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Motivation and Overview of Contribution Assumptions and Algorithm
' 'We consider convex composite optimization problems: I Assumptions:
4 Il gis convex and has L-Lipschitz continuous gradient:

minimize f (X) := g(X) + h(x)

x! Rd . "
i " G0 # GOIS Lilx# yll, %y |
- g IS SO0 u IS NON-SIMOOTN.

I g could be a data-ptting term, and h could be a reqgularizer. (iIf twice-differentiable, equivalent to g!!(x) # LI, ! x)
I Convergence rates of different methods for this problem (for ! < 1): ' his alower semi-continuous proper convex function.
Algorithm Convex | Strongly-Convex (includes any real-valued convex function)
_ L ' The function f = g + h attains its minimum at some x*.
Sub-Gradient O(1/ k) O(1/k) | Algorithm:
Proximal-Gradient O(1/k) o(@", 1)~ - "
Accelerated Proximal-Gradient | O(1/k ?) o((1" ~ Nk vk = Prox [y 1 # (L/L)(g (g 1) + ex)]

I Each proximal-gradient iteration requires the proximity operator:

prox, (y) = arg min %#x " y# + h(x)
x! Rd

Yk = Xk + "k (Xk — Xk# 1)

The basic proximal-gradient method sets $« = 0.
The accelerated method chooses {$«} to improve the rate.
Efpbcient to compute in some notable cases: We have a gradient error ex.
I L1-regularization prox.[y] yields an %-optimal solution of the proximal problem:
I Disjoint Group L1-regularization - ] , ]
I Can be approximated in other important scenarios: " " : "
| Total-variation regularization and graph-guided fused LASSO E#Xk VH# + h(x) $ "k + [(T,"Ingd EHX
' Nuclear-norm regularization and other singular value penalties

ylI© + h(x)

I Different formulations of overlapping group L1-regularization I 'We also consider linear rates if g is " -strongly convex, meaning
! We show that the convergence rates are preserved if the errors in f(x) - " ||x||% Is a convex function for " > O.
the proximity and gradient decrease at appropriate rates. (if twice-differentiable equivalent to g!!(x) &"I, ! x)

Convergence Rates for Convex Objectives Convergence Rates for Strongly Convex Objectives

Proposition 1.  If the sequenced #e # and {* Zx} are summable Proposition 3.  If the sequenceq]| ex|[} and {* %} are in O(Q¥) for

then the basic proximal-gradient method achieves Q< (1" ') then the basic proximal-gradient method achieves
0
o Ixic " xsll = O((@ " 1)").
f % Xji " f(xg)= O(1/k).
=1 | If they converge with Q > (1 - !), the rate is O(Qk).

I If they converge with Q = (1 - 1), the rate is O(k(1-! )).
I For example, they could decrease as O(1/k*") for " > 0.

| If they decrease as O(1/k), then we get O(log2k/k). Propositiqn 4.  If the sequenceq]| e;||°} and {$.} are in O(Q*) for
I Bound also holds for the best iterate. Q< (1" T) then the accelerated proximal-gradient method achieve
| I
Proposition 2. If the sequenceq k#ec#} and {k ™} are summable f(xp)" f(xg)= O(1" ~ T,
I

then the accelerated proximal-gradient method achieves . . !
with #,. = (1 D/ d+ 1),
f (k)" f(xg) = O(1/k ?),
| . .
with #, = (k" 1)/ (k +2). | Here, th_e accelerated m_ethod IS less sensitive to errors.
(according to our analysis)

: ’ | But, the accelerated method requires knowing " .
o SXATPIE, ey O oy oo 88 LUK ) o 7O | Gives a convergence rate on the iterates because:

I If they decrease as O(1/k?), then we get O(log2k/k?). -
| The basic method does not necessarily dominate the accelerated EHXk # xsll”$ f(xk) # f(xs)
method, because the accelerated method iIs more sensitive to errors. 2

Numerical Experiments on Structured Sparsity Problem

' 'We consider the CUR-like factorization to approximate a matrix W: - In: | N
min THW ! WXW #E + 1o #X '+ 1o #X#

I For appropriate p, yields sparse rows and sparse columns.

I Previous work used p ="', since no known exact algorithm for p = 2.

' We consider p = 2, and use the proximal-Dykstra algorithm to compute an %-optimal solution to the proximal problem based on duality gap.
I

I

We compared ways to terminate the proximal-Dykstra algorithm.
We use a basic line-search to compute L.
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Figure 1. Objective function against number of proximal iterations for the proximal-gradientm  Figure 2: Objective function against number of proximal iterations forateeleratedoroximal-
with different strategies for terminating the approximate proximity calculation. The top row gradient method with different strategies for terminating the approximate proximity calcul:
the 9_Tumorsdata, the bottom row is for thigrain_-Tumorldata. The top row is for thé&_Tumorsdata, the bottom row is for thierain_.Tumorldata.

Discussion

Inexact proximal-gradient methods may be useful in other applications such as total-variation or nuclear-norm regularization.

Our analysis allows errors in the gradient; this may be useful in undirected graphical models, kernel methods, and semi-debnite programming.
It would be interesting to extend our analysis to the case of an unknown L and " .

It would be Interesting to explore methods for adaptively updating ex and %.

It would be Interesting to analyze the effects of errors on proximal-Newton methods.




