Generalized Fast Approximate Energy Minimization via Graph Cuts: α-Expansion β-Shrink Moves Mark Schmidt

Introduction

We address the energy minimization problem:

$$\left(\min_{x\in\{1,2,\ldots,N\}^p}\sum_{i\in\mathcal{V}}E_i(x_i) + \sum_{(i,j)\in\mathcal{A}}E_{ij}(x_i,x_j)\right)$$

Equivalent to MAP estimation in graphical models. Solvable in polynomial-time for binary variables if energies satisfy:

$$E_{ij}(1,1) + E_{ij}(2,2) \le E_{ij}(2,1) + E_{ij}(1,2)$$

 \diamond For non-binary problems, $\alpha\beta$ -swap and α -expansion moves find strong local optima by solving a sequence of such binary problems.

- But which one should we use?
- We propose a generalization of both, that: Can be computed in polynomial-time.
 - Locally dominates them both.

Approximate Energy Minimization

Given x, each iteration of a descent method minimizes the energy among a set of *moves*.

ICM Moves updates one variable [Besag, 1986]:

SIERRA Project

Laboratoire d'Informatique de l'École Normale Supérieure (CNRS/ENS/INRIA UMR 8548)

Local Dominance of Iterative Algorit

- We say that move set A dominates move Optimizing over A never does worse.
 - Optimizing over A can do better.
- A may escape from optima with respect 1

Proposition 1.

 $\alpha\beta$ -Swaps and α -Expansions both domination

Proposition 2.

 $\alpha\beta$ -Swaps *do not* dominate α -Expansions, α -Expansions *do not* dominate $\alpha\beta$ -Swaps.

α -Expansion β -Shrink Moves

- $\diamond \alpha$ -Expansion β -Shrink Moves:
 - Replace anything by α .
 - Replace any α by β .

Proposition 3.

 α -Expansion β -Shrink Moves dominate $\alpha\beta$ α -Expansion β -Shrink Moves dominate α -

Proposition 4.

 α -Expansion β -Shrink Moves can be comp

 $E_{ij}(\alpha, \alpha) + E_{ij}(\gamma_1, \gamma_2) \le E_{ij}(\gamma_1, \alpha) + E_{i$

 \diamond Same condition as α -expansions. Same worst-case runtime as α-expansio

Problems with Many States

- In some applications we can't consider (
- \Rightarrow We can define a *mapping* from each α to (prematurely expands the next value of α i
- Reduces the number of combinations to \diamond Still dominates α -expansions.

Karteek Alahari

WILLOW Project

thms	Truncation for Non-Submodular Potentials						
e set B if:	 In some problems Proposition 4 is not satisfied. We can define a <i>modified energy</i> where [Rother et al., 2005]: moves can be computed in polynomial-time. 						
IO D	• moves guaranteed to not increase the energy. • For example, if $x_1 \neq \alpha$ and $x_2 \neq \alpha$ then replace $E_1(x_1, x_2)$ with:						
	For example, if $x_i \neq \alpha$ and $x_j \neq \alpha$ then replace $\Box_{ij}(x_i, x_j)$ with.						
ate ICM.	$E_{ij}(x_i, x_j$	$) = \min\{l$	$E_{ij}(x_i, x_j),$	$E_{ij}(\alpha, x_j)$	$) + E_{ij}(x_i)$	$(i, \alpha) - E_{\alpha}$	$i_j(lpha, lpha)$
, and	Compute	r Vision E	Experime	nts			
•	 Relative on all non-k 	energy of I pinary data	ocal minim sets from	a starting Szeliski et	with varial al., [2008]	oles set to]:	o state 1
	Name	$\alpha\beta$ -Swap α	α -Expansion	Random β	$\beta = \alpha - 1$	$\beta = \alpha + 1$	All β
	Family	1.0203	1	0.9998	1	0.9998	0.9998
	Pano Taukuba	1.3182 1.0215	1	1.0006 1.0012			
	Venus	1.0513 1 8561	1	1.0012 1 0015	0.9992	1.0000 0.9979	0.9968
	Teddy	1.0037	1	0.9998	1	1.0007	0.9999
	Penguin	1.1283	1	1.0037	0.9936	0.9793	0.9758
Υβ	House	0.7065	1	0.7841	0.9973	0.7038	0.7032
	\diamond Relative energy of local minima starting with α -expansion optima:						
		Name	Random /	$\beta \mid \beta = \alpha - 1$	$\beta = \alpha + 1$	1	
		Family	0.9998		0.9998		
		Pano	1				
		T SUKUDA Vopus	a I 1 0000				
3-Swaps, and		Teddy	1.0000	0.9992	0.9979		
Evnancione		Penguin	0 9998	1 0 9902	0.9555		
		House	0.8050	0.9971	0.7038		
	\blacklozenge Local minimum with respect to α -expansions and improved local						
puted in polynomial-time if:	minimum with $\beta = \min{\alpha+1,N}$:						
$E_{ii}(\alpha, \gamma_2), \forall \alpha, \gamma_1, \gamma_2$							
oj () (12)) (12)		Contraction of the second					
						-	
		<u>. [-1</u>			4.000		
ons.					E 1088		
$O(N^2) \alpha$ and β combinations.	Discussio	n					
$\alpha = \beta_1$ like $\beta = \min\{\alpha + 1, N\}$	Unlike previous generalizations the new moves.						
$r \sim r$, $r \sim r \sim r$ $r \sim r$ $r \sim r$		no addition	nal accum	tions			
nto the current a region)			ia assump				
	can be of	computed	in polynom	iai-time.			
O(N).	 We expect the moves can be extended to higher-order potentials 						
	and other s	cenarios w	here α-exp	cansions h	ave been	used.	

