Support Vector Random Fields

Chi-Hoon Lee, Russell Greiner, Mark Schmidt presenter: Mark Schmidt

Overview

- Introduction
- Background
 - Markov Random Fields (MRFs)
 - Conditional Random Fields (CRFs) and Discriminative Random Fields (DRFs)

- Support Vector Machines (SVMs)

- Support Vector Random Fields (SVRFs)
- Experiments
- Conclusion

Introduction

- Classification Tasks
 - Scalar Classification: class label depends only on features:
 - IID data
 - Sequential Classification: class label depends on features and 1D structure of data:
 - strings, sequences, language
 - <u>Spatial Classification</u>: class label depends on features and 2D+ structure of data:
 - images, volumes, video

Notation

- Through this presentation, we use
 - X: an Input (e.g. an Image with m by n elements)
 - Y: a joint labeling for the elements of X
 - S: a set of nodes (pixels)
 - x_i: an observation in node I
 - y_i: an class label in node I

Problem Formulation

• For an instance:

 $-X = \{x1, \dots, xn\}$

• Want the most likely labels:

 $-Y = \{y1, \dots, yn\}$

Optimal Labeling if data is independent:
 -Y = {y1|x1,...,yn|xn}
 (Support Vector Machine)

• Labels in Spatial Data are NOT independent!

- spatially adjacent labels are often the same (Markov Random Fields and Conditional Random Fields)
- spatially adjacent elements that have similar features often receive the same label (Conditional Random Fields)
- spatially adjacent elements that have different features may not have correlated labels (Conditional Random Fields)

Background: Markov Random Fields (MRFs)

- Traditional technique to model spatial dependencies in the labels of neighboring element
- Typically uses a generative approach: model the joint probability of the features at elements $X = \{x_1, \ldots, x_n\}$ and their corresponding labels $Y = \{y_1, \ldots, y_n\}$: P(X,Y)=P(X|Y)P(Y)
- Main Issue:
 - Tractably calculating the joint requires major simplifying assumptions: (ie. P(X|Y) is Gaussian and factorized as $\prod_i p(x_i|y_i)$, and P(Y) is factored using H-C theorum).
 - Factorization makes restrictive independence assumptions, AND does not allow modeling of complex dependencies between the features and the labels

MRF vs. SVM

MRFs model dependencies between:

 the features of an element and its label
 the labels of adjacent elements

SVMs model dependencies between:
 – the features of an element and its label

Background:

Conditional Random Fields (CRFs)

- A CRF
 - A discriminative alternative to the traditionally generative MRFs
 - Discriminative models directly model the posterior probability of hidden variables given observations: P(Y|X)
 - No effort is required to model the prior. 🙂
 - Improve the factorized form of a MRF by relaxing many of its major simplifying assumptions
 - Allows the tractable modeling of complex dependencies

MRF vs. CRF

- MRFs model dependencies between:
 - -the features of an element and its label
 - -the labels of adjacent elements
- CRFs model decencies between:
 - -the features of an element and its label
 - -the labels of adjacent elements
 - -the labels of adjacent elements and their features

Background: Discriminative Random Fields (DRFs)

• DRFs are a 2D extension of 1D CRFs:

$$P(Y \mid X) \propto \prod_{i \in S} A_i(y_i, X) \prod_{j \in N_i} I_{ij}(y_i, y_j, X)$$

- A_i models dependencies between X and the label at i (GLM vs. GMM in MRFs)
- I_{ij} models dependencies between X and the labels of i and j (GLM vs. counting in MRFs)
- Simultaneous parameter estimation as convex optimization
- Non-linear interactions using basis functions

Backgrounds: Graphical Models

Fig. 1. A MRF. Shaded nodes (x_i) are the observation nodes (pixels) and unshaded nodes (y_i) are hidden variables (labels).

