-\mu/L)^t)$                        |
| P(Nesterov)    | Lipshitz Gradient, Strongly       | $O((1-\sqrt{\mu/L})^t)$                 |
| P(Newton)      | Lipschitz Hessian, Strongly       | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ |

- Convergence rates are the same for projected versions!
- Can do many of the same tricks (i.e. Armijo line-search, polynomial interpolation, Barzilai-Borwein, quasi-Newton).
- For Newton, you need to project under  $\|\cdot\|_{\nabla^2 f(x)}$

(expensive, but special tricks for the case of simplex or lower/upper bounds)

• You don't need to compute the projection exactly.

- A generalization of projected-gradient is Proximal-gradient.
- The proximal-gradient method addresses problem of the form

$$\min_{x} f(x) = g(x) + h(x),$$

where g is smooth but h is a general convex function.

- A generalization of projected-gradient is Proximal-gradient.
- The proximal-gradient method addresses problem of the form

$$\min_{x} f(x) = g(x) + h(x),$$

where g is smooth but h is a general convex function.

• Applies proximity operator of *h* to gradient descent on *g*:

$$\begin{aligned} x^{GD} &= x - \alpha \nabla g(x), \\ x^+ &= \operatorname*{arg\,min}_{y} \left\{ \frac{1}{2} \|y - x^{GD}\|^2 + \alpha h(y) \right\}, \end{aligned}$$

- A generalization of projected-gradient is Proximal-gradient.
- The proximal-gradient method addresses problem of the form

$$\min_{x} f(x) = g(x) + h(x),$$

where g is smooth but h is a general convex function.

• Applies proximity operator of *h* to gradient descent on *g*:

$$\begin{aligned} x^{GD} &= x - \alpha \nabla g(x), \\ x^+ &= \operatorname*{arg\,min}_{y} \left\{ \frac{1}{2} \|y - x^{GD}\|^2 + \alpha h(y) \right\}, \end{aligned}$$

• If  $h(x) = \lambda \|x\|_1$ , then

$$\underset{y}{\arg\min} \frac{1}{2} \|y - x\|^2 + \alpha \lambda \|y\|_1 = \operatorname{sgn}(x) \max\{0, |x| - \lambda \alpha\}$$

• Convergence rates are still the same as for minimizing g.

• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda \|x\|_1.$$



• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda \|x\|_1.$$



• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda \|x\|_1.$$



• Iterative Soft-Thresholding methods are a special case:

$$h(x) = \lambda \|x\|_1.$$



#### Frank-Wolfe Method

• The projected gradient step

$$x^+ = \operatorname*{arg\,min}_{y\in\mathcal{C}} \left\{ f(x) + 
abla f(x)^T (y-x) + rac{1}{2lpha} \|y-x\|^2 
ight\},$$

may be hard to compute.

• Frank-Wolfe method simply uses:

$$x^+ = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x) + \nabla f(x)^T (y - x) \right\},$$

requires compact C, takes convex combination of x and  $x^+$ .

#### Frank-Wolfe Method

• The projected gradient step

$$x^+ = \operatorname*{arg\,min}_{y\in\mathcal{C}} \left\{ f(x) + 
abla f(x)^T (y-x) + rac{1}{2lpha} \|y-x\|^2 
ight\},$$

may be hard to compute.

• Frank-Wolfe method simply uses:

$$x^+ = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x) + \nabla f(x)^T (y - x) \right\},$$

requires compact C, takes convex combination of x and  $x^+$ .

- Iterate can be written as convex combination of vertices of  $\mathcal{C}$ .
- O(1/t) rate for smooth convex objectives, some linear convergence results for smooth and strongly-convex.

### Alternating Direction Method of Multipliers

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c}g(x)+h(y).$$

# Alternating Direction Method of Multipliers

#### • Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c}g(x)+h(y).$$

• Can introduce constraints to convert to this form:

,

$$\min_{x=y} g(x) + \lambda \|y\|_1.$$

- Alternate between prox-like operators with respect to x and y.
- Useful method for large-scale parallelization.

