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  Introduction
✦ We address the energy minimization problem:

✦ Equivalent to MAP estimation in graphical models.
✦ Solvable in polynomial-time for binary variables if energies satisfy:

✦ For non-binary problems, αβ-swap and α-expansion moves find 
strong local optima by solving a sequence of such binary problems.
✦ But which one should we use?
✦ We propose a generalization of both, that:
‣ Can be computed in polynomial-time.
‣ Locally dominates them both.
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1 Approximate Energy Minimization

The problem that we formally address is

max
x∈{1,2,...,N}p

p(x) ∝
�

i∈V
φi(xi)

�

(i,j)∈A

φij(xi, xj),

where V and A are the vertices and arcs of a graph

(V,A), while the potentials φi(xi) and φij(xi, xj) map

assignments of subsets of the discrete vector x to non-

negative values. If we define the real-valued energy

functions

Ei(xi) = − log φi(xi), Eij = − log φij(xi, xj),

then finding the optimal assignment is equivalent to

the following energy minimization problem:

min
x∈{1,2,...,N}p

�

i∈V
Ei(xi) +

�

(i,j)∈A

Eij(xi, xj) (1)

In general, solving this optimization problem is NP-

hard (see ?, Theorem 4.2), and a common approach to

finding an approximate minimizer is with an iterative

descent algorithm. The input to each iteration of these

algorithms is a particular configuration of the variables

x, and at each iteration an iterative descent method

finds a configuration that minimizes the energy among

a set M(x) of possible ‘moves’, i.e. the next iteration

is an element of

argmin
y∈M(x)

�

i∈V
Ei(yi) +

�

(i,j)∈A

Eij(yi, yj). (2)

We have two conflicting desiderata on the set of moves

M(xk): we would like this set to be as large as pos-

sible, but we would like to able to efficiently find the

optimal move.

1.1 Iterated Conditional Mode

In the classic ICM algorithm (?), a node j is selected

and we replace xj with a value that maximizes the
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conditional probability p(xj |x−j), where x−j are the

states of all variables except j. In the framework of

energy minimization, this can be viewed as an itera-

tive descent method where the elements y of the set of

possible moves have the form

yi ←
�
γ ∈ {1, 2, . . . , N} if i = j,

xi otherwise.

That is, the current state of node j can be replaced by

any other possible state, a form of coordinate descent.

We use MI
j (x) to denote the set of all y of this form.

With this definition of the move space, the iterative

descent update (2) for the ICM move given x and j
simplifies to

argmin

y∈MI
j (x)

Ej(yj |x−j), (3)

where we will find it convenient to define the condi-
tional energy of a variable i given a set of variables a
as

Ei(xi|xa) = Ei(xi)

+

�

j|j∈a,(i,j)∈A

Eij(yi, xj)

+

�

j|j∈a,(j,i)∈A

Eij(xj , yi).

(4)

While Ei(xi|x−i) ∝ − log p(xi|x−i), this is a slight

abuse of the conditioning notation since for other con-

ditioning sets a it ignores factors that depend on vari-

ables besides i and those in a. Clearly, we can ef-

ficiently compute the optimal ICM move by simply

testing each Ej(yj |x−j).

1.2 αβ-Swaps

We say that a pairwise energy function Eij defined

on binary variables is submodular if it satisfies the in-

equality1

Eij(1, 1) + Eij(2, 2) ≤ Eij(2, 1) + Eij(1, 2). (5)

1Submodularity is normally defined as a property of
functions on sets, and its use here is because it is equiv-
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conditional probability p(xj |x−j), where x−j are the

states of all variables except j. In the framework of

energy minimization, this can be viewed as an itera-

tive descent method where the elements y of the set of

possible moves have the form

yi ←
�
γ ∈ {1, 2, . . . , N} if i = j,

xi otherwise.

That is, the current state of node j can be replaced by

any other possible state, a form of coordinate descent.

We use MI
j (x) to denote the set of all y of this form.
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�
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�
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Eij(1, 1) + Eij(2, 2) ≤ Eij(2, 1) + Eij(1, 2) (5)

1Submodularity is normally defined as a property of
functions on sets, and its use here is because it is equiv-

  Approximate Energy Minimization
✦ Given x, each iteration of a descent method minimizes the energy 
among a set of moves.

