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1 Motivation

We consider problems of the form

min
x

n∑
i=1

fi(x), (1)

where each fi(x) is differentiable and x is in Rp. We will use the notation f(x) =
∑n

i=1 fi(x). Two widely
used examples include least squares

min
x

n∑
i=1

(1/2)(aTi x− bi)2,

and logistic regression

min
x

n∑
i=1

log(1 + exp(bia
T
i x)).

Instead of decomposing the objective into single terms, another possibility is to use ‘batches’. In the least
squares case this would correspond to a decomposition of the form

min
x

n∑
i=1

1

2
||Aix− bi||22,

where each Ai is a matrix and each bi is a vector containing a subset of rows from the original problem.
A basic iterative gradient method would use steps of the form

xk+1 ← xk − αk
n∑

i=1

∇fi(x), (2)

where αk is a step size. If the gradient of f is Lipschitz-continuous with constant L, then using the step size
αk = 1/L guarantees that f(xk+1) < f(xk) (provided ∇f(xk) 6= 0), and if f is convex that the distance to
the optimal value f(x∗) as a function of k is O(1/k). Nesterov [1983] proposes a simple modification, referred
to as the accelerated gradient method, that improves this to O(1/k2), and under certain assumptions this is
the fastest possible convergence rate.

In this work we review methods that take advantage of the problem structure to yield alternative (or
complementary) methods for improving the convergence rate in cases where n is extremely large and the
functions fi are ‘similar’. For example, in the degenerate case where each fi is identical the incremental
gradient method discussed in the next section has a convergence rate of O(1/kn) in terms of k and n using a
step size of n/L. That is, the error rate is decreased n times faster than the basic gradient method. Despite
being a slower convergence rate in terms of k, when n is large and only a finite number of iterations will be
performed, this may yield a more practical method than an optimal O(1/k2) methods. Although in general
we don’t expect to achieve an n-fold speed-up since the functions fi will not be identical, we might still expect
to see computational gains in cases where the functions fi are sufficiently similar.
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2 Incremental Gradient Methods

A basic incremental gradient method takes steps of the form

xk+1 ← xk − αk
n∑

i=1

∇fi(yi), (3)

where on iteration k we define y0 = xk, and

yi ← yi−1 − αk∇fi(yi−1).

That is, instead of updating xk based on ∇f(xk), we update xk based on the gradients with respect to a
sequence of settings yi that represent gradient steps with respect to individual functions fi(·).

We can alternately write this as an iterative method that does not introduce the y variables and simply
uses updates of the form

xk+1 ← xk − αk∇fi(xk), (4)

where the variable i is chosen in order from 1 to n and then re-started at 1 every k iterations. We note that
k iterations of (4) cost the same as one iteration of (3) or (2), while iterations of (4) that are multiplies of k
give us the iterates generated by (3).

If the functions fi are identical, then (4) is a gradient step with respect to f with a step size of αk/n. The
convergence rate of O(1/kn) for (3) stated in the motivation section follows from this. Even if the functions
are not identical, the incremental gradient method may still be advantageous because the individual fi may
still be sufficiently similar to allow reasonable progress.

In general −∇fi(xk) will not be a direction of descent on f at every iteration, but it is still possible to
show convergence of the iterations to a minimizer under appropriate conditions. For example, Bertsekas
and Tsitsiklis [1996, Proposition 3.8] outline sufficient conditions for convergence of the incremental gradient
method when applied to non-linear least squares problems, but the proof can be can be generalized to
problems with the general form (1). In the general case, provided that f(x) is bounded below this proposition
establishes that limk→∞∇f(xk) = 0 under the following assumptions:

1. ||∇fi(x)−∇fi(y)|| ≤ L||x− y||,∀i,x,y.

2. ||∇fi(x)|| ≤ C +D||∇f(x)||,∀i,x.

3.
∑∞

t=0(αk)2 <∞.

4.
∑∞

t=0 α
k =∞.

In the above, L, C, and D are positive constants. The first condition is a Lipschitz-continuity assumption on
the gradients of each function fi(x), and is a standard assumption. The second condition requires that the
sizes of the individual gradient f ′i are bounded by an affine function of the magnitude of the full gradient.
This condition is fairly weak and is analgous to the condition ||d|| ≤ C||∇f(x)|| on a search direction d for
non-incremental methods. The third assumption requires that the sequence of step sizes converges to zero at
a certain rate. In general, without this condition the incremental gradient method will not have a limit since
even if ∇f(xk) = 0 we may have fi(x

k) 6= 0 for some i causing xk+1 to move away from the solution. The
final assumption requires that the sum of the step sizes diverges. This is required so that the decreasing step
sizes do not confine the iterates to a subset of Rp that does not contain the solution.

The conditions on the step size immediately suggest using the sequence αk = 1/k. However, in practice this
sequence is somewhat unnappealing since the step sizes very quickly become extremely small. A generalization
of this that still ensures convergence is the sequence αk = a/(k+ b)c, where a and b are non-negative and c is
in (0.5, 1]. A further generalization is to keep αk fixed for some constant number of iterations before moving
to the next term in the sequence.

We can also consider variants of the incremental gradient method where a sufficiently small constant
step size is used. Although in general this strategy does not lead to a convergent method, in some cases
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it is possible to show that the iterates obtained using a constant step size eventually oscillate within a
neighborhood of the solution, where the size of the neighborhood depends on the step size. Subsequently,
the optimal solution is obtained as the limit of decreasing the step size to zero to make this neighborhood
shrink to a point. For more details, see [Bertsekas and Tsitsiklis, 1996, Example 3.6 and Proposition 3.6(a)]
and [Bertsekas et al., 2003, Proposition 8.2.2].

2.1 Stochastic Approximation

Recall the second form of the incremental gradien iteration:

xk+1 ← xk − αk∇fi(xk), (5)

where the variable i in chosen in order from 1 to n and then re-started at 1. As discussed in Bertsekas et al.
[2003, §8.2], the rate of convergence of incremental (sub-)gradient methods can be affected by this order.
Further, it may be non-trivial to determine the optimal ordering. A widely-used alternative to choosing
an explicit ordering is to select an i at random from the set {1, 2, . . . , n}. The convergence properties of
this randomized version of the incremental gradient method are very similar to the deterministic case, but
the stochastic variant protects against the possibility that a pathological ordering of the functions will slow
convergence. In the randomized variant, it is easy to see that the random selection of i gives a descent
direction on average. This is because the expectation over i of ∇if(x) with p(i) given by 1/n is simply
(1/n)∇f(x). This variant is known as stochasctic gradient descent, and it is a specific instance of a stochastic
approximation algorithm.

Stochastic approximation algorithms were originally proposed by Robbins and Monro [1951] as a method
to solve non-linear equations

g(x) = 0,

based on noisy measurements of g(x). We obtain optimization problems in the special case where g(x) is
defined by ∇f(x) for the (convex) function f(x) that we would like to optimize. This special case is often
referred to as stochastic gradient descent, and dates back to Kiefer and Wolfowitz [1952]. In the context of
incremental gradient methods, we can view ∇fi(x) for a random i as a noisy measurement of the average of
the full gradient (1/n)∇f(x)1. The corresponding stochastic gradient descent iteration is given by (5).

Note that since the iterations themselves are random variables, in this context convergence will be specified
in terms of some measure of convergence of a sequence of random variables. For example, we might say that xk

converges almost surely to x∗. This means that the random variable converges with a probability of one, since
all realizations of the random variable where it doesn’t converge have a probability of zero. There are variety
of methods available to show that a stochastic approximation method converges, each using slightly different
assumptions. For the particular case of solving optimization problems, stochastic approximation methods
converge under fairly similar conditions to incremental gradient methods. For example, specializing [Bertsekas
and Tsitsiklis, 1996, Proposition 4.1] to the incremental gradient case establishes that limk→∞∇f(xk) = 0
(with probability one) for a function that is bounded below under the following assumptions:

1. ||∇f(x)−∇f(y)|| ≤ L||x− y||,x,y.

2. E[||∇fi(xk)||2] ≤ C +D||∇f(xk)||2,∀k,x.

3.
∑∞

k=1(αk)2 <∞.

4.
∑∞

k=1 α
k =∞.

In the second condition the expectation is taken with respect to i, and it requires that the variance of the
individual fi is bounded as a quadratic function of the magnitude of the full gradient. These assumptions are
only slightly stronger than those of the previous section. [Bertsekas and Tsitsiklis, 1996, Proposition 4.1] also
requires the pseudo-gradient property (for some c > 0):

1In this context we have introduced randomness into an otherwise deterministic method. However, stochastic approximation
methods also apply in cases where we have an inherently noisy measurement of the gradient.
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5. c||∇f(xk)||2 ≤ −∇f(xk)TE[dk],

where E[dk] is the expected search direction. The pseudo-gradient property ensures that the average direction
yields a descent direction, and it is trivially satisfied for the randomized incremental gradient method because
we have E[dk] = E[−∇fi(xk)] = −(1/n)∇f(xk). However, we note it here because this condition will be
important later when we consider methods that use a biased gradient approximation.

