
CPSC 340 Notation Guide

December 4, 2024

A guide to notation used in the course. Let me know if things are missing from this document that are not
obvious.

Part 1: Supervised Learning

Throughout the course, we use n as the number of training examples and d as the number of the features.
We use i when indexing a training example and j when indexing a feature.1 We use xij as feature j in
training example i, and we use yi as the label of example i (so there are n values y1, y2, . . . , yn). We use y
as a list of the n class labels, containing the label yi in position i. We use xi as the list of all features for
example i, so xi has d elements xi1, xi2, . . . , xid (and there are n lists x1, x2, . . . , xn). We use X as an
n × d matrix containing all the features, so xij is element (i, j) of X and xi gives the elements of row i of
X. We use xj to refer to all elements of column j, which is the list of values of feature j across all the n
training examples.

Throughout the course, we use t as the number of test examples, and X̃ refers to a t× d matrix containing
the test features. The notation x̃i refers to the features of test example i, whle x̃ij refers to feature j in test
example i. We use ỹ as the true labels of the test examples, and ỹi as the label of test example i. We use ŷi
as the prediction of a model on example i, whether the prediction is made on training data or validation or
test data (it should be obvious or not relevant from context).

When discussing validation sets, Xtrain and ytrain are used as the subsets that we train on, while Xvalidate

and yvalidate are used as the subsets that we validate on. We use E to denote a generic prediction error, and
usually this is followed with a subscript. For example, Etrain is the training error, Etest is the test error,
Egap is the generalization gap.

We use c as a class label, and occasionally use nc as the number of training examples in class c. We use ℓ as
the number of possible class labels. We use the letter k generically throughout the course as something we
count (typically a hyper-parameter of a model), and ϵ as a generic number that we want to be small.

Some method-specific notations used in this section:

• We use t as a particular decision stump threshold, and k as the number of thresholds.

• p(yi = “spam′′|xi) is used for the probability that the label yi takes the value “spam” given that the
features are xi.

• p(yi|xi) is used for the probability that the label is yi given that the features are xi (for example, yi
could be “spam” or “not spam” but without specifying a particular value).

• In the naive Bayes section, we’re a little sloppy in that we use the same notation for the MLE on the
training data and the true population value.

1When talking about two training examples, we sometimes use j as the index of the second training example.

1



• Naive Bayes uses ncjk as the number of times that feature j is equal to k and the class label is c.

• Naive Bayes uses p(hello|spam) as short for p(xij = “hello” | yi = “spam”).

• Decision theory slides use cost(ŷi, ỹi) as the cost of prediction ŷi when the true label is ỹi.

• In the norm slides we use r as a generic vector.

• We use ∥r∥2 as the L2-norm (square root of sum of squared the elements in the vector), ∥r∥1 as the
L1-norm (sum of absolute values), and ∥r∥∞ as the L∞-norm (max of absolute values). If the number
is omitted, as in ∥w∥, it refers to the L2-norm.

• For ensemble methods we use m as the number of models.

Part 2: Unsupervised Learning

We use ŷi as the cluster predicted for example i and ŷ as the set of predicted clusters for all n training
examples. We use C as the set of indices of examples assigned to cluster c.

We use W as a k by d matrix where row c contains mean c. We use wc as mean c, wŷi to refer to the mean
of the cluster of example i, and wcj to refer to feature j in mean c. We use wj as column j of the matrix

W . We use X̂ as predicted values of the matrix X, and similarly x̂i are predicted values of xi and x̂ij are
predicted values of xij .

We use µ as the mean of the data (with µj being the mean for feature j if we have more than one feature)
and σ as the standard deviation (with σj being the standard deviation for feature j if we have more than
one feature).

Part 3: Linear models

In this section we start treating xi and yi as vectors (instead of lists), so we now have to be careful about
whether vectors are row-vectors or column-vectors. Our default choice is that everything is a column-vector,
so each xi is a d× 1 vector and y is an n× 1 vector. Since xi is now a column-vector, we need to be careful
to define row i of X as xT

i (instead of just xi).

We use w as the d× 1 vector of regression weights. We normally index into w using wj . We sometimes add
a y-intercept (“bias”) variable and use w0 to denote this variable (in some settings later in the course β is
used instead of w0).

We use ∇f(w) to denote the gradient of a function f with respect to w. Assuming w has length d, this is a
d× 1 vector where position j contains the partial derivative of f with respect to wj . We use r as the vector
of “residuals”, r = Xw − y. An individual element i of r would be ri = wTxi − yi.

Gradient descent uses wt as the parameter vector on iteration t (so t has a separate meaning than “number
of test examples” here). The distinction between wt (iteration t of gradient descent) and wj (column j of
matrix W ) should be clear from the context. We use αt as the step size on iteration t. We use w∗ as a
minimum of f(w). Stochastic gradient uses fi to refer to the loss function on example i.

We use Z as an n× k matrix of features obtained under a change of basis, and zi as the list of k features in
the new basis for example i. When we do linear regression under a change of basis, we use v as the k × 1
vector of parameters (instead of the usual d× 1 vector w). We use Z̃ as the transformation of test data X̃.

We use λ as the (scalar) regularization parameter. It is assumed to be non-negative (and will almost always
be positive).

2



We use sign(α) as a function that return +1 if α is positive and −1 if α is negative. We use oi as the
continuous prediction made on example i by binary classification models like logistic regression and SVM,
so the final classification is given by sign(oi).

Multi-class classification uses the same matrix W as we used for k-means, and we use wyi as the wc value for
the true label yi. We use oic for the continuous prediction of class c for example i, so the final classification
on example i is given by argmax c{oic}.

We use h(r) as the sigmoid function applied element-wise to a vector r.

Some method-specific notation used in this section:

• p is used as the degree of the polynomial in the polynomial basis, and we sometimes use Zp when we
want to specify specifically that we’ve used a degree-p basis.

• When we introduce convolutions we use x as signal, w as a filter, and z as the output of the filter.

• We use K as the n× n Gram matrix, containin zTi zj in position (i, j). We use K̃ as the t× n matrix
containing z̃Ti zj in position (i, j). We use u as the n× 1 parameter vector when doing kernel methods
for lienar models.The kernel function is written as k(xi, xj).

• When introducing MLE/MAP, we use D as generic data (indexed by Di if it splits into IID training
examples), w as generic parameters, and ŵ as the predicted MLE or MAP value of w.

Part 4: Latent-Factor Models

Linear latent-factor models use the approximation X ≈ ZW , where we use the same notation for Z and W
as above: Z is n× k with zTi as the rows and zic as individual elements, W is k× d with wT

c as the rows and
wj as the columns and wcj as the individual elements. To avoid expressions like (wj)T zi, for inner products
in this section we sometimes use notation ⟨w, x⟩ to represent the inner product wTx. We use ∥X∥F as the
Frobenius norm (square root of sum of elements squared).

Part 5: Neural Networks

This section continues using the same notation, but we now use W (2) and Z(2) as the values in layer 2.
We also use wc0 as the bias on hidden unit c, p as the index of a specific layer, m as the number of layers,
and T as the length of a sequence (in RNNs/transformers). We typically use h as the non-linear transform
function, and ai as the activations after the non-linear transform (so we could for example have ai = h(zi)).

3