✦ ICM Moves updates one variable [Besag, 1986]:

 

✦ αβ-Swap Moves [Boykov et al., 1998]:
‣ Replace any α by β.
‣ Replace any β by α.
‣ Polynomial-time if:

✦ α-Expansion Moves [Boykov et al., 1999]:
‣ Replace anything by α.
‣ Polynomial-time if:

α

βγ

α

βγ

α

βγ

βγ

α

✦ We say that move set A dominates move set B if:
✦ Optimizing over A never does worse.
✦ Optimizing over A can do better.

✦ A may escape from optima with respect to B
Proposition 1.  
αβ-Swaps and α-Expansions both dominate ICM.

Proposition 2.  
αβ-Swaps do not dominate α-Expansions, and
α-Expansions do not dominate αβ-Swaps.

 α-Expansion β-Shrink Moves
✦ α-Expansion β-Shrink Moves:
‣ Replace anything by α. 
‣ Replace any α by β.

✦ Same condition as α-expansions.
✦ Same worst-case runtime as α-expansions.

α

βγ

α

βγ

Proposition 3.  
α-Expansion β-Shrink Moves dominate αβ-Swaps, and
α-Expansion β-Shrink Moves dominate α-Expansions.

Proposition 4.  
α-Expansion β-Shrink Moves can be computed in polynomial-time if:

 Problems with Many States
✦ In some applications we canʼt consider O(N2) α and β combinations.

✦ We can define a mapping from each α to a β, like β = min{α+1,N}.
(prematurely expands the next value of α into the current α region)

✦ Reduces the number of combinations to O(N).
✦ Still dominates α-expansions. 

 Truncation for Non-Submodular Potentials
✦ In some problems Proposition 4 is not satisfied.
✦ We can define a modified energy where [Rother et al., 2005]:
‣ moves can be computed in polynomial-time.
‣ moves guaranteed to not increase the energy.

✦ For example, if xi ≠ α and xj ≠ α then replace Eij(xi,xj) with:

 Local Dominance of Iterative Algorithms

Name Task Nodes Edges States

Family Montage 425632 849946 5

Pano Montage 514080 1026609 7

Tsukuba Stereo 110592 220512 16

Venus Stereo 166222 331627 20

Teddy Stereo 168750 336675 60

Penguin Restoration 21838 43375 256

House Restoration 65536 130560 256

moves, though maintaining the descent property re-

quires a slightly more complicated construction. Al-

though there are many possible constructions, we de-

scribe one here. If xi �= α and xj �= α, then as before

we take:

Ēij(xi, xj) = min{Eij(xi, xj), Eij(α, xj) + Eij(xi,α)− Eij(α,α)}

If xi = α and xj = α, then we take:

Ēij(α,α) = min{Eij(α,α),

Eij(α,β) + Eij(β,α)− Eij(β,β)}.

If xi �= α and xj = α, then we take:

Ēij(α,β) = max{Eij(α,β),

Eij(α,α) + Eij(xi,β)− Eij(xi,α)}.

Finally, if xi = α with xj �= α we take:

Ēij(β,α) = max{Eij(β,α),

Eij(α,α) + Eij(β, xj)− Eij(α, xj)}.

The other terms in the energy function are unchanged.

If (7) is already satisfied, then the modified energy

under this construction is identical to the original en-

ergy. This construction maintains the appealing prop-

erty that any move that does not increase the modified

energy will not increase the original energy.

In our first experiment, we initialized all variables to

the first state and ran each method until the energy did

not change between iterations. We used the truncation

described in §1.4 for problems that did not satisfy (7)

for all triplets of states. In Table 2, we show the energy

of the local minima obtained divided by the energy of

the local minimum with respect to α-expansion moves.

In this table, a value of 1 indicates that the energy

was identical to the energy obtained by α-expansion
moves, and we use 1.0000 if the energy is close but

not identical. In this experiment, the new moves with

all β obtained the lowest energy on 6 of the 7 data

sets, and strictly so in 4 of these cases (the exceptions

were Teddy where using a random β lead to a lower

score, and the montage data sets where other meth-

ods reached the same energy). Among the remaining

methods, the more computationally efficient strategy

of simply setting β = α+1 obtained the lowest energy

on 5 of the 7 data sets.