Convergence under these conditions is shown using known results about convergence of super-Martingales,
and this type of proof technique is known as the ‘smooth potential’ or ‘Lyaupunov’ approach. A second
method of proving convergence of stochastic approximation methods is discussed in [Bertsekas and Tsitsiklis,
1996, §4.3], where convergence is shown under a contraction or monotonicity assumption. This technique
allows us to prove that stochastic approximation methods converge even in some cases that don’t have a
well-defined objective function. A third method of showing that stochastic approximation methods converge is
known as the ordinary differential equation (ODE) method and is discussed in [Bertsekas and Tsitsiklis, 1996,
§4.4]. This technique can be useful in cases where the noise in the gradient measurement is not necessarily
independent. A notable aspect of the ODE method is that it assumes that the iterates stay within a compact
set. This assumption can be guaranteed by using a projected stochastic gradient iteration

xk+1 ← Π[xk − αk∇fi(xk)],

where the projection operator projects the iterates onto a convex set that is known to contain the optimal
solution. Such a step is also one of the available strategies for using stochastic approximation methods when
we have convex constraints on the variables. Alternatively, if we do not know a compact set containing the
optimal solution, we can project onto an increasing sequence of sets [Chen et al., 1987].

2.2 Asymptotic Rate of Convergence

Similar to statistical estimators, the rate of convergence of a stochastic gradient algorithm is typically
measured in terms of its asymptotic variance around the optimal parameters. Specifically, under some fairly
strong assumptions (which are similar to strong convexity assumptions in optimization) we can show that the
value of the random variable

√
k(xk − x∗) converges in distribution to a normal distribution with a mean of

zero and a covariance matrix Σ [Spall, 2003, §4.4]:

√
k(xk − x∗)

d→N (0,Σ).

The asymptotic covariance Σ depends on the both the choice of step sizes αk and the Hessian ∇2f of
the problem. This result implies that we asymptotically expect the distance between xk and the optimal
parameter vector x∗ to behave like O(1/

√
k). Under the Lipschitz-continuity assumption on the gradients,

this implies that f(xk)−f(x∗) asymptotically behaves like O(1/k). We say that an algorithm is more efficient
than another algorithm if it has a smaller asymptotic variance Σ (according to some matrix norm), which
(roughly) means that the random variable xk is distributed in a smaller neighborhood around x∗ for a given
k.

2.3 Second-Order Methods

It is well-known that Newton-like methods have a faster convergence rate than the gradient method in the
deterministic scenario, so it is natural to consider stochastic versions of Newton-like algorithms. There is a
substantial literature exploring this possibility, and these methods typically use iterates of the form

xk+1 ← xk − αkBk∇fi(xk), .

Given this form of iteration, we can consider designing a sequence of step sizes αk and scaling matrices
Bk that minimize Σ in the asymptotic covariance, in order to optimize the convergence rate. As discussed
in [Spall, 2003, §4.4], the optimal choice is a sequence of step sizes that behave like αk = 1/k, combined
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with setting the scaling matrix Bk to the inverse of ∇2f(x∗). Thus, in some sense a Newton-like stochastic
algorithm achieves the optimal convergence rate.

Since we do not know the inverse Hessian at the minimizer, we would like to design a sequence of values
of Bk that converges to this value. Approaches that do this are called adaptive. One possible strategy is to
compute the Hessian for the individual function fi(x

k), and keep a running average approximation to the
Hessian:

Hk ← k

k + 1
Hk−1 +

1

k + 1
∇2fi(xk). (6)

Subsequently, we can set Bk to the inverse of Hk (modified to be positive-definite).2 For quadratic functions,
this converges in probability to the average of the true Hessian, (1/n)∇2f(x), by the law of large numbers.
In the context of least squares problems, this is referred to as the recursive least squares (RLS) method [Spall,
2003, §3.2].3 Under appropriate assumptions, convergence of this choice of Hessian approximation to the
Hessian can also be shown for the convergent step sizes of the previous section. Several authors have also
considered stochastic variants of Gauss-Newton methods for non-linear least squares problems [Bertsekas and
Tsitsiklis, 1996, §3.2.6] where the scaling matrix is updated according to

Hk ← k

k + 1
Hk−1 +

1

k + 1
∇fi(xk)∇fi(xk)T .

The advantage of Gauss-Newton methods is that the approximation Bk is constructed using the noisy gradient
measurements rather than explicitly requiring ∇2fi(xk). There has also been recent work on stochastic
quasi-Newton methods that utilize variants of the L-BFGS approximation [Schraudolph et al., 2007]. Global
convergence of stochastic Newton-like algorithms can be shown under the assumptions of the previous section
in addition to the assumption that the eigenvalues of Bk are bounded between positive constants for all
k [Sunehag et al., 2009].

2.4 Iterate Averaging

During the 1980s, Ruppert and Polyak independently proved the surprising result that a very simple algorithm
could achieve the same optimal asymptotic convergence rate achieved by optimal stochastic Newton-like
methods [Polyak and Juditsky, 1992]. This algorithm uses the basic stochastic gradient iteration discussed at
the beginning of the section,

xk+1 ← xk − αk∇fi(xk),

but requires a sequence of step sizes αk that converge to zero asymptotically slower than O(1/k). More
specifically, Polyak and Juditsky consider sequences satisfying (αk+1 − αk)/αk = o(αk). For example, we
could set αk to 1/kc for c ∈ (1/2, 1). These choices of step size lead to a sub-optimal convergence rate, but
Ruppert and Polyak showed that the average value of xk converges to the optimal solution at the optimal
rate. Thus, if we maintain a second sequence of iterates

yk ← k

k + 1
yk−1 +

1

k + 1
xk,

then yk converges to x∗ at the optimal rate. This is a surprising result since it indicates that, if we use
asymptotic normality as our measure of rate of convergence, we should not expect Newton-like stochastic
methods to perform better than the average iterate of a stochastic gradient method.

2If the Hessians of the individual functions fi(x) are low-rank, then we can update a factorization of Hk or directly update
an approximation to the inverse Bk using the matrix inversion lemma. We also note that some variants do not include the
averaging.

3First-order incremental gradient methods for the least squares problem are sometimes referred as least mean squares (LMS)
methods [Spall, 2003, §3.1].
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2.5 Finite-Difference Methods

When applied to optimization, the stochastic approximation framework assumes that we have noisy estimates
of the gradient. However, in many optimization problems it is much more realistic to expect that we have
a noisy estimate of the function value. In such cases, we can consider using the noisy estimate of the
function value to obtain a noisy estimate of the gradient. For example, the use of finite-difference numerical
approximations within stochastic gradient methods dates back to Kiefer and Wolfowitz [1952]. In the context
of incremental gradient methods, a central-differencing approximation to the derivative with respect to j
would be

(1/n)∇jf(xk) ≈ ∇jfi(x
k) ≈ fi(x

k + εkej)− fi(xk − εkej)
2εk

.

However, note that unlike ∇jfi(x
k), this noisy gradient estimate has a bias of size O(ε2) [Spall, 2003, §6.4].

That is, even though ∇fi(xk) is the limit of the central difference as εk approaches zero, for positive εk it
is not an unbiased estimate of this quantity. Because of this bias, stochastic gradient methods based on a
finite-difference approximation may not satisfy the pseudo-gradient property discussed in Section 2.1. Thus, in
order to show convergence of the method we need additional assumptions. For example, that the eigenvalues
of the Hessian are bounded and that the sequence εk converges to zero while

∑∞
k=1(αk)2/(εk)2 <∞ [Spall,

2003, §6.4]. From these conditions, we see that εk must go to zero slower than αk. Iterations of a stochastic
gradient descent method with finite-differencing satisfy asymptotic normality but with a non-zero mean due
to the bias in the estimate [Spall, 2003, §6.5],√

β(xk − x∗)
d→N (µ,Σ).

The asymptotic bias µ depends on the bias in the gradient approximation as well as the step sizes, while β is
a function of the step sizes. In terms of k, under the central-difference approximation the optimal asymptotic
error slows from O(1/

√
k) to O(1/ 3

√
k). However, in several scenarios it can be shown that finite-difference

methods do not suffer this loss of efficiency [see Spall, 2003, §6.1].

2.6 Simultaneous Perturbation

For high-dimensional problems, a major drawback of the finite-differencing method is that it requires 2p
noisy function evaluations on each iteration. Although evaluating the noisy function value fi(x

k) is relatively
cheap compared to evaluating f(xk), it is unnappeling to require p evaluations per iteration if p is large. The
simultaneous perurbation stochastic approximation (SPSA) method was proposed to address this poor scaling
with p [Spall, 2003, §7]. SPSA is a simple method that has essentially the same convergence properties as
stochastic gradient descent with finite-differencing, but only requires 2 noisy function evaluations on each
iteration. Rather than using a separate direction ej along each coordinate to compute the finite-difference,
the SPSA method perturbs all coordinates along a random direction dk

(1/n)∇jf(xk) ≈ ∇jfi(x
k) ≈ fi(x

k + εkdk)− fi(xk − εkdk)

2εkdk
j

.

Although there are a variety of valid ways to choose the perturbation directions dk, the optimal choice (in
some sense) is to sample each element of dk from a {−1, 1}-Bernoulli distribution [Spall, 2003, §7.7]. With
this choice, the method computes a crude approximation of the effect of moving roughly half the variables in
the positive direction and half the variables in the negative direction. Since it maintans the same asymptotic
efficiency as the finite-difference method, the SPSA method is preferable for high-dimensional problems due
to the need for a factor of p fewer evaluations of the noisy objective value.

