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Abstract

This project deals with the estimation of Logistic Regression parameters. We first review the binary
logistic regression model and the multinomial extension, including standard MAP parameter estimation
with a Gaussian prior. We then turn to the case of Bayesian Logistic Regression under this same prior. We
review the cannonical approach of performing Bayesian Probit Regression through auxiliary variables,
and extensions of this technique to Bayesian Logistic Regression and Bayesian Multinomial Regression.
We then turn to the task of feature selection, outlining a trans-dimensional MCMC approach to variable
selection in Bayesian Logistic Regression. Finally, we turn to the case of estimating MAP parameters
and performing Bayesian Logistic Regression under L1 penalties and other sparsity promoting priors.

1 Introduction

In this project, we examined the highly popular Logistic Regression model. This model has tradition-

ally been appealing due to its performance in classification, the potential to use its outputs as probabilitic

estimates since they are in the range[0, 1], and the interpretation of the coefficients in terms of the ’log-

odds’ ratio [1]. It is especially popular in biostatistical applications where binary classification tasks

occur frequently [1]. In this first part of the report, we review this model, its multi-class generalization,

and standard methods of performing maximum likelihood (ML) or maximuma posteriori(MAP) para-

meter estimation under a zero-mean Gaussian prior for the regression coefficients. We then turn to the

case of obtaining Bayesian posterior density estimates of the regression coefficients. In particular, we

examine the recently proposed extensions of the Bayesian Probit Regression auxiliary variable model to

the Logistic Regression and Multinomial Regression scenarios. Finally, we turn to the challenging task



of incorporating feature selection into these models, focusing on trans-dimensional sampling methods,

and MAP and/or Bayesian estimation under priors that encourage sparsity.

1.1 Binary Logistic Regression Model

We useX to denote then by p design matrix, containingp features measured forn instances. We use

y to denote the lengthn class label vector, where the values take on either+1 or−1, corresponding to

the class label for thenth instance. Finally, we will usew to represent the lengthp vector of parameters

of the model. Primarily for ease of presentation, we will not address the ‘bias’ termw0 in this document,

but all techniques herein are easily modified to include a bias term. Under the standard (binary) Logistic

Regression model, we express the probability that an instancei belongs to the class+1 as:

π(yi = +1|xi, w) =
1

1 + exp(−wTxi)
(1)

For binary reponses, we can compute the probability of the ’negative’ class using the sum rule of

probability: π((yi = −1|xi, w) = 1 − π(yi = +1|xi, w). We typically assume independent Gaussian

priors with means of 0 and variance ofv on the coefficients of the model:

wi ∼ N(0, v) (2)

To perform MAP parameter estimation, we take the log of the likelihood (1) over all examples, times

the prior (2) over all parameters (ignoring the normalizing constant) to give the following objective

function:

f = −
n∑

i=1

log(1 + exp(−yiw
Txi))−

1

2v2
wTw (3)

From this expression, we see that the Maximum Likelihood estimate is obtained by settingv to ∞.

Differentiating the above with respect tow to we obtain the following expressions for the gradient and

Hessian (usingσ to denote the sigmoid functionσ(x) = 1/(1 + exp(−x)):
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g = −
n∑

i=1

(1− σ(yiw
Txi))yixi −

w

v2
(4)

H = −
n∑

i=1

σ(wTxi)(1− σ(wTxi))xix
T
i −

1

v2
Ip (5)

We note that the Hessian is negative-definite and subsequently that the original function is (log)concave,

indicating that any local maximizer of this objective will be a global maximizer. A simple method to

maximize this objective is to repeat Newton iterations starting from an initial value ofw until the norm

of the gradient is sufficiently small (noting that that the gradient will be 0 at a maximizer). This results

in a simple fixed-point iterative update as follows:

w = w + αH−1
m g (6)

WhereHm is a modification of the Hessian to be sufficiently negative-definite, or a negative-definite

approximation to the (inverse) Hessian (see [2]). The step sizeα can be set to 1, but convergence may

be hastened by using line search methods satisfying sufficient descent conditions (see [3] or [4]). We

have implemented an approach of this type making use of Matlab’s ‘fminunc’ function in the directory

‘LOGREG’, and an example calling this code is included as ‘exampleLOGREG.m’. Other methods for

optimizing this objective are discussed and compared in [4].