Stochastic Optimization

#### **Dual Methods**

- Stronly-convex problems have smooth duals.
- Solve the dual instead of the primal.

#### **Dual Methods**

- Stronly-convex problems have smooth duals.
- Solve the dual instead of the primal.
- SVM non-smooth strongly-convex primal:

$$\min_{x} C \sum_{i=1}^{N} \max\{0, 1 - b_{i}a_{i}^{T}x\} + \frac{1}{2} \|x\|^{2}.$$

• SVM smooth dual:

$$\min_{0 \le \alpha \le C} \frac{1}{2} \alpha^T A A^T \alpha - \sum_{i=1}^N \alpha_i$$

• There are many fast methods for bound-constrained problems.

Stochastic Optimization



#### Convex Functions

- 2 Smooth Optimization
- 3 Non-Smooth Optimization
- 4 Stochastic Optimization

# Stochastic Gradient Method

• Stochastic gradient method uses the iteration

$$x^+ = x - \alpha d,$$

where d is an unbiased estimator of  $\nabla f(x)$ , so  $\mathbb{E}[d] = \nabla f(x)$ . (often using averaging over x or d)

• As in subgradient method, we require  $\alpha \rightarrow 0$ .

(but better in practice with constant step size)

# Stochastic Gradient Method

• Stochastic gradient method uses the iteration

$$x^+ = x - \alpha d,$$

where d is an unbiased estimator of  $\nabla f(x)$ , so  $\mathbb{E}[d] = \nabla f(x)$ . (often using averaging over x or d)

• As in subgradient method, we require  $\alpha \rightarrow 0$ .

(but better in practice with constant step size)



# Stochastic Gradient Method

• Stochastic gradient method uses the iteration

$$x^+ = x - \alpha d,$$

where d is an unbiased estimator of  $\nabla f(x)$ , so  $\mathbb{E}[d] = \nabla f(x)$ . (often using averaging over x or d)

• As in subgradient method, we require  $\alpha \rightarrow 0$ .

(but better in practice with constant step size)

• For problems of the form

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x),$$

we take  $d = \nabla f_i(x)$  for a random *i*.

- Iterations require N times fewer gradient evaluations.
- Appealing when N is large, but how fast is it?

| Algorithm   | Assumptions      | Exact                                   | Stochastic      |
|-------------|------------------|-----------------------------------------|-----------------|
| Subgradient | LF, Convex       | $O(1/\sqrt{t})$                         | $O(1/\sqrt{t})$ |
| Subgradient | LF, Strongly     | O(1/t)                                  | O(1/t)          |
| Nesterov    | Smoothed, Convex | O(1/t)                                  | $O(1/\sqrt{t})$ |
| Gradient    | LG, Convex       | O(1/t)                                  | $O(1/\sqrt{t})$ |
| Nesterov    | LG, Convex       | $O(1/t^{2})$                            | $O(1/\sqrt{t})$ |
| Gradient    | LG, Strongly     | $O((1-\mu/L)^t)$                        | O(1/t)          |
| Nesterov    | LG, Strongly     | $O((1-\sqrt{\mu/L})^t)$                 | O(1/t)          |
| Newton      | LG,LH, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ | O(1/t)          |

| Algorithm   | Assumptions      | Exact                                   | Stochastic      |
|-------------|------------------|-----------------------------------------|-----------------|
| Subgradient | LF, Convex       | $O(1/\sqrt{t})$                         | $O(1/\sqrt{t})$ |
| Subgradient | LF, Strongly     | O(1/t)                                  | O(1/t)          |
| Nesterov    | Smoothed, Convex | O(1/t)                                  | $O(1/\sqrt{t})$ |
| Gradient    | LG, Convex       | O(1/t)                                  | $O(1/\sqrt{t})$ |
| Nesterov    | LG, Convex       | $O(1/t^2)$                              | $O(1/\sqrt{t})$ |
| Gradient    | LG, Strongly     | $O((1-\mu/L)^t)$                        | O(1/t)          |
| Nesterov    | LG, Strongly     | $O((1-\sqrt{\mu/L})^t)$                 | O(1/t)          |
| Newton      | LG,LH, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ | O(1/t)          |