2.7 Second-Order Simultaneous Perturbation

We can also consider implementing a stochastic-Newton method with a stochastic finite-difference approxima-
tion of the Hessian, using O(p) noisy gradient evaluations, or O(p2) noisy function evaluations [Spall, 2003,
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§7.8]. However, for high-dimensional problems this is unnappealing and we can again consider an SPSA-type
of approximation to the Hessian by perturbing the gradient along a random direction. Specifically, consider
an iteration of the form

xk+1 ← xk − αkBk∇fi(xk),

where Bk is given by the inverse of

Hk ← k − 1

k
Hk−1 +

1

k
S,

and S is an SPSA-type approximation of the Hessian of fi at xk obtained by perturbing the gradient
in a random direction. This is referred to as the adaptive SPSA method, and unlike a finite-difference
approximation that would require O(p) noisy gradient evaluations on each iteration, this method requires only
three (one for computing the gradient at xk, and two to from S). Further, similar to the iterate-averaging
trick, it represents a simple means to achieve the optimal asymptotic efficiency without explicitly computing
second-order information [Spall, 2003, §7.8].

2.8 Natural Gradient

Up to this point we have discussed several incremental gradient methods with a scaling matrix chosen to
approximate the Hessian of f(x). Amari [1998] proposes an alternative scaled incremental gradient method
motivated by arguments from information geometry for cases where the parameter space defines a Riemann
metric. In such cases, it is argued that the steepest descent direction in the Riemann space should be used.
This direction is referred to as the natural gradient. Denoting I(xk) as the Riemann metric at xk, the
incremental natural gradient method takes steps of the form:

xk+1 ← xk − αkI(xk)−1∇fi(xk).

Although this appears similar to an incremental Newton method, in general I(xk) will not be equal to the
Hessian ∇2f(xk). When each fi(x) corresponds to a log-likelihood (as in least squares and logistic regression),
the Riemann metric is given by the Fisher information matrix4

I(xk) = E[∇f(xk)∇f(xk)T ].

Here, the expectation is taken with respect to the probabilistic model.
As an example, consider the least squares problem where we assume b ∼ N (Ax, I). In this case, the

function is given by f(xk) = (1/2)||Ax− b||22, the gradient by ∇fi(xk) = AT (Ax− b), and the covariance
by Eb[(Ax− b)(Ax− b)T ] = I. Thus,

I(xk) = Eb[AT (Ax− b)(Ax− b)TA] = ATEb[(Ax− b)(Ax− b)T ]A = AT IA = ATA.

That is, the Fisher information matrix and Hessian are the same. The Hessian and Fisher information matrix
are also the same for logistic regression, but are not the same in general. A notable alternative interpretation
of the natural gradient method is given by Le Roux et al. [2007], who take the expectation with respect to
the empirical distribution over gradients. In this case, the Fisher information and Hessian are only the same
if the data actually follows the model.

Similar to the Hessian, we are not typically given the Fisher information matrix but rather iteratively
build an approximation Hk of it:

Hk ← k

k + 1
Hk−1 +

1

k + 1
∇fi(xk)∇fi(xk)T .

4In statistics, Newton-like methods where the Hessian is replaced by this information matrix are sometimes referred to as
Fisher scoring.
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This quantity appears to be closely related to the Gauss-Newton Hessian approximation for non-linear least
squares problem, but they are not the same. For example, if we consider a non-linear least squares problem
minx(1/2)

∑n
i=1 fi(x)2, then the natural gradient update becomes

Hk ← k

k + 1
Hk−1 +

1

k + 1
fi(x)2∇fi(xk)∇fi(xk)T .

That is, the outer-products used in the Gauss-Newton approximation are weighted by the corresponding
residual squared. Further, the Fisher information matrix is defined even if the problem is not a non-linear
least squares problem. In cases where the Hessian and information matrix coincide, this approximation
converges to the Hessian, without the need to compute second-order information explicitly (assuming the data
actually follows the model). However, similar to the Gauss-Newton method, one of the appealing aspects of
using the natural gradient as opposed to the Hessian is that I(xk) is guaranteed to be positive semi-definite.
This property holds even if the problem is not a non-linear least squares problem, and a corollary of this is
that the Hessian matrix and Fisher information matrix do not coincide for non-convex objectives.

2.9 Accelerated Stochastic Approximation

In many practical problems the error in the gradient estimate can make second-order methods unstable.
As opposed to the methods discussed above that build a Hessian approximation, accelerated stochastic
approximation methods apply the standard stochastic gradient method but look at whether the sign of the
gradient changes in order to estimate the step size. The intuition behind these methods is that the step size
should remain large unless we are sufficiently close to the solution, and at this point the step size should
be decreased. Kesten [1958] proposed the original one-dimensional accelerated stochastic gradient method,
while Delyon and Juditsky [1993] extended this method to the multivariate scenario and also examined the
asymptotic normality of the method. Formally, if we use gk as the gradient approximation at iteration k,
this method uses the update

xk+1 ← xk − s(γk)gk,

where
γk+1 = γk + I(gT

k gk−1 < 0),

and s(n) is a sequence of step sizes, typically of the form O(1/n).

2.10 Sub-Gradient and Proximal Methods

Incremental methods can also be used for non-differentiable problems. In particular, an incremental sub-
gradient method would take iterations of the form

xk+1 ← xk − αkgk
i ,

where i is chosen in a cyclic or random way and gk
i is any element of the sub-differential of fi at xk. Alternately,

we can consider incremental proximal methods where each iteration is given by the solution of a proximal
problem for a given sample i:

xk+1 ← arg min
x
{fi(x) +

1

2α
||x− xk||22}.

As discussed by Bertsekas [2010], both of these methods have similar convergence properties to the incremental
gradient method.

2.11 Non-Asymptotic Rates of Convergence

As opposed to the local rates of convergence discussed earlier, there has also been work on global and
non-asymptotic bounds for the convergence rates of incremental gradient methods when applied to convex
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problems. In particular, the error in function value for the deterministic incremental sub-gradient method
is O(1/

√
k) for cycle k [Bertsekas et al., 2003, Proposition 8.2.3]. This is the same worst-case convergence

rate as the non-incremental sub-gradient method. For the randomized incremental sub-gradient method, the
expected worst-case error is O(1/

√
k) after k updates [Bertsekas et al., 2003, Proposition 8.2.12]. That is, the

randomized method requires m times fewer iterations to achieve the same optimality level. This is a surprising
result, indicating that the randomized incremental sub-gradient method may not only be more efficient
than the deterministic method, but that it may be more efficient than the non-incremental sub-gradient
method (despite its substantially lower iteration cost when n is large). Further, as discussed in [Agarwal
et al., 2009] there is a lower bound of Ω(1/

√
k) for optimizing Lipschitz-continuous functions based on a

stochastic first-order oracle. Nesterov [2009] recently proposed a variant of the stochastic sub-gradient descent
algorithm called dual averaging, that uses the average of previous sub-gradients as the search direction,

xk+1 ← xk − αk 1

k + 1

k∑
i=0

gk
i .

This algorithm achieves the O(1/
√
k) rate but with better constants, and is related to Baher’s method [see

Kushner and Yin, 2003, §1.3.4] which combines gradient averaging with online iterate averaging and achieves
the optimal convergence rate in terms of asymptotic efficiency. Incremental proximal algorithms that achieve
the O(1/

√
k) rates in the deterministic and stochastic cases are discussed by Bertsekas [2010].

There also exist heavy-ball variants of incremental gradient methods that use updates of the form

xk+1 ← xk − αk∇fi(xk) + βk(xk − xk−1).

In the stochastic gradient context, the extra term is typically referred to as the ‘momentum’ [Bertsekas and
Tsitsiklis, 1996, §3.2]. In the non-incremental scenario, accelerated gradient methods are a variant of this
iteration leads to an error in function value of O(1/k2) if the gradient is Lipschitz-continuous (but without
needing strong convexity)[Nesterov, 1983]. Although there is no analogous result known for incremental
methods, Ghadimi and Lan [2010] and Xiao [2010] describe methods where if we decompose the error into
a deterministic and a stochastic part, then the methods achieve an O(1/k2) rate on the deterministic part
while still having an O(1/

√
k) rate on the stochastic part.

Similar to the non-incremental case, we obtain better global convergence rates under additional assumptions.
As discussed in Nemirovski et al. [2009, §2.1], for strongly convex objectives (with a Lipschitz-continuous
gradient) the expected error in the objective value is O(1/k) after k updates, and we also show that
E[||xk − x∗||] = O(1/

√
k). Note that in terms of k these rates coincide with the asymptotic rates discussed in

Section 2.2, and that the assumptions used to show these rates are similar. Although these sublinear rates
are faster than the non-smooth case, they are slower than the linear convergence rates that can be achieved
by non-incremental methods under these assumptions. Thus, in this scenario the incremental method will
only be more efficient when n is sufficiently large and ε is not too small.

Shalev-Shwartz et al. [2007] show that when the objective function is strongly convex, but not necessarily
differentiable, that the average iterate of the stochastic sub-gradient method achieves an expected error of
O(log k/k). Shamir [2011] has more recently shown that using sub-gradient descent and averaging only the
last iterations can achieve an expected error of O(1/k). Thus, differentiability is not required to achieve an
O(1/k) with a stochastic sub-gradient method. As discussed by Agarwal et al. [2009], this is the optimal rate
when the objective function is strongly convex and we only have a first-order oracle available.

