
Fast Optimization Methods for L1
Regularization: A Comparative Study and Two

New Approaches

Mark Schmidt1, Glenn Fung2, Rómer Rosales2

1 Department of Computer Science University of British Columbia,
2 IKM CKS, Siemens Medical Solutions, USA

Abstract. L1 regularization is effective for feature selection, but the
resulting optimization is challenging due to the non-differentiability of
the 1-norm. In this paper we compare state-of-the-art optimization tech-
niques to solve this problem across several loss functions. Furthermore,
we propose two new techniques. The first is based on a smooth (differen-
tiable) convex approximation for the L1 regularizer that does not depend
on any assumptions about the loss function used. The other technique is a
new strategy that addresses the non-differentiability of the L1-regularizer
by casting the problem as a constrained optimization problem that is
then solved using a specialized gradient projection method. Extensive
comparisons show that our newly proposed approaches consistently rank
among the best in terms of convergence speed and efficiency by measur-
ing the number of function evaluations required.

1 Introduction

Parsimonious models are normally preferred over more complex ones. Sparsity,
a concept commonly employed to describe model complexity, can be defined in
terms of the training examples that are used to define the model (as in Support
Vector Machines), or in terms of the covariates (feature selection). In addition to
parsimony, feature selection can help prevent overfitting in problems with many
input features relative to the amount/variability of the data; see [9, 18] for an
overview.

The problem of obtaining an optimal subset of features for a linear classifier
is known to be NP-hard [18], and is computationally unsolvable in most large
applications. A popular strategy is to use a continuous, convex relaxation of the
non-convex feature selection problem, through the use of a prior or a regularizer
that encourages sparsity in the model1.

In recent years, there has been an increasing interest in the L1 regular-
izer, since it has the beneficial effects of regularizing model coefficients (as in
L2 regularization), but yields sparse models that are more easily interpreted

1 e.g., the number of nonzero components of the normal to a hyperplane classifier is
equivalent to the number of features it needs to employ.

[17]. Logarithmic sample complexity bounds2 allow L1-regularized models to
learn effectively even under an exponential number of irrelevant features (rela-
tive to training samples) [13], giving better performance than ridge (L2) penal-
ties in these scenarios. Furthermore, L1-regularization has appealing asymptotic
sample-consistency in terms of variable selection [19].

For this paper, we will consider problems with the general form:

min
x

f(x) ≡ L(x) + λ||x||1. (1)

Here, L(x) is a loss function, and the goal is to minimize this loss function with
the L1-penalty, yielding a regularized sparse solution. Efficient algorithms have
been proposed for the special cases where L(x) has a specific functional form,
such as a Gaussian [3] or Logistic [11] negative log-likelihood. In this paper,
we focus on the more general case where L(x) is simply a twice-differentiable
continuous function, no specific form is assumed.

Since the objective function is non-differentiable when x contains values of 0,
this precludes the use of standard unconstrained methods. This has lead to a wide
variety of approaches proposed in the literature to solve problems of this form.
In this paper we evaluate twelve classical and state-of-the-art L1 regularization
methods over several loss functions in this general scenario (in most cases these
are generalized versions of algorithms for specific loss functions proposed in the
literature). In addition, we propose two new methods:

(i) The first proposed method, SmoothL1, uses a smooth approximation to the
L1-regularizer that is continuous and differentiable, allowing us to formu-
late Newton (or Quasi-Newton) methods to solve the resulting optimization
problems independently of the loss function used.

(ii) The second method proposed, ProjectionL1, addresses the differentiability
by reformulating the problem as a non-negatively constrained optimization
problem. We further describe the use of the Two-Metric Projection method
put forward by [7] to solve the resulting optimization problem efficiently.

Our numerical results indicate that some strategies for addressing the non-
differentiable loss are much more efficient than others, while our two simple
proposed strategies are competitive with the best strategies (including more
complex algorithms). We end with a discussion of the choice of algorithms in
different scenarios.

