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/In troduction h
Task:
Segmenting Brain Tumorsin MR images

 I|nput: T1, Tlc, T2 iImages

Left to right:
T1,
T1 with contrast agent,
T2 image

- Output:
 Edema, Enhancing and Gross Tumor areas

Left to right:
Edema,
Enhancing,

Gross Tumor areas

M otivation:

e Want accurate segmentation

 Considered using effective classifier — SVM

 But SVM assumes dataisiid, but our imaging datais not
o adjacent voxelstypically have same labels

Goal:
\_*  Synthesize SVM-ideasinto “Random Field" classifier -
/Background \

la. Markov Random Field (MRF)
 Allowsthelabel of one pixel to depend on the labels of neighboring pixels

 Generative approach: computes P(Y [X) using the Baye srule for features of set of
pixels X ={Xy, ..., X} and labelsY={y,, ..., Y.}

P(Y 1X) < POX 1Y) P(Y) = exp| Y log( p(y, X)) + TV (¥,.¥))
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General MRF model:

e N, is neighboring pixels of i

 V(y,y;)=0 is arbitrary potential function having the same class label as neighbors
e p(Y;|%;) is modeled as Gaussian

e Shaded nodes are observed {x; }
e Unshaded nodes are unobserved labels { y; }
e Edges between nodes indicate dependences

® |ssues
 Must compute joint probability
« To be tractable, uses problematic independence assumption:

p(X' 1Y) = 11 p(x | y;)
« Cannot model complex dependencies between features and labels

1b. Discriminative Random Fields (DRF)
e Discriminative (not generative)
* Directly model P(Y|X) -- the posterior probability of labels given features
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P (Y | X ) o« exp {Zri ACY:, I(yi1yj’X)}

General CRF model:

e N. is neighboring pixels of j

o A( vi, X) is “Association” (Observation-Matching) potential
e I( yi, yj, X) is “Interaction” (Local consistency) potential

e Can use A(y;, X) to model complex dependencies between
(features of) pixel and its |abel
* Can usel(y;, y;, X) to model complex dependencies between
(features of) neighboring pixels and their labels
* In MRF: only model spatial correlation by only considering labels of
adjacent pixels
* DRF uses
v" Logistic Regression for Observation Matching potential, A(y,, X)
v" Linear function for the Local-Consistency potential, to model spatial
dependencies: 1(Y;, ¥;, X) = Yiy;v' (%X
e Conditional Random Field (CRF) isasimple 1D version of aDRF

® |ssues.
o Simultaneously learning both A(-) and (")

=>» Possible inappropriate spatial dependences modeling

« Correlated high dimensional data feature space
=>» Inappropriate parameter estimation

 Non-trivial to find agood initial labeling for inference

Challenges a DRF must address,
which are solved by
Support Vector Machines !

e Shaded nodes are observed {x; }
e Unshaded nodes are unobserved labels { y; }

e Edges between nodes indicate dependences
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2. Support Vector Machines (SVM)
o A popular tool for learning classifiers of iid data
o Creates a hyperplane h that separates the data into two classes
 Maximizing the marginy, where “margin” = distance from closest data object to the hyperplane
e Lesssensitiveto class imbalance than Logistic Regression
® |ssues:
e Uselid assumption
=>» Spatial correlation not considered
_wix+b=1
- , t‘ ® e Wx+b=0
HPPOGH VESOrS 7 Wix+b=-1  Decision function: f(x)=wx+b
‘ @ f(x) = distance from x to the hyperplane perpendicular to w
’ e \ @ Class label = sign(f(x))
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o @ Su pp‘ort vectors
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/SVRF (Support Vector Random Field)

» Extend DRF by basing A(y,, X) on SVM, not LR

e Lesssensitiveto unbalanced datathan MRF and DRF
 More efficient learning method
=» address the disadvantage of DRF s simultaneous parameter learning

P(Y IX) o e 13 1og( O(y,,x) + X V (v, ¥, X))
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1
Q¥ =1x) :1+e<p(—K><f(>§)+B) , Where K and B are estimated from training data

2 (yi/ yj /)()= yiijT T(Xilxj)
N e A linear Local-Consistency potential using 8 adjacent pixels as the neighborhood system )
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éxperiments for Brain Tumor Segmentation.

»Data Sets. 7 Patients > Patient Specific Training and Testing

» Each with one of e For each patient #i:
* grade 2 astrocytoma e Train on datafrom slices 1 and 3 of patient #

* anaplastic astrocytoma, or » Test on data from slices from 2 of patient #i
» aglioblastoma multiforme

* Pre-processed to reduce noisg, inter-slice
variations, and intensity inhomogeneity with
spatial registration
» Systems consider ed:
» Maximum Likelihood classifier (degenerate MRF) * Logistic Regression model (degenerate DRF)

* SVM (degenerate SVRF) * MRF
e DRF e SVRF
Expert Maximum
Label Likelihood MRF LR DRF SVM SVRF
)
— ¢
E ~ . g .
f]:) enhancing tumor areas
LE') » for 4 different test slices
a 2 °

»Evaluated by Jaccard score
e J= TP/(TP+FP+FN)
e true positive (TP), false positive (FP),
false negative (FN)

»Resultsin summary

» Overdl, ML<MRF<LR<DRF<SVM<SVRF
» Statistical significance (paired t-test )
 SVRF isbetter than SVM at p<4.25E-11
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Jaccard score for 3 different tumor segmentation tasks: Left to right: Enhancing, Edema, and Gross Tumor areas

Conclusions

 Remaining issue for SVRF: Efficiency (learning, inference)
» Explored algorithms for segmenting brain tumor: both i1id and with spatial correlations
« Standard Random Field algorithms often perform better than iid classifiers
* SV RF shows the best overall performance
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