1.2 Multinomial Logistic Regression Model

The binary Logistic Regression model has a natural extension to the case where the number of classes,

K, is greater than 2. This is done using the softmax generalization [1]:

π(yi,k|xi, w) =
exp(wT

k xi)∑K
j=1 exp(w

T
j xi)

(7)

In this case, we have a matrix of target labelsy that isn by K, andy(i, j) is set to+1 if instance

i has classj, and0 otherwise. The weights are now expanded to ap by K matrix, and we now have
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an individual weight vector corresponding to each class. Note that writing the class probabilities in this

way makes it clear that we are employing an exponential family distribution. By observing that the

normalizing denominator enforces that the probilities summed over the classes must be equal to1, we

can set the parameter vector for one of the classes to be a vector of zeros. Using this, we can see that in

this case the softmax likelihood will be identical to the binary logistic regression case when we have two

classes. Note also that the coefficients used in a softmax function retain their interpretability in terms of

changes to the log-odds, but that these changes are now relative to the class whose parameters are set to

zero [1].

Again assuming an independent Gaussian prior on the elements ofw, we can write the multi-class

penalized log-likelihood for use in MAP estimation as follows:

f = −
n∑

i=1

[yiw
Txi − log(

K∑
j=1

exp(wT
k xi))]−

1

2v2

K∑
j=1

wT
j wj (8)

Above we have introducedyi as an indicator to select the appropriate column ofw for the instacei.

We see that the log-likelihood term has the familiar (numerator - denominator) form, subsequently we

expect the gradient and Hessian to contain moments of the distribution. If we use SM(i,k) to denote the

softmax probability of instancei for classk, andδi==j as the kronecker delta function fori andj, we

express the gradient for the parameters of classk and the Hessian for the parameters of classesk andj

as follows:

gk = −
n∑

i=1

[xi(yi − SM(i, k))]− 1

v2
wk (9)

Hkj = −
n∑

i=1

xix
T
i [SM(i, k)(δi=j − SM(i, j))]− δj=k

v2
(10)

The Hessian remiains negative definite, but now has(pK)2 elements instead of(pK), making comput-

ing and/or inverting the Hessian much more expensive. It is noteworthy that in the softmax case we can

(and will) have a higher degree of correlation between variables than we did for the binary case since we
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have additional correlation between the classes. We have implemented MAP estimation for multinomial

regression making use of Matlab’s ‘fminunc’ function (and hence using updates based on the gradient

and an inverse Hessian approximation as discussed for the binary case) in the directory ‘MLOGREG’,

and an example calling this code is included as ‘exampleMLOGREG.m’. Note that this code is not

vectorized, so could be made much more efficient.

2 Bayesian Auxiliary Variable Methods

Above we have described in detail the logistic and multinomial regression models, and overviewed

some straightforward methods to perform MAP parameter estimation in such models under a Gaussian

prior. However, we would much rather be doing Bayesian parameter estimation in these models, in

order to obtain posterior distributions of the model parameters. We now turn to Bayesian methods

of estimating posterior distributions in logistic regression models. In particular, we will focus on the

Gibbs sampling method employing auxiliary variables and joint updates to the regression coefficients

and auxiliary variables proposed in [5].

2.1 Binary Probit Regression

As discussed in class, we can derive conjugate priors for the logistic regression likelihood function,

but they are not terribly intuitive. Fortunately, we can transform the model into an equivalent formulation

that includes auxiliary variables, and admits standard conjugate priors to the likelihood function. This

method is an extension of the well-known auxiliary variable method for Binary Probit Regression of

[6]. Before discussing the logistic regression, we will first review the simpler Bayesian Binary Probit

Regression model, as presented in [5].