2 Fast optimization methods for L1 regularization

In this section, we review various previously proposed approaches and propose
two new optimization techniques that can be used for L1-regularized optimiza-
tion (Table 1 at the end gives a high level overview of these approaches). Al-
though most methods proposed in the literature have been for individual loss

2 Number of training examples required to learn a function

functions, we focus on methods that can be extended to handle a general uncon-
strained differentiable loss. We concentrate on a single scalar λ value, although
all techniques below are easily generalized to include a λ for each element (that
may be equal to zero to avoid penalizing some elements). Except where oth-
erwise noted, the algorithms are stabilized (to ensure global convergence) by
using a back-tracking line search that finds a step length t satisfying the Armijo
condition (we generate trial points using cubic interpolation of function and di-
rectional derivative values, and use a sufficient decrease parameter of 0.0001). In
this section we will assume analytic second derivatives, and defer discussion of
methods that avoid explicit Hessian calculation until the end.

2.1 SubGradient Strategies

We first examine optimization strategies that use sub-gradients to extricate the
task of dealing with the non-differentiable gradient. At a local minimizer x̄ of
f(x), we observe the following first-order optimality conditions:

{∇iL(x̄) + λsign(x̄i) = 0, |x̄i| > 0
|∇iL(x̄)| ≤ λ, x̄i = 0

These conditions can be used to define a sub-gradient for each xi whose
negation represents the coordinate-wise direction of maximum descent:

∇if(x) =

∇iL(x) + λsign(xi), |xi| > 0
∇iL(x) + λ, xi = 0,∇iL(x) < −λ
∇iL(x)− λ, xi = 0,∇iL(x) > λ

0, xi = 0,−λ ≤ ∇iL(x) ≤ λ

Using this sub-gradient, the Gauss-Seidel algorithm of [16] uses a working set
of variables, and does an exact line search to optimize the working set variable
whose sub-gradient is largest. Variables begin at xi = 0 with an empty work-
ing set, and the variable with the largest sub-gradient magnitude is introduced
whenever the working set satisfies the optimality conditions. This continues un-
til no variable can be introduced. The Grafting procedure uses a variation that
jointly solves the working set variable optimization with standard unconstrained
techniques [15]. In contrast, rather than separating variables into active and
working sets, and introducing the working set variable with the largest sub-
gradient magnitude, the Shooting algorithm simply cycles through all variables,
optimizing each in turn [6]. Analogously, we can also define a Sub-Gradient De-
scent strategy that attempts to minimize f(x) in terms of x jointly using the
above sub-gradient, and defines the working set at each iteration to be those
variables not satisfying the optimality conditions3.
3 In our experiments, we used the line search of [16] for both the Gauss-Seidel and

Shooting algorithm. For Grafting and Sub-Gradient Descent, we use Newton steps
of the form x := x − t∇2f(x)−1∇f(x) for a step length t to optimize the working
set.

2.2 Unconstrained Approximations

An alternative to working directly with f(x) and using sub-gradients to address
non-differentiability, is to replace f(x) with an (often continuous and twice-
differentiable) approximation g(x). The problem of minimizing g(x) can then be
solved with unconstrained optimization techniques, such as performing Newton
iterations of the form x := x − t∇2g(x)−1∇g(x) for a suitable step length t. A
simple example is the epsL1 approximation [11]:

g(x) = L(x) + λ
∑

i

√
x2

i + ε

This function is differentiable and approximates f(x) for small ε. An alter-
native approximation is the class of log-barrier functions:

g(x) = L(x) + λ||x||1 − µ
∑

j

log cj(x)

In the Log-Barrier method, the constraint functions cj(x) force feasibility
of iterates in a constrained formulation (see Section 2.3). In the Log(norm(x))
method, each ci(x) is set to x2

i , preventing any variable from becoming exactly
0. For these methods, the unconstrained optimizer must implement truncation
of the step lengths in order to maintain positivity of all cj(x). Although the
optimization can be performed for a fixed small value of µ, in the Log-Barrier
method it is standard to solve (or approximately solve) the unconstrained prob-
lem with a decreasing sequence of µ values, which avoids ill-conditioning of the
Hessian preventing convergence (see [14] for additional details).

