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Introduction 

• Classification Tasks 
– Scalar Classification: class label depends only on 

features: 
• IID data 

– Sequential Classification: class label depends on 
features and 1D structure of data: 

• strings, sequences, language 

 

– Spatial Classification: class label depends on 
features and 2D+ structure of data: 

• images, volumes, video 



Notation 

• Through this presentation, we use 

– X: an Input ( e.g. an Image with m by n  

 elements) 

– Y: a joint labeling for the elements of X 

– S: a set of nodes (pixels) 

– xi: an observation in node I 

– yi: an class label in node I 

 



Problem Formulation 

• For an instance: 

– X = {x1,….,xn} 

• Want the most likely labels: 

– Y = {y1,…,yn} 

• Optimal Labeling if data is independent: 

– Y = {y1|x1,…,yn|xn}  

(Support Vector Machine) 



• Labels in Spatial Data are NOT independent! 

 

– spatially adjacent labels are often the same 
(Markov Random Fields and Conditional Random Fields) 

 

– spatially adjacent elements that have 

similar features often receive the same 

label (Conditional Random Fields) 

 

– spatially adjacent elements that have 

different features may not have correlated 

labels (Conditional Random Fields) 



Background:  
Markov Random Fields (MRFs) 

 

• Traditional technique to model spatial dependencies in 
the labels of neighboring element 

• Typically uses a generative approach: model the joint 
probability of the features at elements X = {x1, . . . , xn} 
and their corresponding labels Y={y1, . . . , yn}: 
P(X,Y)=P(X|Y)P(Y) 

 

• Main Issue: 
– Tractably calculating the joint requires  major simplifying 

assumptions: (ie. P(X|Y) is Gaussian and factorized as i p(xi|yi), 
and P(Y) is factored using H-C theorum).  

– Factorization makes restrictive independence assumptions, 
AND does not allow modeling of complex dependencies 
between the features and the labels 



MRF vs. SVM 

 

• MRFs model dependencies between: 

– the features of an element and its label 

– the labels of adjacent elements 

 

• SVMs model dependencies between: 

– the features of an element and its label 

 



Background: 
Conditional Random Fields (CRFs) 

• A CRF 

– A discriminative alternative to the traditionally 

generative MRFs 

– Discriminative models directly model  the posterior 

probability of hidden variables given observations: 

P(Y|X) 

• No effort is required to model the prior.  

– Improve the factorized form of a MRF by relaxing 

many of its major simplifying assumptions 

– Allows the tractable modeling of complex 

dependencies 

 



MRF vs. CRF 

• MRFs model dependencies between: 

– the features of an element and its label 

– the labels of adjacent elements 

• CRFs model decencies between: 

– the features of an element and its label 

– the labels of adjacent elements 

– the labels of adjacent elements and 

their features 



Background:  
Discriminative Random Fields (DRFs) 

• DRFs are a 2D extension of 1D CRFs: 

 

 

 

• Ai models dependencies between X and the 
label at i (GLM vs. GMM in MRFs) 

• Iij models dependencies between X and the 
labels of i and j (GLM vs. counting in MRFs) 

• Simultaneous parameter estimation as convex 
optimization 

• Non-linear interactions using basis functions 
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Backgrounds: Graphical Models 

Fig. 1. A MRF. Shaded nodes 

(xi) are the observation nodes 
(pixels) and unshaded nodes 
(y i) are hidden variables  
(labels).  

Fig. 2. Graphical structure 
of a DRF, the extension of a 
CRF in the 2-dim lattice  
structure 
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• Issues 
• initialization 

• overestimation of neighborhood influence (edge degradation) 

• termination of inference algorithm (due to above problem) 

• GLM may not estimate appropriate parameters for: 
– high-dimensional feature spaces 

– highly correlated features 

– unbalanced class labels 

• Due to properties of error bounds, SVMs often estimate 
better parameters than GLMs 

• Due to the above issues, ‘stupid’ SVMs can 
outperform ‘smart’ DRFs at some spatial 
classification tasks 

 
 

Background:  
Discriminative Random Fields (DRFs) 



Support Vector Random Fields 

• We want: 

– the appealing generalization properties of 
SVMs 

– the ability to model different types of spatial 
dependencies of CRFs 

 

• Solution: 
 Support Vector Random Fields 

 



Support Vector Random Fields: 

Formulation 
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• i(X) is a function that computes features  

  from the observations X for location i,  

•O(yi, i(X)) is an SVM-based Observation-Matching potential 

•V (yi, yj ,X) is a (modified) DRF pairwise potential.  