UsingΦ to denote the Gaussian cumulative distribution function, Binary Probit Regression uses the

following likelihood:

π(yi = 1|xi) = Φ(xT
i w) (11)
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Since there is no conjugate prior to the Gaussian cumulative distribution function, we introduce a set

of n auxiliary variableszi with:

zi = xT
i w + εi (12)

Here,εi ∼ N(0, 1), andyi takes the value of1 iff zi is positive. Introducing the auxiliary variables

gives an equivalent model, but this model is more amenable to sampling sincew is removed from the

likelihood. In the particular case of a Gaussian prior onw, it admits a straightforward Gibbs sampling

strategy wherezi is sampled from independent (univariate) truncated Gaussian distributions, andw can

can be sampled from a multvariate Gaussian distribution. Specifically, a straightforward Gibbs sampling

strategy withπ(w) ∼ N(b, v) can be implemented using the following [5]:

zi|w ∝ N(xT
i w, 1)I(zi > 0)yi = 1 (13)

zi|w ∝ N(xT
i w, 1)I(zi ≤ 0)yi 6= 0 (14)

w|z, y ∼ N(B, V ) (15)

B = V (v−1b+XT z) (16)

V = (v−1 +XTX)−1 (17)

(18)

As before, we will assume that the mean of the prior on the regression coefficientsb is zero. Follow-

ing from this, we note above thatB is the normal equations in Least Squares estimation, and thatV is

the corresponding inverse Hessian (corresponding to the inverse convariance or precision matrix). The

Gibbs sampler produced by the above strategy is trivial to implement (given currently available linear

algebra software), since it only requires sampling from a multivariate Gaussian, and truncated univari-

ate Gaussians. Unfortunately, as discussed in class, this straightforward Gibbs sampling approach is

innefficient since the element ofw are highly correlated with the elements ofz.
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To combat the correlation inherent inw andz in the above model, [5] proposed a method to updatew

andz jointly by using the product rule to decompose the joint probability of the model as follows:

π(w, z|y) = π(z|y)π(w|z) (19)

The proposed method samples eachzi from a Gaussian distribution with means and variances de-

rived from a leave-one-out marginal predictive density (see (5) in [5]), updating the conditional means

after each update tozi, then samplingw from its conditional normal distribution after all of thezi have

been sampled. Although results are presented showing that this joint updating strategy offers an ad-

vantage, we will not review it in detail since there exists a simpler method to facilitate joint updating

in logistic regression. Nevertheless, we have implemented this block updating scheme (based on the

pseudocode present in the paper) in the directory ‘PROBREGSAMP’. For our implementations, we

used a simple rejection sampling approach for sampling from truncated distributions, where each re-

jected sample restricts the sampling density envelope. An example showing how to run this code is at

‘examplePROBREGSAMP’.

2.2 Binary Logistic Regression

Beginning from the binary Bayesian Probit Regression model above, [5] propose to perform binary

Bayesian Logistic Regression by replacing the independent Gaussian prior onεwith independent logistic

distributions. Unfortunately, this significantly complicates the simple sampling strategies above. To

facilitate straightforward sampling of this model [5] introduce an addtional set of auxiliary variables

λ1:n and modify the noise function to be a scale mixture of normals with a marginal logistic distribution

as follows (where KS denotes the Kolmogorov-Smirnov distribution):

εi ∼ N(0, λi) (20)

λi = (2ψi)
2 (21)
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ψi ∼ KS (22)

If we temporarily viewλ as constant, we see that this is identical to the Probit model above, except

that each value ofzi has an individual termλi for its noise variance. Subsequently, we know how to

sample from this model for fixedλ. It simply involves using Weighted Least Squares instead of Least

Squares (and associated inverse Hessian), and sampling from individual truncated normals that have

different variances. Subsequently we can implement a Gibbs sampler if we are able to sample from

theKS distribution. Fortunately, [5] outline an rejection sampling method to simulate from the KS

distribution using the Generalized Inverse Gaussian as the sampling density. Thus, we can implement

a straightforward Gibbs sampler for binary Bayesian Logistic Regression using this rejection sampling

approach in addition to the following:

zi|w, λ ∝ N(xT
i w, λi)I(zi > 0)ifyi = 1 (23)

zi|w, λ ∝ N(xT
i w, λi)I(zi ≤ 0)ifyi 6= 0 (24)

w|z, y, λ ∼ N(B, V ) (25)