SmoothL1 Approximation Method We propose another type of smooth
approximation, that takes advantage of the non-negative projection operator
(x)+ = max(x, 0). This projection function can be smoothly approximated, by
the integral of a sigmoid function:[1]:

(x)+ ≈ p(x, α) = x +
1
α

log(1 + exp(−αx)) (2)

p(x, α) is a member of the class of smoothing functions presented in [1] pro-
posed to solve complementarity problems. This smooth approximation of the
projection has been used to transform the standard L2-penalized SVM formu-
lation into an efficiently-solved unconstrained problem [12]. We also make use
of the nice properties of p(x, α), but aiming for the different goal of achieving
sparsity in the covariates.

By combining p(x, α) with the identity |x| = (x)+ + (−x)+ we arrive at the
following smooth approximation for the absolute value function that consists of
the sum of the integral of two sigmoid functions:

|x| = (x)+ + (−x)+ ≈ p(x, α) + p(−x, α)
= 1

α [log(1 + exp(−αx)) + log(1 + exp(αx))]
def= |x|α

(3)

The corresponding loss function is: g(x) = L(x) + λ
∑

i |xi|α; we refer to it
as the SmoothL1 approximation. It can be shown that |x|α converges to |x| as
α approaches ∞ (the proof is similar to [12]), while |x|α is twice differentiable:

∇(|x|α) = (1 + exp(−αx))−1 − (1 + exp(αx))−1 (4)
∇2(|x|α) = 2α exp(αx)/(1 + exp(αx))2 (5)

With a smooth approximation, an unconstrained optimization method can
be applied to g(x) for a large value of α as a proxy for minimizing f(x). How-
ever, for large α the SmoothL1 approximation is not appropriately modeled by
a quadratic for variables near 0. To account for this, we use a continuation strat-
egy analogous to Log-Barrier methods, where we take Newton steps between
increasing the parameter α (beginning from a small α where the quadratic ap-
proximation is appropriate, and terminating at a sufficiently large value of α).
The advantage of this new approach over Log-Barrier approximations is that a
specialized line search that truncates the step to maintain constraint feasibility
is not required (allowing the potential use of more sophisticated line search cri-
teria), and that it does not involve solving a problem with double the number
of variables (associated with using a constrained formulation).

An approach related to unconstrained approximations are Expectation Max-
imization (EM) approaches (see [4]). These approaches use a scale mixture of
normals prior on the variables (xi|τi ∼ N(0, τi)), where the variances of the
individual Gaussians have an exponential prior: p(τi|

√
λ) =

√
λ

2 exp(−τi

√
λ

2). Un-
der this representation, integrating over τi yields a Laplacian density (and thus
an L1-regularizer after taking logarithms) for p(xi|λ). In the EM approach the
individual τi are treated as missing variables, and the ‘E-step’ computes the ex-
pectation of τi. Subsequently, the ‘M-Step’ uses this expectation to (exactly or
approximately) compute the MAP parameters with the scale mixture (L2) prior.
Algorithmically, this is equivalent to using the following approximation (where
xold is the value from the previous iteration)4:

g(x) = L(x) + λ
∑

i

1
2
||xold

i ||22 +
1
2
||xi||22
|xold

i |1
Although this approach has previously been presented as a fixed-point Iteratively
Reweighted Least Squares (IRLS) update, it is straightforward to modify it
in order to compute the Newton descent direction under this approximation
(allowing the method to be applied to loss functions that do not yield an IRLS
approximation).

2.3 Constrained Formulations

A third general approach to address the non-differentiability of the L1-regularizer
is to cast the problem as a constrained optimization problem. One approach to
4 Numerical instability of this approach arises as xi approaches 0. Strategies to avoid

this include using a pseudo-inverse [17], reformulation [4], or by defining the working
set as those variables whose magnitude is above a threshold.

do this is to replace λ with a variable t ∝ 1/λ and solve the constrained problem:

min
x

L(x) s.t.||x||1 ≤ t (6)

Recently, [11] presented an algorithm for L1-regularized Logistic Regression,
where the Logistic Regression IRLS update is computed subject to the constraint
||x||1 ≤ t. The solution to the constrained Weighted Least Squares problem
can be efficiently calculated using the LARS algorithm [3]. This ‘IRLS-LARS’
algorithm (with an Armijo backtracking linesearch) proved more efficient than
other approaches examined in [11] for L1-regularized Logistic Regression. This
specific strategy can clearly be more generally applied to any loss function that
yields an IRLS update, but it is not a general strategy since many loss functions
do not yield an IRLS approximation5.