Finally, we note that even though the convergence rate to the optimal solution may be sub-linear, the
convergence to some approximate solution can be much faster. For example, Nedic and Bertsekas [2000,
Proposition 2.4] show that under strong convexity assumptions that the incremental gradient method with
a constant step size converges (in terms of distance to the optimal parameter vector) at a linear rate to a
neighborhood containing the solution. An analgous result is given by d’Aspremont [2005]. who shows that
applying an accelerated gradient method with an error in the gradient for convex (but not necessarily strongly
convex) optimization achieves the optimal O(1/k2) rate up to some error tolerance.
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2.12 Amplification

In the previous section, we saw that the expected worst-case error achieved by stochastic algorithms might be
substantially smaller than the worst-case error achieved by deterministic algorithms for the same amount of
computation. However, this comparison is not strictly valid, since for a single run it is possible that the error
of the stochastic method will be much higher than its expectation. Using an amplification strategy where we
use multiple runs of the stochastic algorithm we can protect against this possibility with high confidence.
Since the error is non-negative, we can apply Markov’s inequality to bound the probability that multiple
runs of the algorithm deviate by more than a constant from the expected value. In particular, if we have an
algorithm with an expected error of O(1/k) and we want to have a confidence of 1− δ that we achieve an
error within a fixed constant of this, it suffices the run the stochastic algorithm dlog δe times [Collins et al.,
2008, §5]. Thus, we can achieve an error of O(1/k) with a confidence of 1− δ in a total kdlog δe iterations.

2.13 Mirror Descent and Exponentiated Gradient

We can re-write the gradient iteration as a proximal iteration applied to a linearized version of the objective
function. In particular, if we use the approximation

fi(x) ≈ fi(xk) +∇fi(xk)T (x− xk),

we can re-write the gradient iteration with a fixed step size as the solution of the proximal problem

xk+1 ← arg min
x
{fi(xk) +∇fi(xk)(x− xk) +

1

2α
||x− xk||22}.

We can consider a generalization of this iteration where we replace the squared Euclidean norm by a general
Bregman distance:

xk+1 ← arg min
x
{fi(xk) +∇fi(xk)T (x− xk) +

1

α
D(x,xk)}.

This is know as the mirror descent algorithm, and in the non-incremental setting Beck and Teboulle [2003]
show that it has a worst-case error of O(1/

√
k) (where the gradient is replaced by a sub-gradient). We

obtain the gradient method if we choose the distance function D(x,y) based on the squared Euclidean
norm (1/2)||x − y||22, while we obtain Newton’s method if we choose the distance function based on a
squared quadratic norm (1/2)(x− y)T∇2f(x)(x− y). Another interesting case arises if the parameters x are
constrained to be a probability distribution, so that each xj must be non-negative and they must sum up to
one. In this case a natural Bregman distance to use is the Kullback-Leibler divergence,

D(x,y) =

p∑
j=1

xj log
xj
yj
.

Under this distance measure, we obtain iterations of the form

xk+1
j ←

rkj x
k
j∑p

j′=1 r
k
j′x

k
j′
,

where the weights rkj are given by

rkj = exp(α∇jf(xk)).

Note that these udpates implicitly enforce the constraint that the parameters must lie on the unit simplex.
Beck and Teboulle [2003] call this the entropic descent algorithm.

An incremental version of this method was examined by Kivinen and Warmuth [1997], who called it
the exponentiated gradient method. Kivinen and Warmuth [1997, §3] also give a simple extension of the
exponentiated gradient method that allows negative variables and relaxes the assumption that the sum of the
weights equals one. They divide each variable into positive and negative parts, x+i and x−i , and enforce that
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the sum of these variables is equal to some upper bound U . Thus, the exponentiated gradient method can
be applied provided we have an upper bound on the `1 norm of the solution. The analysis of Kivinen and
Warmuth [1997] suggests that the exponentiated gradient method may be advantageous over the gradient
method when the problem contains many irrelevant variables, in the context of the online framework we
discuss in the next section.

2.14 Regret Analysis

As an alternative to asymptotic normality or iteration complexity analysis of the rate of convergence, a third
way to assess a form of rate of convergence is through regret analysis. Regret analysis is one of the main
tools used in the analysis of algorithms in the online framework, where we receive our data in a sequential
fashion and our goal is to minimize the total loss obtained over the whole data sequence. As an example,
consider a variant on the linear least squares framework where at iteration k:

1. We receive a new example, ak.

2. We make a prediction about the new example, aTk x
k.

3. We receive the true target for this example, bk.

4. We are assessed the squared error between the prediction and the target, (aTk x
k − bk)2.

In this scenario, the goal of the online prediction algorithm is to update xk to try and minimize the total
error across the iterations. We typically express the performance of an online prediction algorithm in terms
of a bound on either its total loss or on its regret :

R(x1, . . . ,xk) =

k∑
i=1

(aTk x
k − bk)2 −min

x∈C

k∑
i=1

(aTk x− bk)2.

That is, the regret is the difference between the total error achieved by the algorithm, which does not know
the targets before making predictions, and the total error achieved by the best possible fixed x within a
restricted set C. If we have no restriction on the data and we allow C to simply be Rp, then the regret for
a given algorithm can be made arbitrarily large by an adversary. However, it possible to bound the regret
under restrictions on the data or the comparison class C.

One typical restriction on the data is that all examples ak are bounded in norm, ||ak||2 ≤ γ for all k
and some positive γ. Another restriction is that the comparison class of fixed strategies C is forced to be a
norm-ball of fixed radius. Note that the bounds that result from these assumptions do not rely on probabilistic
arguments; bounds on the regret can be obtained for arbitrary sequences ak and bk, that may not even follow
a particular distribution. However, these bounds may become tighter as the sequences ak and bk become
‘nicer’. Often these bounds are expressed in terms of the number of iterations k, and we would like the bound
to grow sub-linearly with k. For example, a bound of O(k) implies the vacuous result that the regret simply
grows with the number of iterations. In contrast, a bound of o(k) would imply that regret decreases as we
see more data.

One of the simplest online prediction algorithms uses incremental gradient iterations

xk+1 ← xk − αk(aTk x
k − bk)ak,

where the step size αk > 0 is a constant. Cesa-Bianchi et al. [1993] give worst-case bounds on this method
(and several extensions of it) in a variety of scenarios, while they also discuss choosing the optimal step size
in certain scenarios. They also examine bounds on the so-called normalized loss (aTk x

k − bk)/||x||22 using
iterations of the form

xk+1 ← xk − αk (aTk x
k − bk)

aTk ak
ak,
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which is the Kaczmarz algorithm discussed in Section 5.1 but augmented with a step size. As opposed to
the gradient method, Kivinen and Warmuth [1997] analyze the exponentiated gradient method in the online
setting of making real-valued predictions under the squared-error measure. The analysis of Kivinen and
Warmuth [1997] suggests that in the worst case the error of the exponentiated gradient method grows only
logarithmically in the number of irrelevant features. In contrast, for the gradient method it grows linearly.

Kalai and Vempala [2002] derive regret bounds in the framework of online linear optimization. Here, we
are given a feasible convex set and a sequence of linear objective vectors c1, c2, . . . , ck. The goal is to minimize
the regret in terms on the linear objective

∑k
i=1 c

T
i x

k. In this framework, we must make a prediction before
seeing each xi, and regret is measured in comparison to the error made by the best possible vector x in the
convex set. Zinkevich [2003] examined a generalization of online linear optimization known as online convex
optimization. Here, the parameters are again restricted to a known (compact) convex set, but the sequence
of linear objective functions are replaced by a sequence of general convex objective functions. Under bounds
on the norms of the gradients of the sequence of convex functions, Zinkevich [2003] showed that a projected
incremental gradient method achieves a sub-linear regret bound of O(

√
k). Flaxman et al. [2005] examined an

even more restrictive setting, where we are not given not the convex function directly on each iteration but
can only evaluate it at given parameter vectors (i.e. we do not have access to gradient information). Flaxman
et al. [2005] show that with a simultaneous perturbation approximation of the gradient (see Section 2.6), a
regret bound of O(k3/4) can still be achieved.

Similar to the worst-case analysis of incremental sub-gradient methods, the regret bounds can be improved
under assumptions about the second derivatives of the sequence of convex functions. In particular, Hazan
et al. [2007] showed that is possible to achieve a regret of O(log k) under suitable restrictions on the curvature
of the sequence of convex funtions. They show logarithmic regret is possible for an incremental gradient
method, an incremental Newton method (using the natural gradient Hessian approximation), and a method
that uses the previously computed function values to generate a new parameter vector.

3 Convergent Methods with Non-Vanishing Step-Sizes

Because of the noisy gradient estimates used by incremental gradient methods, it is crucial that the step sizes
eventually converge to zero in order for the methods to converge. Unfortunately, the convergence rates of
the previous section are sub-linear, and the requirement of vanishing step-sizes seems to be in conflict with
achieving linear convergence rates.5 In this section, we examine a relatively diverse variety of methods that
have been proposed for obtaining a convergent method with noisy gradient estimates but a non-vanishing step
size. These methods have been proposed in very different fields for very different purposes, and superficially
don’t appear very similar. However, they all share essentially the same idea for achieving convergence;
instead of forcing the step size to go to zero, they force the error in the gradient estimate to go zero. Indeed,
in Friedlander and Schmidt [2011] and Schmidt et al. [2011] we analyze the gradient and accelerated-gradient
methods with error, and show that linear convergence rates can be obtained provided that the errors decrease
at suitable rates.

