Segmenting Brain Tumors with Conditional **Random Fields and Support Vector Machines**

Chi-Hoon Lee¹, Mark Schmidt¹, Albert Murtha², Aalo Bistritz², Joerg Sander¹, and Russell Greiner¹

¹Dept. of Computing Science, The University of Alberta ²Dept. of Oncology, Cross Cancer Institute, Edmonton, AB, Canada

Introduction

Task:

Segmenting Brain Tumors in MR images

Input: T1, T1c, T2 images \bullet

Left to right:

2. Support Vector Machines (SVM)

- A popular tool for learning classifiers of *iid* data
- Creates a hyperplane *h* that separates the data into two classes
 - Maximizing the margin γ , where "margin" = distance from closest data object to the hyperplane
- Less sensitive to class imbalance than Logistic Regression
 - Issues:
 - Use iid assumption

T1 with contrast agent, T2 image

- Output:

Edema, Enhancing and Gross Tumor areas

Left to right: Edema, Enhancing, Gross Tumor areas

Motivation:

- Want accurate segmentation
- Considered using effective classifier SVM
- But SVM assumes data is iid, but our imaging data is not
 - adjacent voxels typically have same labels

Goal:

Synthesize SVM-ideas into "Random Field" classifier

Background

1a. Markov Random Field (MRF)

- Allows the label of one pixel to depend on the labels of neighboring pixels
- *Generative* approach: computes P(Y|X) using the Baye's rule for features of set of pixels $X = \{x_1, \ldots, x_n\}$ and labels $Y = \{y_1, \ldots, y_n\}$

$$P(Y \mid X) \propto p(X \mid Y) p(Y) = \exp \left| \sum_{i=1}^{n} \log(p(y_i \mid x_i)) + \sum_{j \in N_i} V(y_i, y_j) \right|$$

SVRF (Support Vector Random Field)

- Extend DRF by basing $A(y_i, X)$ on SVM, not LR
- Less sensitive to unbalanced data than MRF and DRF
- More efficient learning method
 - → address the disadvantage of DRF's simultaneous parameter learning

$$P(Y | X) \propto \exp \left\{ \sum_{i=1}^{n} \log(O(y_i, x_i)) + \sum_{j \in N_i} V(y_i, y_j, X) \right\}$$

 $O(Y_i = 1, x_i) = \frac{1}{1 + \exp(-K \times f(x_i) + B)}$, where K and B are estimated from training data

$V(\gamma_{i'}, \gamma_{j'}, X) = \gamma_{i} \gamma_{j'} v^{T} \Psi(x_{i'}, x_{j'})$

• A linear Local-Consistency potential using 8 adjacent pixels as the neighborhood system

Experiments for Brain Tumor Segmentation

General MRF model:

- N_i is neighboring pixels of i
- $V(y_i, y_i) \ge 0$ is arbitrary potential function having the same class label as neighbors
- $p(y_i | x_i)$ is modeled as Gaussian

• Shaded nodes are observed {x_i } • Unshaded nodes are unobserved labels $\{ y_i \}$ • Edges between nodes indicate dependences

- Issues:
 - Must compute joint probability
 - To be tractable, uses problematic independence assumption: $p(X | Y) = \prod_{i} p(x_i | y_i)$
 - Cannot model complex dependencies between features and labels

1b. Discriminative Random Fields (DRF)

- *Discriminative* (not generative)
 - Directly model P(Y|X) -- the posterior probability of labels given features

 $P(Y | X) \propto \exp \left\{ \sum_{i=1}^{n} A(y_{i}, X) + \sum_{j \in N_{i}} I(y_{i}, y_{j}, X) \right\}$

General CRF model:

- N_i is neighboring pixels of *i*
- A(yi, X) is "Association" (Observation-Matching) potential
- *I*(*yi*, *yj*, *X*) is "Interaction" (Local consistency) potential
- Can use $A(y_i, X)$ to model complex dependencies between (features of) pixel and its label
- Can use $I(y_i, y_i, X)$ to model complex dependencies between (features of) neighboring pixels and their labels

- **Data Sets: 7** Patients
 - Each with one of
 - grade 2 astrocytoma
 - anaplastic astrocytoma, or
 - aglioblastoma multiforme

• Pre-processed to reduce noise, inter-slice variations, and intensity inhomogeneity with spatial registration

> Systems considered:

• DRF

- Maximum Likelihood classifier (degenerate MRF) Logistic Regression model (degenerate DRF)
- SVM (degenerate SVRF)

Classification results of enhancing tumor areas for 4 different test slices

• In MRF: only model spatial correlation by only considering labels of adjacent pixels

• DRF uses

✓ Logistic Regression for Observation Matching potential, $A(y_i, X)$ ✓ Linear function for the Local-Consistency potential, to model spatial

dependencies: $I(y_i, y_j, X) = y_i y_j v^T \varphi(x_i, x_j)$

• Conditional Random Field (CRF) is a simple 1D version of a DRF

- **Issues**:
 - Simultaneously learning both $A(\cdot)$ and $I(\cdot)$ → Possible inappropriate spatial dependences modeling
 - Correlated high dimensional data feature space → Inappropriate parameter estimation
- Non-trivial to find a good initial labeling for inference

Challenges a DRF must address, which are solved by Support Vector Machines !

 Shaded nodes are observed {x_i } • Unshaded nodes are unobserved labels $\{ y_i \}$ • Edges between nodes indicate dependences **Evaluated** by Jaccard score • J = TP/(TP+FP+FN)• true positive (TP), false positive (FP), false negative (FN)

► Results in summary

- > Overall, ML<MRF<LR<DRF<SVM<SVRF
- Statistical significance (paired t-test)

> Patient Specific Training and Testing

• Train on data from slices 1 and 3 of patient #i

• Test on data from slices from 2 of patient #i

• For each patient #i:

• SVRF is better than SVM at p<4.25E-11

Jaccard score for 3 different tumor segmentation tasks: Left to right: Enhancing, Edema, and Gross Tumor areas

Conclusions

- Remaining issue for SVRF: Efficiency (learning, inference)
- Explored algorithms for segmenting brain tumor: both iid and with spatial correlations
- Standard Random Field algorithms often perform better than iid classifiers
- SVRF shows the best overall performance

ALBERTA

http://www.cs.ualberta.ca/~btgp