We can extend the IRLS-LARS algorithm to a general algorithm by ob-
serving that the algorithm is an IRLS reformulation of a Sequential Quadratic
Programming (SQP) update (where a unit step length is assumed). That is,
IRLS-LARS minimizes a Quadratic approximation to the function, subject to a
linearization of the constraints (the linearization is redundant in this case). To
handle the L1 constraint in a more general setting, we split x into non-negative
variables representing positive and negative components, by defining new vari-
ables x+ = max(0, x) and x− = −min(0, w) (thus, x = x+−x−). This gives the
following constrained problem (a general form of a formulation used in [17]):

min
x+,x−

L(x+ − x−) s.t.
∑

i

[x+
i + x−i] ≤ t,∀ix

+
i ≥ 0, x−i ≥ 0 (7)

From a probabilistic perspective, a difficulty with this formulation is that
the constraints become degenerate as t approaches the L1-norm of the Maxi-
mum Likelihood Estimate (an analogous problem is present for non-probabilistic
losses), a value that may not be known or desirable to compute. We use the fol-
lowing alternative formulation that avoids this problem, makes clear the strength
of the Laplacian regularizer, and yields simple bound constraints on the vari-
ables:

min
x+,x−

L(x+ − x−) + λ
∑

i

[x+
i + x−i] s.t.∀ix

+
i ≥ 0, x−i ≥ 0 (8)

A general SQP algorithm takes descent steps of the form x := x − td for a
step length t, where the descent direction d is calculated by solving the following
Quadratic Program [8]:

min
d

(∇L(x+ − x−) + λ1)T d +
1
2
dT∇2L(x+ − x−)d (9)

s.t.∀ix
+
i + d+

i ≥ 0, x−i + d−i ≥ 0 (10)
5 IRLS updates are typically applicable in cases where the loss is an affine function of

the covariates.

The linear constraints allow the objective function f(x) to be used directly as
a measure of progress (assuming the variables are initially non-negative and the
step length is never greater than one), avoiding the need to use special techniques
to avoid a scenario known as the Maratos effect [14]. For strictly convex problems,
the SQP iterates converge super-linearly to the optimal solution [8], explaining
the low number of iterates reported by [11] for IRLS-LARS. This general SQP
algorithm can be considerably less efficient than the IRLS-LARS algorithm, since
a general Quadratic Program must be solved at each iteration (although warm-
starting is possible), and the algorithm does not take advantage of the form of
the constraints.

ProjectionL1 Method We propose to take advantage of the non-negative
bound constraints by using a Two-Metric Projection method [7], which we now
outline. Using the notation x∗ = [x+ x−]T , the active set of constraints for non-
negative bounds x∗i ≥ 0 at an iterate x∗ is defined as {i|x∗i = 0,∇L(x+ − x−) +
λ > 0}. To avoid very small steps, we replace the test x∗i = 0 with 0 ≤ x∗i ≤ ε, for
a small ε. At each iteration, we optimize the variables whose bound constraint
is not active (the working set) using a projected-gradient strategy. A standard
projected-gradient algorithm would take descent steps on the working set of the
form: x∗ := [x∗ − t∇f(x+ − x−)]+, where t represents the step length6 and the
element-wise ‘plus’ function projects onto the non-negative orthant.

The gradient projection strategy is appealing since it allows rapid changes
in the active set, and is especially suited to handle this type of problem due to
the simplicity of the constraint projection operator. However, its convergence
may be slow due to the use of the steepest decent direction. Hence, the ‘Two-
Metric Projection’ strategy scales the descent direction by the inverse of the
working set’s Hessian matrix, yielding the following simple update: x∗ := [x∗ −
t∇2f(x∗)−1∇f(x∗)]+. As in SQP, this algorithm achieves a superlinear rate of
convergence [7]. However, it has a substantially reduced iteration cost compared
to SQP (or IRLS-LARS).

