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Abstract

We derive two problems that are dual the problem of minimizing the squared error in a linear
regression model, with a penalty on the `1-norm of the coefficients.

Dual Problem A: p variables, bound constraints

The primal problem is

min
x

1
2
||Ax− b||22 + λ||x||1.

We introduce a dummy variables y into the `1-norm, along with a set of trivial equality constraints:

min
x,y

1
2
||Ax− b||22 + λ||y||1 s.t. y = x.

Using z to denote the Lagrange multipliers, we can write the Lagrangian of this problem as

L(x,y, z) , 1
2
||Ax− b||22 + λ||y||1 + zT (x− y).

Distributing z across the subtraction and grouping terms involving x and y, the resulting dual
function is

max
z

inf
x,y

1
2
||Ax− b||22 + zTx + λ||y||1 − zTy. (1)

We first simplify this expression by computing the infimum over x. The derivatives of the La-
grangian with respect to x are

∇xL(x,y, z) = AT (Ax− b) + z,
∇2

xL(x,y, z) = AT A.

Equating the first derivative with 0, we obtain that x solves the system

AT Ax = ATb− z.

This stationary point is a global minima because the second derivative is positive semi-definite for
all x. Assuming that A has independent columns, the optimal x in terms of z is the unique solution

x = (AT A)−1(ATb− z). (2)
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We now consider computing the infimum of over y for the terms involving y in (1). Using the
definition of the conjugate function to the `1-norm [see Boyd and Vandenberghe, 2004], we get

inf
y

λ||y||1 − zTy = − sup
y

zTy − λ||y||1 =

{
0 if ||z||∞ ≤ λ

−∞ otherwise
(3)

We now plug in (2) and (3) into (1) to get

max
z:||z||∞≤λ

1
2
||A(AT A)−1(ATb− z)− b||22 + zT (AT A)−1(ATb− z).

Now its time to simplify this monster. We will use q(z) as the term inside the max, and use B to
denote (AT A)−1. Expanding out terms, we get

q(z) =
1
2
(ATb− z)T BT AT AB(ATb− z)− (ATb− z)T BT ATb + bTb + zT BATb− zT Bz.

After removing the term that does not depend on z, we use B = BT and use (AT A)B = I to get

q(z) =
1
2
(ATb− z)T B(ATb− z)− (ATb− z)T BATb + zT BATb− zT Bz.

Now expand some more to get

q(z) =
1
2
bT ABATb− bT ABz +

1
2
zT Bz− bT ABATb + zT BATb + zT BATb− zT Bz.

Use that zT BATb = bT ABz, remove terms not involing z, and add/subtract terms to finally get

q(z) = zT BATb− 1
2
zT Bz.

Note that BATb = xLS (the least squares estimate), so the dual problem simplifies to

max
z:||z||∞≤λ

zTxLS − 1
2
zT Bz.

We can write this as a quadratic program with bound constraints,

min
z

1
2
zT Bz− zTxLS , s.t. ∀i − λ ≤ zi ≤ λ.

The optimal primal solution is given by (2). An interpretation of the dual is that it is finding
a sub-gradient of the scaled `1-norm term that turns the primal problem into a simple quadratic
minimization problem.

In Matlab (for small problems only):
z = quadprog(inv(A’*A),-A\b,[],[],[],[],-lambda*ones(p,1),lambda*ones(p,1));
x = (A’*A)\(A’*b - z);
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Dual Problem B: n variables, 2p linear constraints

The primal problem is again

min
x

1
2
||Ax− b||22 + λ||x||1.

We introduce a dummy variables r into the `2-norm, along with a set of equality constraints:

min
x,r

1
2
||r||22 + λ||x||1 s.t. r = Ax− b.

Using z to denote the Lagrange multipliers, we can write the Lagrangian of this problem as

L(x, r, z) , 1
2
||r||22 + λ||x||1 + zT (Ax− b− r).

Distributing z across the subtraction and grouping terms involving x and r, the resulting dual
function is

max
z

inf
x,r

zT Ax + λ||x||1 +
1
2
||r||22 − zT r− zTb. (4)

We fist simplify this expression by computing the infimum over x for terms involving x. Using the
definition of the conjugate function to the `1-norm [see Boyd and Vandenberghe, 2004], we get

inf
x

zT Ax + λ||x||1 = − sup
x
−zT Ax− λ||x||1 =

{
0 if ||ATz||∞ ≤ λ

−∞ otherwise
(5)

We next simplify (4) by computing the infimum over r for terms involving r. Using the definition
of the conjugate function to the `2-norm squared [see Boyd and Vandenberghe, 2004], we get

inf
r

1
2
||r||22 − zT r = − sup

r
zT r− 1

2
||r||22 = −1

2
zT z. (6)

We now plug (5) and (6) into (4) to get

max
z
−1

2
zTz− zTb, s.t. ||ATz||∞ ≤ λ.

This can be written as a quadratic program with a diagonal second-order term

min
z

1
2
zTz + zTb, s.t. λ ≤ ATz ≤ λ.

In Matlab (for small problems only):
[n,p] = size(A);
z = quadprog(eye(n),y,[X’;-X’],lambda*ones(2*p,1));
x = (A’*A)\(A’*b - A’*z);
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