Name Random β β = α− 1 β = α+ 1

Family 0.9998 1 0.9998

Pano 1 1 1

Tsukuba 1 1 1

Venus 1.0000 0.9992 0.9979

Teddy 1 1 0.9999

Penguin 0.9998 0.9902 0.9775

House 0.8050 0.9971 0.7038

 Computer Vision Experiments
✦ Relative energy of local minima starting with variables set to state 1, 
on all non-binary data sets from Szeliski et al., [2008]:

✦ Relative energy of local minima starting with α-expansion optima:

✦ Local minimum with respect to α-expansions and improved local 
minimum with β = min{α+1,N}:

Name αβ-Swap α-Expansion Random β β = α− 1 β = α+ 1 All β
Family 1.0203 1 0.9998 1 0.9998 0.9998

Pano 1.3182 1 1.0006 1 1 1

Tsukuba 1.0315 1 1.0012 1 1.0000 1.0000

Venus 1.8561 1 1.0015 0.9992 0.9979 0.9968

Teddy 1.0037 1 0.9998 1 1.0007 0.9999

Penguin 1.1283 1 1.0037 0.9936 0.9793 0.9758

House 0.7065 1 0.7841 0.9973 0.7038 0.7032

Figure 2: From left to right: Initial degraded image with missing areas, local minimum of energy function with

respect to α-expansions, improved local minimum found by α-expansion β-shrink moves with β = α+ 1.
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 Discussion
✦ Unlike previous generalizations, the new moves:
‣ require no additional assumptions,
‣ can be computed in polynomial-time.

✦ We expect the moves can be extended to higher-order potentials 
and other scenarios where α-expansions have been used.

This type of pairwise energy prefers the neighbour-

ing variables to take the same state. In the special

case of binary variables where all pairwise energies are

submodular, the optimal solution to (1) can be com-

puted in polynomial-time as a minimum-cut problem,

see (?).2

In some non-binary problems we have, for all combi-

nations of states α and β, that the pairwise energies

Eij satisfy

Eij(α,α) + Eij(β,β) ≤ Eij(β,α) + Eij(α,β), ∀α,β

That is, when restricted to any two states α and β,
the energy function is submodular. Though we can

no longer guarantee that we can find the optimal solu-

tion in polynomial-time given only this restriction, it

does allow us to take advantage of the ability to effi-

ciently solve binary submodular problems in order to

implement a more powerful descent move.

In particular, given two states α and β, the set of

moves MS
αβ(x) associated with the αβ-swap move in-

troduced by ? are of the form:

yi ←
�
α or β if xi = α or xi = β,

xi otherwise.

That is, the move can simultaneously change any com-

bination of nodes labeled α to β, and any combination

of nodes labeled β to α. In this case, the iterative

descent update is a solution of the problem

argmin

y∈MS
αβ(x)

�

i∈V|xi∈{α,β}

Ei(yi|x−αβ)

+

�

(i,j)∈A|xi,xj∈{α,β}

Eij(yi, yj),

where we again make use of our definition of the con-

ditional energy (4) and where we have used x−αβ to

reference the states of the variables not labeled α or β.
This is a binary problem over the subgraph induced by

the nodes labeled α or β, and under condition (??) this
update can be computed in polynomial-time because

all edges in the induced subgraph are submodular.

1.3 α-Expansions

A closely-related set of moves later proposed by ? are

α-expansions. Here, we choose a state α and we can

alent to submodularity of a function that takes the set of

variables labeled 2 and returns the corresponding Eij(?,
§7).

2
There also exist several other notable cases where it

possible to compute the solution in polynomial-time, such

as the case where the pairwise energies are convex (?), or
in the case of general energies where the graph structure

has low treewidth (?, §13) or is outer-planar (?). However,

these are not our focus and a full discussion of this exten-

sive literature is outside the scope of the current work.

use α to replace the current state of any variable.

Thus, this set of moves ME
α (x) is of the form

yi ←
�
α if xi = α,

α or xi otherwise.

We can write the optimal α-expansion as the solution

to the problem

argmin

y∈ME
α (x)

�

i∈V|xi �=α

Ei(yi|xα)

+

�

(i,j)∈A|xi �=α,xj �=α

Eij(yi, yj),

where we use xα to reference variables labeled α. This
is again a binary problem, this time on the subgraph

induced by those nodes not labeled α. However, condi-

tion (??) is no longer sufficient to guarantee that the

edges in the induced subgraph are submodular since

each pairwise term involves the three states α, xi, and

xj (which may all be different). Nevertheless, it is

sufficient to ensure that

Eij(α,α)+Eij(γ1, γ2) ≤ Eij(γ1,α)+Eij(α, γ2), ∀α, γ1, γ2
for all combinations of states α, γ1, and γ2. This is

a stronger condition than (??), which corresponds to

the special case where γ1 = γ2. If Eij(α,α) = 0 for all

α, this is the triangle inequality.