To complete our discussion of the L1-regularized optimization methods pro-
posed in the literature, we note that in the Basis Pursuit Denoising literature,
Interior Point (primal-dual log-barrier) methods have been used (for example,
[2]). These methods, closely related to Log-Barrier methods, simultaneously op-
timize both the primal variables x∗ and a set of dual variables ν corresponding
to the Lagrange multipliers. It is straightforward to adapt these methods to the
general case using the bound-constrained formulation above. Assuming x∗ is fea-
sible and ν is non-negative, for a barrier parameter µ the remaining (modified)
first-order optimality (KKT) conditions for the bound-constrained problem can
be written as follows (where ◦ denotes the element-wise Hadamard product):

0 = r(x∗, ν) ≡
[∇L(x+ − x−) + λ1− ν

−ν ◦ x∗ − µ1

]
.

6 The line search along the projection arc requires a modified Armijo condition [7]

This equation corresponds to the gradient of the Lagrangian, and the (modi-
fied) complementary condition. We seek to solve the equation r(x∗, ν) = 0 by tak-
ing Newton-Raphson steps of the form [x∗ ν]T := [x∗ ν]T −t∇r(x∗, ν)−1r(x∗, ν),
where the step length t is truncated to ensure that x∗ and ν are non-negative
(computing ∇r(x∗, ν)−1r(x∗, ν) requires some algebraic manipulation). Between
iterates, the barrier parameter µ is updated based on an update rate (we use
10), the number of constraints m, and the duality gap νT x∗:µ = 10m(νT x∗)−1

(see [5] for a review of Interior Point methods).

3 Experiments

We have applied the above strategies to a variety of loss functions and data sets.
Specifically, we looked at a generalized version of the Gauss-Seidel, Shooting,
Grafting, Sub-Gradient, epsL1, Log-Barrier, Log(norm(x)), SmoothL1,
EM, SQP, ProjectionL1, and Interior Point methods. Although the general-
L1 framework make no assumptions about convexity, we have restricted our
experiments to convex functions.

All methods were run until the same convergence criteria was met (i.e., where
appropriate, that the step length between iterates, change in function value
between iterates, negative directional derivative, or optimality condition was less
than 10−6). We assessed the ability of the methods to optimize a loss function
known only through a ‘black box’ function that returns the objective value and
derivatives for a given parameter setting. Convergence was measured based on
function evaluations; this is, the number of times the algorithm invoked the ‘black
box’ (to make the comparisons fair, all of the implementations were designed and
tuned with this in mind). The iterates were truncated to 250 such evaluations,
and methods whose final loss was greater than 10−3 times the minimum found
across the methods were assigned the maximum value of 250 evaluations to
punish for low accuracy. This was only needed in a small minority of cases,
since all methods typically either found a high accuracy solution, or reached the
maximum number of iterations. We used a second-order (Hessian-based Newton)
strategy across all methods examined.

3.1 Binary Classification

Our first experiment focused on the problem of optimizing the negative log-
likelihood associated with binary Probit Regression (using y as class labels,
z as the features, φ as the error function, and x as the paramters): L(x) =
log(φ(yix

T zi√
(2)

)) . We applied all 12 optimization strategies to 11 publicly avail-

able data sets7 from the UCI8 amd Statlog9 repositories. All methods were
7 1: Wisconsin Breast Cancer, 2: Australian Heart, 3: Pima Diabetes, 4: Australian

Credit, 5: Sonar, 6: Ionosphere, 7: German, 8: Bright, 9: Dim, 10: Adult, 11: Census
8 http://www.ics.uci.edu/∼mlearn/MLRepository.html
9 http://www.liacc.up.pt/ML/old/statlog/

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence (ProbitTrain)

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence (SVMTrain)

Fig. 1. Distribution of function evaluations (averaged over λ) across 11 data sets to
train: (left) a Probit Regression classifier with L1-regularization and (right) a Smooth
Support Vector Machine classifier with L1-regularization (*=new method)

initialized with x = 0 (those that do not allow this used x = 0.01). Using
λmax

def= maxi |∇L(0)| as the maximum value of λ for each data set10, we eval-
uated each data set at λmax multiplied by each of [.1, .2, .3, .4, .5, .6, .7, .8, .9].