B = V (v−1b+XTWz) (26)

V = (v−1 +XTWX)−1 (27)

W = diag(λ−1) (28)

(29)

Two approaches are presented in [5] to perform block sampling of the parameters. The first uses

the same strategy as in the Probit model, wherew andz are updated jointly in the same way using the

above modifications to the conditionals, followed by an update to the addtional auxiliary variablesλ. We

implemented this strategy (based on the pseudocode from the paper) in the directory ‘LOGREGSAMP’,

‘exampleLOGRESAMP’ is an example script calling this function.
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The second (and the author’s preferred) strategy for block sampling presented in [5] updatesz andλ

jointly, followed by an update tow. Samplingw andλ remains identical in this approach, but sampling

zi becomes easier. In this approach,zi|w, λ follows a truncated logistic distribution with meanxT
i w

and a scale of1. Not only does this obviate the need for computing marginal predictive densities,

the inverse of the cumulative distribution function of the logistic distribution has a closed form and

is subsequently trivial to sample from (although we again used a simple adaptive rejection sampling

technique in our implementation). We implemented this strategy (based on the pseudocode from the

paper) in the directory ‘LOGREGSAMP’, ‘exampleLOGRESAMP2’ is an example script calling this

function.

2.3 Multinomial Logistic Regression

Unlike the Probit Regression case, the binary Logistic Regression sampling techniques above have

a trivial extension to the multi-class scenario. In addition to having ay andw variable for each class

as we saw in Section 1, we now have az andλ vector for each class. The Gibbs sampler presented in

[5] simply loops over the classes, performing the binary logistic regression sampling technique for the

current classes keeping all other classes fixed. We implemented this strategy (based on the pseudocode

from the paper) in the directory ‘MLOGREGSAMP’, ‘exampleMLOGRESAMP’ is an example script

calling this function. Unfortunately, we found that this does not make an especially effective sampling

strategy, and that the technique stays in areas of the distribution that were far from the MAP estimate,

and did not produce accurate classification results. We hypothesize that this is due to several factors. The

first factor is simply the larger number of parameters in this model. Another factor is that, as discussed

previously, there can inherently be a much higher degree of correlation in the softmax case than in the

binary scenario. Finally, we note that the sampling strategy of looping over the classes, and running the

binary sampler is not especially clever about dealing with these correlations, since it requires seperate

sampling of thez values for each class in addition to thew values for each class, and a joint update

would likely improve the performance.

Before moving on to feature selection, I would like to outline some extensions of the above models
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that I would have liked to explored, if I had more time. One idea with significant potential for improv-

ing the sampling strategies is to integrate out parameters. Given the high degree of correlation between

variables (especially in the multi-class case), this would likely improve the sampling strategies signif-

icantly. Another area of exploration is to not the view covariance or hyper-parameters as fixed, and

explore posterior estimates with priors on these distributions. This is especially relevant from the point

of view of model generalization, since the covariance and hyper-parameters can significantly affect the

classification performance of the model.

3 Feature Selection

A major appeal of Logistic Regression, besides its intuitive multi-class generalization, is the inter-

pretation of its coefficients. As discussed in [1], researchers often explore different combinations of the

features in order to produce a parsimonious regression model that still provides effective prediction per-

formance. In this section, we discuss automated approaches to this feature selection problem. We first

present an extension to the above models that incorporates feature selection through trans-dimensional

sampling. We then turn our focus to priors that encourage sparsity in the final model.