 



Support Vector Random Fields: 

Observation-Matching Potential 
 

• SVMs decision functions produce a 
(signed) ‘distance to margin’ value, while 
CRFs require a strictly positive potential 
function 

• Used a modified* version of [Platt, 2000] to 
convert the SVM decision function output 
to a positive probability value that satisfies 
positivity 
 

• *Addresses minor numerical issues 

 



Support Vector Random Fields: 

Local-Consistency Potential 

• We adopted a DRF potential for modeling 
label-label-feature interactions: 
 V (yi, yj , x) = yiyj (η · Φ ij(x)) 

• Φ in DRFs is unbounded.  In order to 
encourage continuity, we used 
  Φij = (max(T(x)) - |Ti(x) - Tj(x)|) / max(T(X)) 

• Pseudolikelihood used to estimate η 

 

 



Support Vector Random Fields: 

Sequential Training Strategy 

1. Solve for Optimal SVM Parameters 
 (Quadratic Programming) 

2. Convert SVM Decision Function to Posterior 
Probability 

  (Newton w/ Backtracking) 

3. Compute Pseudolikelihood with SVM Posterior 
fixed 

  (Gradient Descent) 
 

• Bottleneck for low dimensions: Quadratic Programming 

• Note: Sequential Strategy removes the need for expensive CV to 
find appropriate L2 penalty in pseudolikelihood 

 



Support Vector Random Fields: 

Inference 

1. Classify all pixels using posterior 
estimated from SVM decision function 

2. Iteratively update classification using 
pseudolikelihood parameters and SVM 
posterior (Iterated Condition Modes) 

 

 



SVRF vs. AMN 

• Associative Markov Network: 

– another strategy to model spatial 

dependencies using Max Margin approach 

• Main Difference? 

– SVRF: use ‘traditional’ maximum margin 

hyperplane between classes in feature space  

– AMN: multi-class maximum margin strategy 

that seeks to maximize margin between best 

model and runner-up 

• Quantitative Comparison: 

– Stay tuned... 



Experiments: Synthetic 

• Toy problems: 

– 5 toy problems 

– 100 training images 

– 50 test images 

• 3 unbalanced data sets: Toybox, Size, M 

• 2 balanced data sets: Car Objects 

 
 

 



Experiments: Synthetic 



Experiments: Synthetic 

unbalanced 
unbalanced 

unbalanced 

balanced, few edges balanced, many edges 



Experiments: Real Data 

• Real problem: 

– Enhancing brain tumor segmentation in MRI 

– 7 Patients 

– Intensity inhomogeneity reduction done as 
preprocessing 

– Patient-Specific training: Training and testing 
are from different slices of the same patient 
(different areas) 

– ~40000 training pixels/patient 

– ~20000 test pixels/patient 

– 48 features/pixel 
 

 



Experiment: Real problem 



Experiment: Real problem 

(a) Accuracy: Jaccard score 

TP/(TP+FP+FN) 

(b) Convergence for SVRFs and DRFs 



Conclusions 

• Proposed SVRFs, a method to extend SVMs to 

model spatial dependencies within a CRF 

framework 

• Practical technique for structured domains for  

d >= 2 

• Did I mention kernels and sparsity? 

• The end of (SVM-based) ‘pixel classifiers’? 

 

• Contact: 

chihoon@cs.ualberta.ca, greiner@cs.ualberta.ca, 

schmidtm@cs.ualberta.ca 

 