Since the methods discussed in this report apply to general differentiable
loss functions, we can easily replace the binary Probit Regression loss function
with other loss functions. We tested the optimizers using a differentiable loss
function closely related to the hinge loss used in Support Vector Machines: l(x) =
(1 − yix

T zi)+. In ‘Smooth’ Support Vector Machines, the projection (’plus’)
function in the hinge loss is replaced with the smooth approximation in Section
2.2, yielding a differentiable objective [12]. We repeated the Probit Regression
experiment with the Smooth Support Vector Machine loss function (we set the
parameter α controlling the accuracy of the loss approximation to 5). Fig. 1 plots
the distribution of the mean number of iterations to convergence across the data
sets for both binary classification loss functions. We also examined the binary
Logistic Regression loss (not shown due to space limit), finding results similar to
the Probit Regression experiment (these results are consistent with the findings
reported in [11]).

3.2 Multinomial and Structured Classification

We examined optimizing two more complicated objectives than those described
above: Multinomial Logistic Regression (using the Softmax function) and (2-
dimensional) Conditional Random Fields (CRFs). These represent more chal-
lenging scenarios since the Hessians of these models are often indefinite. We

10 This and higher values produce x = 0 as their solution, following from the first-order
optimality conditions of the unconstrained problem.

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence (SoftMaxTrain)

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence for different λ (PseudoTrain)

Fig. 2. Left: Distribution of function evaluations (averaged over λ) across 11 data
sets to train a Multinomial Logistic Regression classifier with L1-regularization. Right:
evaluations on the image patch classification data set to train an L1-regularized 2D
Conditional Random Field evaluated for various λ values (*=new method).

trained Multinomial Logistic Regression classifiers on 11 data sets11 from the
UCI repository and the Statlog project. We trained the 2D Conditional Random
Field on an image patch classification task [10], using the following Pseudo-
likelihood (v represents edge weights that are also penalized).

l(x, v) = log(1 + exp(yix
T zi +

∑

j∈nei(i)

yiyjv
T zij)) (11)

A clear advantage of our approach of treating the loss as a generic function, is
that it is trivial to apply the methods to these more complicated objectives (once
the loss function and its partial derivatives are defined). We used the ‘CRF2D’
software to provide the CRF loss that we augmented with L1-regularization12.
The summarized results of these experiments are shown in Fig. 2.

4 Discussion

Table 1 summarizes the different methods we have examined, including an ag-
gregate convergence ranking across the experiments (ie. number of times the
loss is evaluated over all training examples), and a ranking of the iteration speed
of the different methods (which typically only depends on the number of vari-
ables). If we were to completely ignore iteration cost, SQP would be the fastest
method. However, in terms of runtime, ProjectionL1 was typically the fastest

11 1:Iris, 2:Glass, 3:Wine, 4:Vowel, 5:Vehicle, 6:LED, 7:Satellite, 8:Waveform21, 9:DNA,
10:Waveform40, 11:Shuttle

12 http://www.cs.ubc.ca/∼murphyk/Software/CRF/crf.html

Optimization Approx Sub- Explicit Convergence Iteration Speed
Method Objective Gradient Constraints Ranking Ranking

Gauss-Seidel [16] N Y N 6 1
Shooting [15] N Y N 8 1
Grafting [6] N Y N 4 2
Sub-Gradient N Y N 9 2

epsL1 [11] Y N N 5 2
Log(norm(x)) Y N N 10 2
EM [4] Y∗ Y∗∗∗ N 7 2
Log-Barrier [14] Y∗ N Y 3 3
SmoothL1 [ThisPaper] Y∗ N N 3 2

SQP [11] N N Y 1 4
ProjectionL1 [ThisPaper] N Y∗∗∗ Y 1 3
Interior Point [5] Y∗∗ N Y 2 3

Table 1. Convergence ranking is determined by the average number of iterations to
convergence across the 405 experiments (methods whose average values are within 5
are grouped, the methods that required the fewest iterations are ranked 1, the method
requiring the most iterations is ranked 10). Iteration speed is based on the cost of
computing the descent direction if all variables are non-zero (the fastest methods are
ranked 1, the slowest ranked 4). ∗: method improves the approximation between iter-
ations. ∗∗: method uses a constrained objective that is improved between iterations.
∗∗∗: methods use the correct gradient, but only for the working set (other sub-gradient
methods also restrict to the working set).