3.1 Stronger Assumption on Gradients

One way to show convergence under a non-vanishing step size is to make additional assumptions about the
function. For example, consider the assumption

||∇fi(x)|| ≤ D||∇f(x)||,∀i,x.

for some constant D. This is similar to the assumption used in Section 2, but where the affine function is
replaced by a linear function. However, this is a much stronger assumptions and in particular it implies that

∇f(x) = 0→ ∇fi(x) = 0, (7)

5In the literature, linear convergence rates are sometimes known as geometric or exponential convergencer rates
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meaning that any minimizer of f is also a minimizer of each fi. Under this assumption, Solodov [1998] shows
convergence of incremental gradient methods with a sufficiently small constant step size. The reason we can
use a non-vanishing step-size under this assumption is clear; by continuity of the gradients we have that each
∇fi(x) approaches ∇f(x) as x approaches a minimizer, as they all converge to zero. Hence, the noise in the
gradient measurement vanishes as we approach the minimizer. Further, under strong-convexity assumptions
it is also possible to show that this assumption leads to a linear convergence rate [Schmidt and Le Roux,
2012]. However, this assumption is not satisfied in most practical applications.

3.2 Batching

The idea behind batching is simple; we apply an incremental gradient method but as the algorithm progresses
we group together a larger number of functions fi into batches in order to obtain a more accurate gradient
estimate. This method essentially tries to interpolate between an incremental and a deterministic gradient
method. In early iterations the method is purely incremental, but as we progress we become less incremental
as the size of the batches increases. Once all functions are batched together, we obtain a deterministic
gradient method.6

Since batching effectively removes the noise in the gradient over time, we can use any results available for
deterministic optimization methods to show convergence even with a non-vanishing step size. For example,
it is possible to show global convergence surely rather than almost surely, since even instantiations of the
random variable with probability zero are captured by the deterministic global convergence theory. Further,
with batching we obtain asymptotic linear convergence rates by simply using a deterministic method with a
linear convergence rate. Although batching appears to be more of a ‘folk’ algorithm used by practioners than
a strategy whose theoretical properties have been examined, it is explicitly mentioned in an informal context
by some authors such as Bertsekas and Tsitsiklis [1996, page 113]. In Friedlander and Schmidt [2011] we
show non-asymptotic linear convergence rates for batching methods under both deterministic and stochastic
batch-selection strategies.

3.3 Weighted Incremental Gradient

Bertsekas [1997] proposes another strategy for interpolating between the incremental gradient and the
deterministic gradient method. To introduce this method, recall the first form of the incremental gradient
method:

xk+1 ← xk − αk
n∑

i=1

∇fi(yi),

where on iteration k we define y0 = xk, and

yi ← yi−1 − αk∇fi(yi−1).

Again, we note that the deterministic method is obtained if we set yi to xk for all i. The essential idea
behind the method of Bertsekas [1997] is to use a different formula for yi that forces all yi to converge to xk

as the iterations proceed. Specifically, the method sets y0 = xk and sets

yi ← xk − αk
i∑

j=1

1 + µ+ · · ·+ µi−j

1 + µ+ · · ·+ µm−j∇fi(y
i−1).

When the parameter µ is zero we obtain the incremental gradient method, while as µk goes to∞ we have that
each yi goes to xk and the method converges to deterministic gradient iterations.7 Further, Bertsekas [1997]
shows that under certain assumptions the method has a linear convergence rate for minimizing strongly-convex
quadratic functions if µ is increased at a sufficient rate.

6We can even consider an extreme variant where we apply an incremental gradient method for several iterations, and then
switch to a deterministic optimization method [Agarwal et al., 2011].

7The update for yi can be implemented sequentially so that we do not need to re-compute the weighted sum for each i.
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Bertsekas [1997] mentions several heuristics that are required for the method to be effective in practice.
First, it is mentioned that the weighting causes numerical issues and that batching can be used to reduce
this. Second, he suggests using large step sizes in early iterations but decreasing the step size to a sufficiently
small value once the method becomes sufficiently close to deterministic. Finally, he suggests several heuristics
for updating µ. Although theoretically appealing, the method seems to be quite delicate in practice and the
performance of the method seems to be sensitive to all of these issues.

3.4 Incremental Average Gradient

Recently, Blatt et al. [2008] presented a very different varient of the incremental gradient method that also
achieves a linear convergence rate for the strongly-convex quadratic case. In their method they maintain n
previous gradient vectors, one for each training example. Subsequently, on each iteration of their method the
search direction is defined as the sum of these individual gradients. After each iteration, one of these vectors
is updated in a cyclic fashion. Formally, beginning with a direction dk that is the sum of n incremental
gradient values at some n parameter values, the incremental average gradient (IAG) method uses iterations
of the form:

xk+1 ← xk − αkdk,

where dk is updated using
dk ← dk−1 −∇fi(xk−n) +∇fi(xk).

In the update for dk+1, the function i to update is chosen in a cyclic fashion. That is, the IAG method keeps
the same gradient for each training example for k iterations, and on each iteration updates the gradient for
a single training example. Since the update for dk requires gradient values at previous iterates, the IAG
method requires O(np) storage. This is much higher than the O(p) required by previous methods. However,
note that the storage will be much smaller if the individual fi are sparse.

That the IAG method has a linear convergence rate and is globally convergent with a constant step
size is somewhat suprising, since unlike the weighted incremental gradient method it does not converge
to a full-gradient algorithm. Further, it does not need to assume that each fi(x

k) converges to zero as
in Section 3.1. Rather, the IAG method takes advantage of the property that the sum of the gradient
approximations dk converges to zero as a minimizer is approached.

More recently, we considered a stochastic version of the IAG method in Le Roux et al. [2012], that we
referred to as the stochastic average gradient (SAG) method. This method is identical to the IAG method,
but we sample the gradient to update instead of using a cyclic order. Unlike the IAG method where the
linear convergence rate depends on the number of passes through the data, the SAG method achieves a linear
convergence rate that depends on the number of iterations. Further, a surprising result of this work is that
when the number of training examples is sufficiently large the SAG method allows the use of a very large
step size, which leads to improved theoretical and empirical performance.

3.5 Sample Average Approximation

The sample average approximation (SAA) method of Kleywegt et al. [2002] is a simple method that is closely
related to batching, but was developed in the context of optimizing an inherently noisy function over a
discrete set. In the SAA method, we randomly generate some number of samples m. We then solve the
problem exactly with respect to these m samples. Results from probability theory are used to argue that the
optimal value over the discrete set with respect to the samples converges to the true optimal value of the
noisy function.

SAA is explored further in [Shapiro and Nemirovski, 2005], including the possibility of optimizing over
continuous sets. An appealing property of the method is that fast deterministic algorithms can be used for
the optimization over the small batch of samples. Currently, there is little guidance from the SAA literature
on theoretically sound ways to chose the number of samples (or how to increase the number of samples over
time). While we could examine empirical estimates of variance based on the samples, such estimates tend to
be over-optimistic and may lead to premature convergence before a sufficiently large sample is chosen.
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3.6 Implicit Filtering

Similar to the SAA, implicit filtering methods are designed to optimize inherently noisy functions. To avoid
requiring a vanishing step size, in this literature it is assumed that the noise asymptotically vanishes as a
minimizer is approached, which is similar to making a strong assumption on the gradients as in Section 3.1.
The main idea behind implicit filtering methods is to use a finite-difference approximation to the gradient,
but using a potentially large perturbation to avoid the effect of local noise. Subsequently, this perturbation
is decreased over time. A first-order implicit filtering algorithm is discussed in Gilmore and Kelley [1995],
while Choi and Kelley [2000] present a quasi-Newton implicit filtering algorithm with a local superlinear
convergence rate.

4 Decomposition Methods

Recall our original problem

min
x

n∑
i=1

fi(x).

It would be appealing if we could minimize with respect to each fi(x), possibly in parallel, and then somehow
efficiently combine the results to obtain the final solution. Unfortunately, since the functions fi(x) are
not separable we can not do these minimization independently. In decomposition methods, we introduce
constraints in order to yield a separable objective function. Subsequently, we can minimize with respect to
each function individually in order to implement a block coordinate descent or gradient method.

4.1 Penalty Methods and Alternating Direction Method of Multipliers

Bertsekas and Tsitsiklis [1989, Example 4.2] suggest the following re-formulation of the problem to make the
objective function separable:

min
z,x1,...,xn

n∑
i=1

fi(xi), s.t. xi = z,∀i.