- Good news: for general non-smooth problems, stochastic is as fast as deterministic
- We can solve non-smooth problems N times faster!

| Algorithm   | Assumptions      | Exact                                   | Stochastic      |
|-------------|------------------|-----------------------------------------|-----------------|
| Subgradient | LF, Convex       | $O(1/\sqrt{t})$                         | $O(1/\sqrt{t})$ |
| Subgradient | LF, Strongly     | O(1/t)                                  | O(1/t)          |
| Nesterov    | Smoothed, Convex | O(1/t)                                  | $O(1/\sqrt{t})$ |
| Gradient    | LG, Convex       | O(1/t)                                  | $O(1/\sqrt{t})$ |
| Nesterov    | LG, Convex       | $O(1/t^{2})$                            | $O(1/\sqrt{t})$ |
| Gradient    | LG, Strongly     | $O((1-\mu/L)^t)$                        | O(1/t)          |
| Nesterov    | LG, Strongly     | $O((1-\sqrt{\mu/L})^t)$                 | O(1/t)          |
| Newton      | LG,LH, Strongly  | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$ | O(1/t)          |

- Good news: for general non-smooth problems, stochastic is as fast as deterministic
- We can solve non-smooth problems N times faster!
- Bad news: smoothness assumptions don't help stochastic methods (most of these rates are optimal).

(recent work shows that O(1/t) for Newton may not require strong convexity)

Stochastic Optimization

#### Motivation for Hybrid Methods for Smooth Problems



Stochastic Optimization

#### Motivation for Hybrid Methods for Smooth Problems



# Stochastic Average Gradient Method

- Should we use stochastic methods for smooth problems?
- Problem is that noise doesn't go to 0.
- Solution: make the noise go to zero 'fast enough'.

# Stochastic Average Gradient Method

- Should we use stochastic methods for smooth problems?
- Problem is that noise doesn't go to 0.
- Solution: make the noise go to zero 'fast enough'.
- Possible in the case of finite data sets:

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x),$$

• Stochastic average gradient (SAG) method:

$$x^+ = x - \frac{\alpha}{N} \sum_{i=1}^N y_i,$$

on each iteration replace a random  $y_i$  with  $\nabla f_i(x)$ .

| Algorithm  | Assumptions      | Rate                                                 | Grads          |
|------------|------------------|------------------------------------------------------|----------------|
| S(Subgrad) | LF, Convex       | $O(1/\sqrt{t})$                                      | 1              |
| S(Subgrad) | LF, Strongly     | O(1/t)                                               | 1              |
| SAG        | LG, Convex       | O(1/t)                                               | 1              |
| SAG        | LG, Strongly     | $O((1 - \min\{\frac{\mu}{16L_i}, \frac{1}{8N}\})^t)$ | 1              |
| Nesterov   | Smoothed, Convex | O(1/t)                                               | N              |
| Gradient   | LG, Convex       | O(1/t)                                               | N              |
| Nesterov   | LG, Convex       | $O(1/t^2)$                                           | N              |
| Gradient   | LG, Strongly     | $O((1-\mu/L)^t)$                                     | N              |
| Nesterov   | LG, Strongly     | $O((1-\sqrt{\mu/L})^t)$                              | N              |
| Newton     | LH, Strongly     | $O(\prod_{i=1}^t \rho_t), \rho_t 	o 0$               | N <sup>2</sup> |

| Algorithm  | Assumptions      | Rate                                              | Grads |
|------------|------------------|---------------------------------------------------|-------|
| S(Subgrad) | LF, Convex       | $O(1/\sqrt{t})$                                   | 1     |
| S(Subgrad) | LF, Strongly     | O(1/t)                                            | 1     |
| SAG        | LG, Convex       | O(1/t)                                            | 1     |
| SAG        | LG, Strongly     | $O((1-\min\{\frac{\mu}{16L_i},\frac{1}{8N}\})^t)$ | 1     |
| Nesterov   | Smoothed, Convex | O(1/t)                                            | N     |
| Gradient   | LG, Convex       | O(1/t)                                            | N     |
| Nesterov   | LG, Convex       | $O(1/t^{2})$                                      | N     |
| Gradient   | LG, Strongly     | $O((1-\mu/L)^t)$                                  | N     |
| Nesterov   | LG, Strongly     | $O((1-\sqrt{\mu/L})^t)$                           | N     |
| Newton     | LH, Strongly     | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$           | $N^2$ |

- $L_i$  is the Lipschitz constant over all  $f'_i$   $(L_i \ge L)$ .
- SAG has a similar speed to the gradient method, but only looks at one training example per iteration.
- Recent work gives prox, ADMM, and memory-free variants.