3.1 Trans-Dimensional Sampling

Focusing on the binary logistic regression scenario, one method to incorporate feature selection into

the procedure is to add yet another set of auxiliary variables,γ1:p. Specifically, if the binary variable

γi is set to 1 then the corresponding variable is included in the model, and ifγi is set to 0 then the

corresponding variable is excluded from the model (ie. set to 0). [5] proposes this model, and sug-

gest using the model presented earlier for binary logistic regression with these auxiliary variables, with

joint updates to{z, λ} and to{γ, w}. They propose thatγ|z can be sampled using (Reversible-Jump)

Metropolis-Hastings steps. Specifically, samplingz, λ, andw remains the same (but using only the

active covariate set), and we accept a trans-dimensional step fromγ to γ? (under a symmetric proposal)

using the following acceptance probability:
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α = min{1,
|Vγ?|1/2|vγ|1/2exp(0.5BT

γ?
V −1

γ?
Bγ?)

|Vγ|1/2|vγ?|1/2exp(0.5BT
γ V

−1
γ Bγ)

} (30)

[5] uses a simple proposal distribution, they flip the value of a randomly chosen element ofγ. We

implemented sampling from the above model in the case of binary logistic regression (with feature selec-

tion) in the directory ‘LOGREGSAMPFS’, an example running this routine is ‘exampleLOGREGSAMPFS’.

3.2 Priors Encouraging Sparsity

Although the above strategy to incorporate feature selection into the model is a simple extension of the

logistic regression model, it has major drawbacks. Specifically, updating single components causes very

slow exploration of the space of2p variables. As discussed in class, we could jointly update correlated

components to significantly improve the results. An alternate strategy, especially relevant whenp is very

large, is to use priors that encourage sparsity.

3.3 MAP Estimation of the Logistic LASSO

The LASSO prior advocated in [7] (but utlilized earlier under the name ‘Basis Function Pursuit’ [8])

is currently a popular strategy for enforcing sparsity in the weights of the regression coefficients. From

the point of view of optimization, the LASSO prior consists of using a scaled value of the L1-norm

of the weights as the penalty/regularization function, instead of the squared L2-norm discussed earlier.

Specifically, our objective function becomes:

f = −
n∑

i=1

log(1 + exp(−yiw
Txi))−

1

v
||w||1 (31)

Although the above objective is still concave, a major disadvantage of this objective function is that

it is non-differentiable at points where anywi is zero. Hence, we need to use slightly less generic op-

timization approaches for finding the MAP estimates. Furthermore, we cannot use efficient methods

such as the one presented in [9] for Least Squares estimation under an L1 penalty in order to optimize

the logistic regression likelihood function. The most widely used method for optimizing the logistic
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regression likelihood subject to an L1 penalty are Iteratively Reweighted Least Squares (IRLS) schemes

(employ a Least Squares LASSO solver as subroutine) [7], and coordinate descent methods such as [10].

However, both of these schemes are relatively innefficient, since coordinate descent methods have slow

convergence and the IRLS methods require the solution to a large number of individual LASSO prob-

lems, themselves not-completely trivial optimization problem. In this project, we adopted the efficient

‘Grafting’ approach presented in [11], this approach is briefly outlined below.

We define the derivative of the objective function as follows:

g = −
n∑

i=1

(1− σ(yiw
Txi))yixi −

sign(w)

v
(32)

Since the sign of 0 is ill-defined, the Grafting approach uses the following convention (recall that the

global optimum will have a gradient value of 0, where it is defined):

sign(wi) = 1if
n∑

i=1

(1− σ(yiw
Txi))yixi > 1/v (33)

sign(wi) = −1if
n∑

i=1

(1− σ(yiw
Txi))yixi < 1/v (34)

sign(wi) = 0if
n∑

i=1

(1− σ(yiw
Txi))yixi = 1/v (35)

Although this is not the gradient of the function, it is correct ifwi is not 0, and chooses the correct

sign for values ofwi that are equal to 0. However, this definition may cause problems when multiple

variables have a value of 0. Subsequently, the Grafting procedure begins with all variables set to 0,

and introduces one zero-valued variable at a time into the model (the one with largest gradient mag-

nitude). The ‘free set’ of variables is optimized using a standard conjugate gradient or Quasi-Newton

solver, and variables are removed that return to 0 (they may later be re-introduced). This continues until

|∑n
i=1(1 − σ(yiw

Txi))yixi| ≤ 1/v. At this point, no variables can be introduced that will decrease the

log-likelihood enough to compensate for the increase in the penalty term. If the final model is sparse,

this method will be much more efficient than IRLS or coordinate descent methods.
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We implemented the optimization of the logistic regression likelihood subject to an L1 penalty with

the Grafting procedure in the folder ‘LOGREGL1’, and an example calling this code is ‘exampleLOGREGL1’.