In this formulation we have a copy of the parameter vector xi for each function fi, but the constraints enforce
that all of these parameter vectors must be equal. There are a variety of strategies available for solving this
constrained optimization problem. One of the simplest we can imagine is to encourage feasibility by using a
penalty function, resulting in the problem:

min
z,x1,...,xn

n∑
i=1

fi(xi) +
ρ

2

n∑
i=1

||xi − z||22,

for some ρ ≥ 0. The solution of this problem approaches the solution of the original problem as ρ increases.
However, unlike the original problem we can optimize this objective by a block coordinate descent method
where the update for each xi has the form

xi ← arg min
x
{fi(x) +

ρ

2
||x− z||22}, (8)

and to update z we simply set it to the mean (1/n)
∑n

i=1 xi. We recognize the update with respect to xi

as the proximity operator for fi computed at z. Note that we can compute these proximity operators (8)
in parallel for all i, since the updates all use the same proximal center z.8 An important property of this
method is that it does not require a diminishing sequence of step sizes to converge to the solution for a fixed
value of ρ, and further that coordinate descent methods have an O(1/k) rate if f is convex and a linear

8We could also consider variants where z is updated more frequently, though this can affect the ability to parallelize the
method.
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rate if f is strongly convex [see Nesterov, 2010]. However, the problem becomes more difficult to solve as ρ
increases, and the penalized formulation is only equivalent to the original problem as ρ goes to ∞.

Rather than simply using a penalty function, we could also consider an augmented Lagrangian formulation:

min
z,x1,...,xn

n∑
i=1

fi(xi) +
ρ

2

n∑
i=1

||xi − z||22 +

n∑
i=1

pT
i (xi − z).

The advantage of this formulation is that for a suitable value of the Lagrange multiplier estimates pi, this
problem yields the same solution as the original problem for a finite value of ρ. Bertsekas and Tsitsiklis [1989,
§3.4] discuss the possibility of using an alternating-direction method of multipliers (ADMM) method, where
we cycle between optimizing z, optimizing each xi, and then updating each pi (or updating the multipliers
between updates to the xi variables).9 The ADMM update for each xi would take the form

xi ← arg min
x
{fi(x) +

ρ

2
||x− z||22 + pT

i (x− z)},

and the update for z would take the form

z← (1/n)

n∑
i=1

xi −
1

nρ

n∑
i=1

pi.

Further, we typically use a first-order update for the dual variables pi of the form

pi ← pi + ρ(z− xi).

For an extensive recent discussion of ADMM, see Boyd et al. [2010].
Another alternative strategy to solve the constrained optimization problem would be to solve an exact

penalty problem:

min
z,x1,...,xn

n∑
i=1

fi(xi) +
ρ

2

n∑
i=1

||xi − z||1.

Similar to the augmented Lagrangian formulation, this formulation has the advantage that it shares the same
solution as the original problem without requiring ρ to be arbitrarily large. In this case, the update for each
fi(x) can be formulated as a shifted `1-regularization problem. To update z, we set it the median of the xi

variables. However, the use of this method is complicated by the non-differentiability of the non-separable
exact penalty function, since this may prevent block coordinate descent strategies from converging to the
solution.

An alternative to introducing an auxiliary variable z and introducing n equality constraints forcing each
xi to be equal to z, is to simply use (n− 1) equalities to force the xi to be equal to each other. For example,
we could consider the formulation

min
x1,...,xn

n∑
i=1

fi(xi), s.t. xi = xi+1,∀i < n− 1.

This approach could similarly be addressed with penalty or augmented Lagrangian methods, and might
be more appealing in a distributed setting since each processor would only need to communicate with its
immediate neighbors (rather than requiring each processor to maintain a copy of the global variable z).
Another variant with (n− 1) equalities is discussed in the next section.

There are two major disadvantages of these types of methods. First, since the methods perform block
coordinate descent on a potentially ill-conditioned optimization problem, they may require a large number
of iterations. Second, they require O(np) storage to store the n copies of the parameter vector. Indeed,
even in cases where the individual gradients fi are sparse, the parameter vectors xi will typically be dense.
Nevertheless, these methods may be appealing in a distributed setting where each processor requires only one
copy of the parameter vector, and the block coordinate descent iterations can be performed in parallel.

9ADMM differs from a standard augmented Lagrangian method in that we minimize with respect to groups of primal variables
separately, rather than jointly.
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4.2 Fenchel Dual Methods

Bertsekas and Tsitsiklis [1989, Example 4.1] outline a variant of the parameter replication method where we
work with a certain Fenchel dual of the original problem in the case where each fi(x) is strictly convex. In
this method, we choose one copy of the parameter vector x1 and optimize subject to the constraint that all
parameter vectors are equal to this one:

min
x,x1,...,xn

f1(x) +

n∑
i=2

fi(xi),xi = x,∀i>1.

From this, we can derive a dual problem expressed in terms of convex conjugate functions:

max
p1,...,pn

q(p) = q1(

n∑
i=2

pi) +

n∑
i=2

qi(pi),

where

q1(

n∑
i=2

pi) = min
x
{f1(x)− (

n∑
i=2

pi)
Tx} (9)

and for i greater than one we have

qi(pi) = min
xi

{fi(xi) + pT
i xi}. (10)

The objective function in this dual is continuously differentiable with gradient

∂q(p)

∂pi
= xi(p)− x(p),

where xi(p) and x(p) are the minimizers of qi and q1, respectively. The convex conjuage functions (9)
and (10) required to compute the gradient can be computed in parallel (and have simple solutions for many
objective funtions), and we can use this within a gradient-based method to optimize the dual objective.

4.3 Aside: Simple Parallelization

Bertsekas and Tsitsiklis [1989] recommend decomposition methods for settings with distributed computation,
due to the ease of parallelizing the iterations for many of the above methods. However, note that it is
not immediately clear that these methods are particularly advantageous compared to the ‘obvious’ way of
parallelizing a sequential optimization algorithm for our problem. Namely, we simply split the n examples
across the processors, and each processor is responsible for computing the part of the function value and
gradient arising from those examples. This naive strategy appears to have a high communication cost since it
requires transferring the parameter vector xk to each processor on each iteration, while each processor must
return some part of the gradient to a central processor. However, the cost of communication compared to
evaluating each fi(x) will vary with the application, the number of processors, and the hardware available.
Further, for most of the decomposition methods discussed above it is not immediately clear that the
decomposition methods will require a substantially smaller communication cost. For example, the parameter
replication of Bertsekas and Tsitsiklis [1989, Example 4.2] seems to have the same communication cost (per
iteration) as the naive method, since we must communiate the z variable to all processors, while to update z
we must have all the xi variables. Similarly, the dual method of Bertsekas and Tsitsiklis [1989, Example 4.1]
requries communicating x(p) to all processors to implement the parallel gradient update, while to compute
q1(p) we must have all the pi variables.
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4.4 Fenchel Dual Methods (with fewer variables)

There are a variety of decomposition methods used in machine learning that are closely related to the dual
method discussed above. However, rather than requiring O(np) dual variables to enforce O(np) constraints,
these methods only introduce n constraints and thus only have n dual variables. These dual problems are
often solved with coordinate descent methods.

One way to derive a dual problem with n variables applies when we have an `2-regularization term and
the individual functions are a composition of a linear function:10

min
x

λ

2
||x||22 +

n∑
i=1

fi(a
T
i x).

We introduce a new vector of variables y to transform this into a constrained optimization problem with a
separable objective function and linear constraints:

min
x,y

λ

2
||x||22 +

n∑
i=1

fi(yi), s.t. yi = aTi x,∀i

The dual function for this problem has a quadratic term and the convex conjugates of the individual functions.
Unlike the dual method discussed previously where we have np variables, the dual function for this problem
will only have n variables. The application of a coordinate descent method to this dual for the logistic
regression problem was examined in [Keerthi et al., 2005].

Another formulation where we introduce n constraints to change the sum over functions into a separable
form arises if we optimize a linear function over the epigraphs of the individual functions,

min
x,y

λ

2
||x||22 +

n∑
i=1

yi, s.t. yi ≥ fi(x),∀i. (11)

Similar to the above, the dual function for this problem has only n variables. This construction results in
bound constraints on the dual variables, but these constraints have a separable structure and thus do not
prevent convergence of coordinate descent methods on the dual. Solving support vector machine optimization
problems by applying coordinate descent and this dual decomposition method was popularized under the
name sequential minimal optimization (SMO) by Platt [1999].11 A more recent variant of this method was
examined by Tseng and Yun [2010].

For multinomial (i.e. non-binary) generalizations of logistic regression and support vector machines, we
can derive similar dual problems that have a simplex constraint on the parameters for each example. Thus,
the dual problem involves optimizing a smooth objective over a product space consisting of n simplexes.
Collins et al. [2008] examined solving these dual problems using a randomized (incremental) exponentiated
gradient method (see Section 2.13) to implicitly address the simplex constraints. They show that their
method has an error of O(1/k) for the dual objective under an assumption that is similar to strong convexity,
but where the squared Euclidean norm is replaced by the Kullback-Leibler divergence. Although the method
only has a O(1/

√
k) error for the primal objective, they show that under slightly stronger assumptions that

the incremental method has a linear convergence rate in both the primal and dual objectives. This rate,
which is potentially much faster than the rates of primal incremental gradient methods, is possible because
the incremental dual method is effectively implementing a block coordinate descent step on the dual.

5 Row-Action Methods

Row-action methods are a class of methods designed for the solution of large-scale linear feasibility problems,
but that can also be extended to solve convex feasibility problems and certain convex optimization problems.