1.4 Truncation for Non-Submodular
Potentials

In many problems condition (??) is not satisfied. In

these cases, a widely-used approach is to modify the

potentials to be submodular, in such a way that an

optimal move with the modified energy is guaranteed

to not increase the original energy (?). In the case of

α-expansions, one way to construct such a modified

energy is by replacing each Eij(xi, xj) with

Ēij(xi, xj) = min{Eij(xi, xj),

Eij(α, xj) + Eij(xi,α)− Eij(α,α)}.

Condition (??) holds with this modified energy by con-

struction. Further, the optimal α-expansion with this

modified energy does not increase the original energy,

since the modified energy simply decreases the energy

of the current assignment (xi, xj). As discussed in (?),
we can alternately increase Eij(xi,α) or Eij(α, xj) to

make condition (??) satisfied while maintaining the

descent property of the moves.

We can define a modified energy function with sim-

ilar properties in the case of α-expansion β-shrink
moves, though maintaining the descent property re-

quires a slightly more complicated construction. Al-

though there are many possible constructions, we de-

scribe one here. If xi �= α and xj �= α, then as before
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ditional energy (4) and where we have used x−αβ to

reference the states of the variables not labeled α or β.
This is a binary problem over the subgraph induced by

the nodes labeled α or β, and under condition (??) this
update can be computed in polynomial-time because

all edges in the induced subgraph are submodular.

1.3 α-Expansions

A closely-related set of moves later proposed by ? are

α-expansions. Here, we choose a state α and we can

alent to submodularity of a function that takes the set of

variables labeled 2 and returns the corresponding Eij(?,
§7).

2
There also exist several other notable cases where it

possible to compute the solution in polynomial-time, such

as the case where the pairwise energies are convex (?), or
in the case of general energies where the graph structure

has low treewidth (?, §13) or is outer-planar (?). However,

these are not our focus and a full discussion of this exten-

sive literature is outside the scope of the current work.

use α to replace the current state of any variable.

Thus, this set of moves ME
α (x) is of the form

yi ←
�
α if xi = α,

α or xi otherwise.

We can write the optimal α-expansion as the solution

to the problem

argmin

y∈ME
α (x)

�

i∈V|xi �=α

Ei(yi|xα)

+

�

(i,j)∈A|xi �=α,xj �=α

Eij(yi, yj),

where we use xα to reference variables labeled α. This
is again a binary problem, this time on the subgraph

induced by those nodes not labeled α. However, condi-
tion (??) is no longer sufficient to guarantee that the

edges in the induced subgraph are submodular since

each pairwise term involves the three states α, xi, and

xj (which may all be different). Nevertheless, it is

sufficient to ensure that

Eij(α,α)+Eij(γ1, γ2) ≤ Eij(γ1,α)+Eij(α, γ2), ∀α, γ1, γ2
for all combinations of states α, γ1, and γ2. This is

a stronger condition than (??), which corresponds to

the special case where γ1 = γ2. If Eij(α,α) = 0 for all

α, this is the triangle inequality.

1.4 Truncation for Non-Submodular
Potentials

In many problems condition (??) is not satisfied. In

these cases, a widely-used approach is to modify the

potentials to be submodular, in such a way that an

optimal move with the modified energy is guaranteed

to not increase the original energy (?). In the case of

α-expansions, one way to construct such a modified

energy is by replacing each Eij(xi, xj) with

Ēij(xi, xj) = min{Eij(xi, xj),

Eij(α, xj) + Eij(xi,α)− Eij(α,α)}.

Condition (??) holds with this modified energy by con-

struction. Further, the optimal α-expansion with this

modified energy does not increase the original energy,

since the modified energy simply decreases the energy

of the current assignment (xi, xj). As discussed in (?),
we can alternately increase Eij(xi,α) or Eij(α, xj) to

make condition (??) satisfied while maintaining the

descent property of the moves.

We can define a modified energy function with sim-

ilar properties in the case of α-expansion β-shrink
moves, though maintaining the descent property re-

quires a slightly more complicated construction. Al-

though there are many possible constructions, we de-

scribe one here. If xi �= α and xj �= α, then as before

This type of pairwise energy prefers the neighbour-

ing variables to take the same state. In the special

case of binary variables where all pairwise energies are

submodular, the optimal solution to (1) can be com-

puted in polynomial-time as a minimum-cut problem,

see (?).2
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