Fig. 2. Graphical structure of a DRF, the extension of a CRF in the 2-dim lattice structure

Background:

Discriminative Random Fields (DRFs)

- Issues
 - initialization
 - overestimation of neighborhood influence (edge degradation)
 - termination of inference algorithm (due to above problem)
 - GLM may not estimate appropriate parameters for:
 - high-dimensional feature spaces
 - highly correlated features
 - unbalanced class labels
 - Due to properties of error bounds, SVMs often estimate better parameters than GLMs
- Due to the above issues, 'stupid' SVMs can outperform 'smart' DRFs at some spatial classification tasks

Support Vector Random Fields

- We want:
 - the appealing generalization properties of SVMs
 - the ability to model different types of spatial dependencies of CRFs
- Solution:

Support Vector Random Fields

Support Vector Random Fields: Formulation

$$P(Y \mid X) = \frac{1}{Z} \exp\left\{\sum_{i \in S} \log(O(y_i, \Gamma_i(X))) + \sum_{i \in S} \sum_{j \in N_i} V(y_i, y_j, X)\right\}$$

- Γ_i(X) is a function that computes features from the observations X for location i,
- •O(yi, i(X)) is an SVM-based Observation-Matching potential
- V (yi, yj,X) is a (modified) DRF pairwise potential.

Support Vector Random Fields: Observation-Matching Potential

- SVMs decision functions produce a (signed) 'distance to margin' value, while CRFs require a strictly <u>positive</u> potential function
- Used a modified* version of [Platt, 2000] to convert the SVM decision function output to a positive probability value that satisfies positivity
- *Addresses minor numerical issues

Support Vector Random Fields: Local-Consistency Potential

We adopted a DRF potential for modeling label-label-feature interactions:

$$\forall (\mathbf{y}_i, \mathbf{y}_j, \mathbf{x}) = \mathbf{y}_i \mathbf{y}_j (\mathbf{\eta} \cdot \mathbf{\Phi}_{ij}(\mathbf{x}))$$

- Φ in DRFs is unbounded. In order to encourage continuity, we used Φ_{ij} = (max(T(x)) - |T_i(x) - T_j(x)|) / max(T(X))
- Pseudolikelihood used to estimate η

Support Vector Random Fields: Sequential Training Strategy

- 1. Solve for Optimal SVM Parameters (Quadratic Programming)
- 2. Convert SVM Decision Function to Posterior Probability

(Newton w/ Backtracking)

3. Compute Pseudolikelihood with SVM Posterior fixed

(Gradient Descent)

- Bottleneck for low dimensions: Quadratic Programming
- Note: Sequential Strategy removes the need for expensive CV to find appropriate L2 penalty in pseudolikelihood

Support Vector Random Fields: Inference

- 1. Classify all pixels using posterior estimated from SVM decision function
- 2. Iteratively update classification using pseudolikelihood parameters and SVM posterior (Iterated Condition Modes)

SVRF vs. AMN

- Associative Markov Network:
 - another strategy to model spatial dependencies using Max Margin approach
- Main Difference?
 - SVRF: use 'traditional' maximum margin hyperplane between classes in feature space
 - AMN: multi-class maximum margin strategy that seeks to maximize margin between best model and runner-up
- Quantitative Comparison:
 - Stay tuned...

Experiments: Synthetic

- Toy problems:
 - 5 toy problems
 - 100 training images
 - 50 test images
- 3 unbalanced data sets: Toybox, Size, M
- 2 balanced data sets: Car Objects

Experiments: Synthetic

Experiments: Synthetic

Experiments: Real Data

- Real problem:
 - Enhancing brain tumor segmentation in MRI
 - -7 Patients
 - Intensity inhomogeneity reduction done as preprocessing
 - Patient-Specific training: Training and testing are from different slices of the same patient (different areas)
 - -~40000 training pixels/patient
 - -~20000 test pixels/patient
 - 48 features/pixel

Experiment: Real problem

Experiment: Real problem

(a) Accuracy: Jaccard score TP/(TP+FP+FN)

(b) Convergence for SVRFs and DRFs

Conclusions

- Proposed SVRFs, a method to extend SVMs to model spatial dependencies within a CRF framework
- Practical technique for structured domains for d >= 2
- Did I mention kernels and sparsity?
- The end of (SVM-based) 'pixel classifiers'?
- Contact:

chihoon@cs.ualberta.ca, greiner@cs.ualberta.ca, schmidtm@cs.ualberta.ca