10More generally, we can consider a composition of an affine function
11Technically, they work with a slightly different dual since the `2-regularization is not applied to all terms. This results in a

simple equality constraint in the dual problem, and the method optimizes over two variables at a time instead of one in order to
maintain the equality.
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Censor [1981] defines a a row-action method in the context of finding a solution to a consistent linear system
Ax = b as an iterative algorithm with the following properties:

1. no changes are made to the original matrix;

2. no operations are performed on the matrix as a whole;

3. in a single iterative step access is required to only one row of the matrix;

4. in a single iterative step, say when xk+1 is calculated, the only iterate needed is the intermediate
predecessor xk.

These properties do not really uniquely define the class of row-action methods. For example, if we apply an
incremental gradient method to minimize ||Ax− b||22 then it would satisfy all four properties of a row-action
method, even though incremental gradient methods are not typically viewed as row-action methods. What
seems to really define row-action methods is that each iteration of a row-action method consists of computing
a projection with respect to a single constraint.12

Most of the literature on row-action methods focuses on the case of solving linear feasibility problems. We
review this next, in addition to extensions to solving convex feasibility problems. Subsequently, we discuss
using row-action methods to solve projection problems before moving on to methods for solving general
(strictly) convex optimization problems. Given the various flavours of row-action methods, there are several
ways that row-action methods can be applied to solve optimization problems:

1. We can convert the optimization problem into a feasibility problem.

2. We can convert the optimization problem into a projection problem.

3. We can use a row-action method that solves general optimization problems.

As an example of the first case, we could simply apply a row-action method to find a solution to

n∑
i=1

∇f(x) = 0.

In this case, row-action methods correspond to coordinate descent with an exact line search, as we would seek
to satisfy the optimality conditions with respect to one variable at a time. Note that this does not separate
the problem across the n functions, and so our discussion will focus on the latter two approaches.

5.1 Row-Action Methods for Feasibility

Censor [1981, §4.1] identifies the Kaczmarz algorithm (published in 1937, and sometimes referred to as the
algebraic reconstruction technique) as one of the oldest row-action methods. In the most basic form of the
Kaczmarz method, we seek to find a solution of the consistent linear system Ax = b using iterations of the
form

xk+1 ← xk +
bi − aTi x

k

aTi ai
ai,

where we choose the row to access in a cyclic fasion. This iteration is simply the projection of xk onto the
hyper-plane defined by row i of the matrix, {x|aTi x = bi}, and the method is globally convergent for any
choice of x0. Note that this can also be viewed as an iteration of the cyclic incremental gradient method
for minimizing the corresponding least squares problem ||Ax− b||22, but where the step size is given by the
row-specific αi = 1/||ai||22.

12Bertsekas and Tsitsiklis [1989, §3.1] refer to a similar class of methods as component-solution methods.
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It is straightforward to adapt the Kaczmarz algorithm to find a vector x satisfying the inequality constraints
Ax ≤ b. We simply replace the projections onto hyper-planes by projections onto half-spaces to obtain
iterations of the form

xk+1 ← xk + min{0, bi − aTi x
k

aTi ai
}ai.

According to Censor [1981, 4.2], this method was independently proposed by Agmon as well as Motzkin
and Schoenberg in 1954. We can combine both types of iterations if we have both equality and inequality
constraints.

We can also consider row-action methods for solving the convex feasibility problem of finding a point x
in a convex set C defined as the intersection of convex sets, C ≡ ∩iCi. In this case we obtain the successive
projection iteration

xk+1 ← PCi [xk],

where PCi denotes projection onto the convex set Ci. This method dates back to Bregman [1965]. While it is
a generalization of the case of linear equality and inequality constraints, the iterations of the more general
method will only be efficient if the individual convex sets have a relatively simple structure.

When the individual sets represent subspaces, row-action methods have a linear convergence rate where the
constant depends on the minimum ‘angle’ between the subspaces [see Galantai, 2005]. This linear convergence
rate can be generalized to the case where the individual sets are polyhedral [Deutsch and Hundal, 1997].
There do not appear to be results on the convergence rate of the method for general convex sets.

Before moving on to row-action methods for optimization, we now briefly review several of the enhancements
and extensions of basic row-action methods that have been proposed. Several alternatives to updating the
variables in a cyclic fasion are discussed in [Censor, 1981, §3], such as almost cyclic sequences which only
require that we have projected onto each constraint at least once for every C iterations (where C is some
positive integer). It also possible to replace the Euclidean projection with a Bregman projection [Censor,
1981, §4.6], such as an entropy projection (for variables that are strictly positive) which is related to the
exponentiated gradient algorithm discussed in Section 2.13. In cases where computing the projection onto
constraint i is expensive, some variants consider taking a negative sub-gradient step with respect to the
constraint [Censor, 1981, §5.1]. To speed the convergence of the iterations, many works consider under-relaxed
and over-relaxed methods where a step size λk ∈ (0, 2) is used, yielding the update

xk+1 ← xk + λk
bi − aTi x

k

aTi ai
ai.

Yuan and Matoli [1998] give expressions for values of λk that optimize the convergence rates of various
row-action methods. There also exist variants of the method that compute all projections in parallel rather
than sequentially, such as [Bertsekas and Tsitsiklis, 1989, Example 4.3]. Recently, a randomized variant of the
Kaczmarz method was examined by Strohmer and Vershynin [2009], who show that the method has a linear
convergence rate in expectation. Similar to randomized incremental gradient methods, the convergence rate
of the randomized algorithm does not require a full cycle through the data on each iteration. However, rather
than sampling the constraints uniformly as in incremental gradient methods, they sample each constraint in
proportion to ||ai||22. Taking this sampling distribution into account, we see that the expected direction of
the randomized method has the form:

E[
bi − aTi x

k

aTi ai
ai] =

n∑
i=1

p(i)
bi − aTi x

k

aTi ai
ai =

n∑
i=1

||ai||22
||A||2F

bi − aTi x
k

||ai||22
ai =

n∑
i=1

bi − aTi x
k

||A||2F
ai.

That is, the average direction generated by the randomized Kaczmarz algorithm for solving a linear system is
identical to the average direction generated by the stochstic gradient descent algorithm applied to a least
squares problem, where we set the step size αk to the constant 1/||A||2F for all k.13. Of course, this leaves us
a bit confused since we know that in general the stochastic gradient descent algorithm does not converge for

13Note that ||A||2F is larger than ||A||22, the Lipschitz constant of the gradient in the least-squares problem.
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a constant step size. However, the Kaczmarz algorithm assumes that the linear system is consistent. This
assumption is similar to the assumption discussed in Section 3.1 that allows the incremental gradient method
to converge for a constant step size. In particular, assuming that the linear system is consistent implies
that property (7) holds for the corresponding least-squares problem. An enhancement of the randomized
Kaczmarz method was recently examined by Eldar and Needell [2010], who considered selecting the best
row to update among a selection of rows. This can lead to faster convergence but it can be computationally
expensive to evaluate the rows, so Eldar and Needell [2010] considered using the fast Johnson-Lindenstrauss
transform to quickly evaluate the rows.

5.2 Row-Action Methods for Projection

While the Kaczmarz algorithm converges to a solution of Ax = b for any starting point, if we set x0 = 0
then it converges to the minimum norm solution,

min
x
||x||2, s.t. Ax = b,

see [Censor, 1981, §4.1]. A closely related method is Hildreth’s algorithm, which can be used to solve problems
of the form

min
x
||x||2, s.t. Ax ≤ b.

Hildreth’s algorithm [Censor, 1981, §4.4] is a primal-dual algorithm that, beginning with some arbitrary
non-negative z0, sets x0 to −AT z and uses iterations of the form

xk+1 ← xk + cai,

zk+1 ← zk − cei.

where

c = min{zi,
bi − aTi x

k

||ai||22
}

Compared to the row-action method for solving linear feasilibity problems, these updates to xk differ only in
replacing 0 with zi when computing the variable c. Note that this modification may yield a non-zero step
even when constraint i is satisfied. Bregman’s method [Censor, 1981, §4.7] is a generalization of Hildreth’s
algorithm that uses Bregman projections to minimize a Bregman function subject to linear constraints. For
example, we could use Bregman’s method to solve the optimization problem

min
x>0

p∑
i=1

xi log xi, s.t. Ax ≤ b.

An alternative method for this special case is the multiplicative albegraic reconstruction technique [Censor,
1981, §4.9]. The MART method begins with x0i = 1/e and uses multiplicative updates of the form

xk+1
j ←

(
bi

aTi x
k

)(ai)j

xkj ,

for each j.
A closely related problem to findining the minimum-norm feasible solution is computing the projection

of the initial point x0 onto the feasible set. Predating the Kaczmarz algorithm, in his 1933-34 notes von
Neumann [1950] showed that the limit of cyclically projecting onto two subspaces converges to the projection
of the initial point onto the subspace (this result has subsequently been generalized to an arbitrary set of
subspaces). For example, to solve the projection problem

min
x
||x− x0||2, s.t. Ax = 0,
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we can simply apply the Kaczmarz algorithm to the system Ax = 0 beginning from x0. The algorithm
of Dykstra [1983] is a generalization of Hildreth’s algorithm (and sometimes known as Han’s algorithm) that
allows us to compute the projection of x0 onto the intersection of arbitrary closed convex sets,

min
x
||x− x0||2, s.t. x ∈ Ci[x],∀i.