The derivation of the multinomial case is almost identical (substiting in the appropriate objective and

derivatives), and we implemented this in the folder ‘MLOGREGL1’. An example calling this code is

‘exampleMLOGREGL1’. In both cases, we make use of Matlab’s ‘fminunc’ unconstrained optimiza-

tion function in order to solve the sub-problems. Note that although the binary code is efficient, the

multinomial code is fairly innefficient since it is not vectorized and we do not make of indexing to

reduce the model size passed to the optimization routine.

3.4 Bayesian Estimation of the Logistic LASSO

[7] showed that the LASSO penalty is equivalent to the use of independent double exponential (Laplace)

priors:

π(wi) =
1

2v
exp(−|wi|/v) (36)

As discussed in [12], this prior can be represented as a scale mixture of Gaussian distributions:

π(wi) =
∫ ∞
0

N(wi|0, ψ)
1

2v2
exp(−ψ/2v2)dψ (37)

[13] present a Gibbs sampling algorithms for sampling from this model (integrating outψ) in the

Least Squares scenario. Given more time, I would have explored combining this prior with the auxiliary

variable approach to logistic regression discussed above, since it is a relatively straightforward extension.

For further discussions of sparsity encouraging priors, we refer to [13] which discusses ‘spike and slab’

priors, and [12] which extensively discusses other (sparse) priors that take the form of scale mixture of

Gaussian.
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4 Experiment

Included with the code are 3 of the data sets used in [5], including functions to load these data sets

in the appropriate format (‘pima.m’, ‘aus.m’, and ‘heart.m’). Since all the data sets in [5] were binary,

the classic Iris data set is included as a multi-class data set (it can be loaded with ‘iris.m’). However, in

this section we provide experimental results on publicly available MNIST digit recognition data. This

data set makes a slightly more interesting scenario than the cases above since the number of features is

subtantially larger (256, compared to 4-15), and both the features and coefficients have a natural visual

interpretation. Since the multinomial optimization code is relatively slow and the multinomial sampling

strategy is relatively inneffective, we concentrated on the binary task of recognizing digits of the number

2 compared to digits of the number 3. The data set subsequently consisted of 189 examples of the 256

features representing the pixel intensities of 16 by 16 images of either the digit 2 or the digit 3. The code

to re-run the experiments is located in the ‘experiments’ directory.

4.1 MAP Estimation

We first compared the generalization performance of MAP estimation with L2 and L1 penalties. The

data set was divided randonly into 100 training examples and 89 testing examples. The MAP estimates

with (1/v) = 1 for both methods, and with(1/v) = 0.00001 for the L1 penalty and(1/v2) = 0.00001

for the L2 penalty were computed, and their performance on the test set was measured. The L2 penal-

ized parameters formed a dense set of coefficients that completely separated the training data (this is

unsurprising, given that the number of features is larger than the number of examples). The L1 penal-

ized parameters also completely separated the training data, but only 8 of the coefficients had non-zero

weights with(1/v) = 1, and only 24 of the coefficients had non-zero weights with(1/v) = 0.00001. On

the test set, both L2 penalized sets of parameters resulted in 4 errors. The 8 coefficients resulting from

the first set of L1 penalized parameters resulted in 8 test errors, while the second set of L1 penalized

parameter’s 24 coefficients resulted in 4 test errors. Subsequently, only 24 out of the 256 pixels were

actually required to achieve thes test performance of a full dense model in this scenario.
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Figure 1. Top two rows: Examples of the number 2 and the number 3. Third row: L2 penalized
parameters (left) and L1 penalized parameters (right) with (1/v) = 1. Bottom row: L2 penalized
parameters (left) with (1/v2) = 0.00001 and L1 penalized parameters (right) with (1/v) = 0.00001.
In the log-odds maps, bright indicates that it increases the log-odds of the class being assigned the
label ‘3’ when the corresponding pixel is dark, dark indicates that it decreases the log-odds of the
class being assigned the label ‘3’ when the corresponding pixel is dark.