method across the experiments, since its iteration cost (solving a symmetric lin-
ear system) is substantially smaller than the cost of solving a quadratic program
(even if LARS is used). Although the approaches that explicitly enforced con-
straints were generally superior to the unconstrained approaches, the SmoothL1
approach was the most effective approach that did not use a constrained ap-
proach (the constrained approaches have a higher iteration cost since they solve
a linear system with double the number of variables). The 250 iteration limit
may have favorably skewed the convergence of methods that reached this limit
(making it difficult to draw definite conclusions on these). However, overall our
experiments indicated that the proposed ProjectionL1 strategy was the most effi-
cient in terms of runtime on the test problems, although the proposed SmoothL1
algorithm may be efficient on problems with many variables, while SQP may be
more efficient on problems with very expensive function evaluations.

In some scenarios, it might not be practical to compute (or store) analytic
Hessians. If we replace the analytic Hessian with a suitable (limited-memory)
Hessian approximation (ie. L-BFGS), all of the above methods can be applied
without modification (with the exception of the InteriorPoint method). This
substantially reduces the iteration cost and memory requirements (for all but the
coordinate descent strategies), at the cost of an increase in function evaluations.

In this work, we have reviewed 12 methods for solving general L1-regularized
optimization problems, and provided a numerical comparison on several standard

machine learning problems. Two of these methods are novel (introduced in this
paper) and prove to be among the most efficient overall. Due to space constraints,
we have omitted some information that we would have liked to include. Online13,
we have made available additional details/proofs on some of the methods, code
(to enable reproducible research), and additional experimental results.

References

1. C. Chen and O. L. Mangasarian. A class of smoothing functions for nonlinear and
mixed complementarity problems. Comput. Optim. Appl, 5(2):97–138, 1996.

2. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20(1):33–61, 1999.

3. B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani. Least angle regression.
Ann. Stat., 32(2):407–499, 2004.

4. M. Figueiredo. Adapative sparseness for supervised learning. IEEE. Trans. Pat-
tern. Anal. Mach. Intell., 25(9):1150–1159, 2003.

5. R. M. Freund and S. Mizuno. Interior point methods: Current status and future
directions. Optima, 51:1–9, 1996.

6. W. Fu. Penalized regressions: The bridge versus the LASSO. J. Com-
put. Graph. Stat., 7(3):397–416, 1998.

7. E. Gafni and D. Bertsekas. Two-metric projection methods for constrained opti-
mization. SIAM J. Contr. Optim., 22(6):936–964, 1984.

8. U. M. Garcia Palomares and O. L. Mangasarian. Superlinearly convergent Quasi–
Newton algorithms for nonlinearly constrained optimization problems. Math. Pro-
gram., 11:1–13, 1976.

9. I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157–1182, 2003.

10. S. Kumar and M. Hebert. Discriminative random fields: A discriminative frame-
work for contextual interaction in classification. In ICCV, 2003.

11. S.-I. Lee, H. Lee, P. Abbeel, and A.Y. Ng. Efficient L1 regularized logistic regres-
sion. In AAAI, 2006.

12. Y.-J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine.
Comput. Optim. Appl., 20:5–22, 2001.

13. A. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In
ICML, pages 78–85, New York, NY, USA, 2004. ACM Press.

14. J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York,
1999.

15. S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection
by gradient descent in function space. J. Mach. Learn. Res., 3:1333–1356, 2003.

16. S. Shevade and S. Keerthi. A simple and efficient algorithm for gene selection using
sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

17. R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B,
58(1):267–288.

18. J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. Use of the zero norm with
linear models and kernel methods. J. Mach. Learn. Res., 3:1439–1461, 2003.

19. P. Zhao and B. Yu. On model selection consistency of LASSO.
J. Mach. Learn. Res., 7:2541–2567, 2007.

13 http://www.cs.wisc.edu/∼gfung/GeneralL1