When applied to polyhedral sets, Dykstra’s algorithm is equivalent to Hildreth’s algorithm. When applied to
non-affine sets, Dykstra’s algorithm still solves the projection problem but does not satisfy all the properties
of row-action methods since it requires O(np) storage. Deutsch and Hundal [1994] show that Dykstra’s
algorithm has a linear convergence rate for polyhedral sets. Bauschke and Lewis [2000] show convergence
of a variant of Dykstra’s algorithm for minimizing Bregman distances. Gaffke and Mathar [1989] give an
interpretation of Dykstra’s algorithm as a particular dual optimization strategy.

5.3 Row-Action Methods for Optimization

A row-action method for minimizing a strictly convex function f(x) over the intersection of convex sets,

min
x
f(x), s.t. gi(x) ≤ 0,∀i,

is described by Iusem and Svaiter [1994]. Each iteration of the method takes the form

xk+1 ← min
x
f(x), s.t. x ∈ L(xk) ∩ Si(xk),

where L(xk) , {x|∇f(xk)T (x− xk) ≥ 0} and Si(xk) , {x|∇g(xk)T (x− xk) ≥ g(xk)}. That is, the original
strictly convex function is minimized over a supporting hyper-plane of the epigraph of f(x) and a supporting
hyper-plane to one of the constraints. Thus, the approach is closely related to cutting-plane methods for
convex optimization. This approach will only be efficient when both the constraint functions gi(x) and the
objective function f(x) are relatively simple. Iusem and Svaiter [1995] describe a primal-dual variant of this
method, and show a linear convergence rate when the constraints are linear.

Bauschke and Combettes [2008] give a variant of Dykstra’s algorithm that can compute the proximal
operator

min
x

1

2
||x− x0||22 +

n∑
i=1

fi(x),

where in the iterations projection onto individual convex sets is replaced by computing the proximal operator
with respect to individual functions fi (we require that these functions are convex but not necessarily smooth).
We could use this variant of Dykstra’s algorithm to solve `2-regularized optimization problems of the form

min
x

λ

2
||x||22 +

n∑
i=1

fi(x).

Beginning with x0 = 0 and yi = 0 for i ∈ {1, . . . , n}, this method would take steps of the form:

xk+1 = arg min
x
{fi(x) +

λ

2
||x− (xk − yi)||22}

yi ← xk+1 − (xk − yi),

where i is chosen in a cyclic fasion. We note that this is very similar to the incremental proximal method
discussed in Section 2.10. However, there are two notable differences. First, the proximal variant of Dykstra’s
algorithm projects the point (xk − yi) rather than simply xk. Second, the proximal version of Dykstra’s
algorithm does not have a step size, and thus does not need a diminishing sequence of step sizes to ensure
convergence. This method is also similar to the penalty-based decomposition method discussed in Section 4.1,
but differs in that it does not require setting a penalty parameter and it applies the proximal operator
sequentially rather than in parallel.
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6 Randomized Linear Algebra

In many cases of practical interest we have the special structure

min
x

n∑
i=1

fi(a
T
i x), (12)

and the dominant cost of the algorithm is the matrix-vector multiplications Ax and AT r for some vector r
(where the rows of A are the individual ai). Note that the matrix A only appears in the problem through
multiplication by vectors, and the problem can be solved considerably faster if multiplication by A and AT is
fast. This is possible if A has a special structure, for example if A is a special matrix like a tridiagonal matrix
or if we have a low-rank decomposition of A. The idea behind randomized linear algebra methods is to replace
the original A (which may not have a nice structure) by a low-rank approximation that forms an approximate
basis for the range of A. Subsequently, we can efficiently solve the problem with the approximate basis as an
approximation to the solution of the original problem. The approaches described in this section are relatively
new and evolving, and the exposition that follows is roughly based on the recent survey by Halko et al. [2009].

6.1 Meta-Algorithm

Randomized linear algebra methods often proceed in two stages:

1. We compute a low-rank orthogonal matrix Q such that

A ≈ Q(QTA).

2. Giving the low-rank matrix B = QTA, we exactly solve the original problem using the approximations

Ax ≈ Q(Bx), AT r ≈ BT (QT r).

Normally, each iteration of a standard gradient method to solve (12) would require a cost of O(np) for the
matrix-vector multiplications. However, if the rank of Q is k, then the second step of a randomized linear
algebra technique will only require O(nk + pk). If k is small, this can lead to an enormous reduction in the
runtime for scenarios where both n and p are large. Note that there are a large amount of variations on this
theme, see [Halko et al., 2009, §2].

6.2 Randomized Algorithm

We will only have a net gain in computation if the first stage is not too expensive. In randomized linear
algebra methods, we multiply A by random vectors in order to cheaply construct the basis in the first stage.
In particular, suppose that A has an approximate rank k, and we compute the products yi = Azi for k +m
random vectors zi (where m is some typically small over-sampling parameter). We can then obtain Q by
constructing an orthonormal basis for the range of the yi values. Under this scheme, the main computational
cost of the first step is computing the matrix-vector products Azi. In the case of Gaussian random vectors,
the total cost for these matrix-vector products will be O(np(k+m)). This cost will be asymptotically cheaper
than running a deterministic algorithm provided that k + m is lower than the number of iterations that
the deterministic algorithm requires. This may be perfectly reasonable if k +m is small. Further, we can
reduce the computational cost by using a structured random matrix. In particular, if the subsampled random
Fourier transform is used the cost of the first stage is reduced to O(np log(k +m)).

Even if it leads to a lower computational cost, randomized linear algebra methods will only be useful
if the approximation Q(QTA) of A is sufficiently acccurate. Theorem 1.1 of Halko et al. [2009] gives the
following bound on the expected error for Gaussian random vectors,

E[||A−Q(QTA)||] ≤
[
1 +

4
√
k +m

m− 1

√
min{n, p}

]
σk+1,
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where k ≥ 2, m ≥ 2, and σk+1 is the (k + 1) singular value of A. Thus, if the spectrum of A decays quickly,
we expect the approximation to be very accurate. However, the accuracy does not increase very quickly in
terms of the over-sampling parameter m. Note that this bound can be improved at the expense of additional
matrix-vector products by using power iterations, yi = A(AT (Azi)). Further, by building the basis Q
incrementally it is also possible to estimate the error of the current approximation in order to decide if the
number of random vectors is large enough to achieve a desired error tolerance.

7 Core Set Methods

In some cases, problems of the form (1) have a special sparse structure in terms of i that we can take
advantage of. For example, consider the case of the squared hinge loss,

min
x

n∑
i=1

[max{0, 1− biaTi x}]2.

For this problem, we typically expect the maximum to be zero for many i in a solution x∗. Thus, these
instances i have no influence on the solution x∗, in the sense that if we remove these terms from the sum
the solution does not change. This type of problem structure suggests a certain algorithmic approach: we
estimate a set of data instances i that will determine the final solution (the core set), and we solve the
problem exactly with respect to the core set. If the solution has a small core set, then this strategy may give
substantial computational gains.

Core set methods have seen a recent rise in interest in the literature on the smooth support vector machine
optimization problem, the problem of minimizing the `2-regularized squared hinge loss. While the SMO-style
algorithms mentioned in 4.4 can be viewed as core set methods, modern core set methods differ from these
older methods in that they seek exact solutions on the core set at each iteration, and they also seek to prove
approximation guarantees given approximate core sets.

The first method to bear the name ‘core set’ for support vector optimization was described by Tsang
et al. [2006]. In this work, a variant on the support vector machine optimization problem is shown to be
equivalent to the minimum enclosing ball (MEB) problem in computational geometry (the problem of finding
the smallest sphere that encloses a given set of points). Subsequently, a (1 + ε) approximation algorithm for
the MEB problem is used to find an approximate solution to the problem. The algorithm is very simple; at
each iteration it adds the point to the core set that is furthest outside the ball based on the current core set,
once no points are outside the (1 + ε) ball the algorithm terminates. This method can be extremely fast if
the size of the final approximate core set is small.

Subsequently, Har-Peled et al. [2007] proposed a core set method for support vector machines with
approximation guarantees that does not involve using the equivalence with the MEB problem. This method
uses a natural choice for the element to the add to the core set; it chooses the instance i where bi(a

T
i x) is

the smallest. Krishnan et al. [2008] consider choosing a random subset of the points to add to the core set,
and argue that a set of log(n) suffices with high probability in cases where only log(n) of the (1− bi(aTi x∗))
are non-zero. Rai et al. [2009] considered a ‘one-pass’ approximation algorithm based on the equivalence
with the MEB problem. This method goes through the data set once, and adds elements to the core set if
they are outside the current ball. The method’s low cost is appealing computationally, while it gives a 3/2
approximation.

8 Notes on these notes

Most of this informal document was written in the Fall of 2010, as a way for me to organize my thoughts
around the enormous literature on solving ‘big-N’ problems. In 2011 and the start of 2012, I added Sections
6-7 and updated some of the other sections to include some more recent developements, including my own
recent work [Friedlander and Schmidt, 2011, Schmidt et al., 2011, Le Roux et al., 2012, Schmidt and Le Roux,
2012]. Unfortunately, because of the scope of the literature I’ve attempted to survey there are inevitably some
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innaccuracies in this document as well as important methods that I’ve probably missed, so please feel free to
send me any feedback, corrections, or pointers to other interesting variations/algorithms that I’ve missed.
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