As a visual illustration of this experiment, Figure 1 shows two examples of the input data. Figure 1

also shows a representation of the coefficients estimated by the four models represented as 16 by 16 im-

ages. From these images, we see that the L2 penalized coefficients have an obvious visual represntation,

as we can see an area that resembles a “3” that increases the log-odds of the class label being 3. The

visualization of the L1 penalized coefficients does not give a terribly intuitive result, as it simply appears

as a set of selected pixels that significantly increase or decrease the log-odds. However, it is interesting

that the 8/24 selected pixels are not clustered (although not random either), and sample different areas

of the image.

4.2 Bayesian Estimation

We now examine sampling the posterior distributions of the parameters under the logistic regression

model. We used the 2 different blocked Gibbs sampling strategies presented earlier to generate 10000
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Figure 2. Estimated posterior distributions for the 18 of the parameters based on 10000 samples
using the block Gibbs sampling strategy with joint updates to {w, z}.

Figure 3. Estimated posterior distributions for the 18 of the parameters based on 10000 samples
using the block Gibbs sampling strategy with joint updates to {λ, z}.
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samples from the posterior distribution of the parameters using the full data set. We also compute the L1

penalized MAP parameters for the full data set with1/v = 1. This resulted in a model with 13 non-zero

coefficients (although one of the coefficients was very small and we subsequently treat it as 0). Figures 2

and 3 plot histograms of the samples generated for 18 of the 256 variables. From left to right, we plotted

the posterior estimates for the 6 positive coefficients estimated in the L1 MAP model, the 6 negative

coefficients estimated in the L1 MAP model, and 6 randomly chosen coefficients among those set to 0 in

the L1 MAP model. The results in Figure 2 were generated by jointly updated{w, z} and then sampling

λ, while the results in Figure 3 were generated by jointly updated{z, λ} and then samplingw. As can

be seen, the results of the different sampling strategies are very similar.

Examining the estimated posterior distributions of the coefficients that were selected by the L1 pe-

nalized methods, we see that they have distributions that are clearly centered away from zero, and in all

cases in the appropriate direction. Examining the variables that were not selected by the L1 penalized

method, we see that some have distributions centered at zero, indicating that they likely should be re-

moved from the model (if we assume that the features are independent). However, some of the features

removed by the L1 penalized method have distributions that are centered away from zero. In these cases,

it seems that the L1 penalized method removed potentially relevant variables from the model.

4.3 Feature Selection

We repeated the above experiment with the trans-dimensional sampler to assess the relevance of the

different features. We again generated 10000 samples, and Figure 4 plots the estimated distributions

for the same 18 variables (a weight is recorded as being 0 when it is not included in the model). The

acceptance ratio for this process was 0.79, an very high value. This seems to indicate that most individual

variables are not especially relevant. Figure 4 confirms this intuition, as most variables end up spending

time both in and out of the model. It is interesting to note that some of the coefficients selected by the L1

penalized model are clearly relevant, since these coefficients tended not to be removed from the model.

However, we must recall that we are taking 1 step moves through a space of2256, and as such we are

seeing an estimate of an infitesimally small fraction of the full posterior distribution. As such there may
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Figure 4. Estimated posterior distributions for the 18 of the parameters based on 10000 samples
using the trans-dimensional block Gibbs sampling strategy.

be areas of the parameter space where even the highly relevant variables are removed. In addition, recall

that since an individual variable is selected randomly to add or remove from the model at each iteration,

that variables will tend to stay in or out of the model for approximately 256 iterations at a time if the

trans-dimensional always accepted.
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