### Coordinate Descent Methods

• In coordinate descent methods we only update one variable:

$$x_j^+ = x_j - \alpha d.$$

• We can often cheaply perform a very precise line-search.

# Coordinate Descent Methods

• In coordinate descent methods we only update one variable:

$$x_j^+ = x_j - \alpha d.$$

- We can often cheaply perform a very precise line-search.
- The steepest descent choice is  $j = \arg \min_j \{\nabla_j f(x)\}$ . (but only efficient to calculate in some special cases)
- Choosing a random *j* has the same convergence rate.
- Faster rate if *j* sampled according to Lipschitz constants.

# Coordinate Descent Methods

• In coordinate descent methods we only update one variable:

$$x_j^+ = x_j - \alpha d.$$

- We can often cheaply perform a very precise line-search.
- The steepest descent choice is  $j = \arg \min_j \{\nabla_j f(x)\}$ . (but only efficient to calculate in some special cases)
- Choosing a random *j* has the same convergence rate.
- Faster rate if *j* sampled according to Lipschitz constants.
- Various extensions:
  - Accelerated version (may lose sparsity of update)
  - Projected coordinate descent (product constraints)
  - Frank-Wolfe coordinate descent (product constraints)
  - Proximal coordinate descent (separable non-smooth term)

(exact step size for  $\ell_1$ -regularized least squares)

| Algorithm    | Assumptions      | Rate                                              |
|--------------|------------------|---------------------------------------------------|
| S(Subgrad)   | LF, Convex       | $O(1/\sqrt{t})$                                   |
| S(Subgrad)   | LF, Strongly     | O(1/t)                                            |
| SAG          | LG, Convex       | O(1/t)                                            |
| SAG          | LG, Strongly     | $O((1-\min\{\frac{\mu}{16L_i},\frac{1}{8N}\})^t)$ |
| CD-Uniform   | LP, Convex       | O(1/t)                                            |
| CD-Uniform   | LP, Strongly     | $O((1-\mu/L_1P)^t)$                               |
| CD-Lipschitz | LP, Strongly     | $O((1-\mu/\sum_i L_i)^t)$                         |
| Nesterov     | Smoothed, Convex | O(1/t)                                            |
| Gradient     | LG, Convex       | O(1/t)                                            |
| Nesterov     | LG, Convex       | $O(1/t^{2})$                                      |
| Gradient     | LG, Strongly     | $O((1-\mu/L)^t)$                                  |
| Nesterov     | LG, Strongly     | $O((1-\sqrt{\mu/L})^t)$                           |
| Newton       | LH, Strongly     | $O(\prod_{i=1}^t \rho_t), \rho_t \to 0$           |

L<sub>1</sub> ≥ L<sub>2</sub> ≥ ... L<sub>P</sub> are Lipschitz constants of the partials ∇<sub>i</sub>f (L<sub>1</sub> ≤ L ≤ PL<sub>1</sub>).

# References

- A reference to start with for each part:
  - Part 1: Convex Optimization (Boyd and Vandenberghe)
  - Part 2: Introductory Lectures on Convex Optimization (Nesterov)
  - Part 3: Convex Optimization Theory (Bertsekas)
  - Part 4: *Efficient Methods in Convex Programming* (Nemirovski)
- E-mail me for the other references (mark.schmidt@sfu)
- Come talk to me in TASC 9404.
- For tutorial material and code: http://www.di.ens.fr/~mschmidt/MLSS
- Come join the MLRG: http://www.di.ens.fr/~mschmidt/MLRG.html