CPSC 540 Notes on Norms

Mark Schmidt

January 18, 2019

1 General Norms

In class we've used the ℓ_2 -norm and the ℓ_1 -norm as a measure of the length of a vector, and the concept of a norm generalizes this idea. In particular, we say that a function f is a *norm* if it satisfies the following three properties:

1	f(x) = 0 implies $x = 0$	(separate points)
2	$f(\alpha x) = \alpha f(x)$, for scalar α	(absolute homogeneity)
3	$f(x+y) \le f(x) + f(y)$	(triangle inequality)

An important implication of these properties are that norms are non-negative,

$$f(x) \ge 0,$$

and norms are convex. All possible norms are said to be *equivalent*, in that sense that if f and g are norms then there exist constants β_1 and β_2 such that

$$\beta_1 f(x) \le g(x) \le \beta_2 f(x).$$

2 General ℓ_p -norms

The most important class of norms on vectors are the ℓ_p -norms, defined by

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p},$$

for some $p \ge 1$. The three most important special cases are the ℓ_1 -norm, ℓ_2 -norm, and ℓ_{∞} norm,

$$||x||_1 = \sum_{i=1}^d |x_i|, \quad ||x||_2 = \sqrt{\sum_{i=1}^d x_i^2}, \quad ||x||_\infty = \max_i \{|x_i|\}.$$

We recognize the ℓ_2 -norm as the standard straight-line distance in Euclidean-space, and it is often simply denoted ||x||. The constants that relate these norms are

$$\begin{aligned} \|x\|_{\infty} &\leq \|x\|_{1} \leq d\|x\|_{\infty} \\ \|x\|_{\infty} \leq \|x\|_{2} \leq \sqrt{d}\|x\|_{\infty} \\ \|x\|_{2} \leq \|x\|_{1} \leq \sqrt{d}\|x\|_{2}. \end{aligned}$$

Some works use p < 1 (e.g., as a regularizer that encourages a higher degree of sparsity than the ℓ_1 -norm), but this does not satisfy the properties of a norm (e.g., $||x||_p$ for p < 1 is not convex). Some works also define the zero 'norm' to be the number of non-zero elements, $||x||_0 = \sum_{i=1}^d I(x_i \neq 0)$, and again this is not an actual norm.

Another generalization of the Euclidean norm is the set of quadratic norms. Given any positive-definite matrix H, quadratic norms are defined by

$$||x||_H = \sqrt{x^T H x}.$$

3 Cauchy-Schwartz and Hölder Inequalities, Dual Norm

The Cauchy-Schwartz inequality bounds inner products by the product of Euclidean norms,

$$\sum_{i=1}^{d} |x_i| \cdot |y_i| \le ||x|| \cdot ||y||,$$

which implies

$$x^T y \le \|x\| \|y\|,$$

and (according to Wikipedia) is one of the most important inequalities in mathematics. A generalization is Hölder's inequality,

$$\sum_{i=1}^{d} |x_i| \cdot |y_i| \le ||x||_p \cdot ||y||_q,$$

where

$$\frac{1}{p} + \frac{1}{q} = 1$$

Cauchy-Schwartz is the special case where p = q = 2, but we could also have p = 1 and $q = \infty$. The norm $\|\cdot\|_q$ is said to be the *dual norm* of $\|\cdot\|_p$. The general definition of the dual norm $\|\cdot\|_*$ for a general norm $\|\cdot\|$ is

$$||y||_* = \sup_{x} \{y^T x \mid ||x|| \le 1\}.$$

4 Matrix Norms

Above we define norms on vectors, but we can also define norms on matrices. In this case we say a function f on matrices is a *norm* if it satisfies the same three properties:

 $\begin{array}{ll} 1 & f(X) = 0 \text{ implies } X = 0 & (\text{separate points}) \\ 2 & f(\alpha X) = |\alpha| f(X), \text{ for scalar } \alpha & (\text{absolute homogeneity}) \\ 3 & f(X+Y) \leq f(X) + f(Y) & (\text{triangle inequality}) \end{array}$

Two important classes of norms are "entry-wise" matrix norms and "induced" matrix norms. Entry-wise matrix norms treat all of the elements of the matrix as one big vector, and apply a vector norm. For example, if we use the L2-norm of elements of the elements in a matrix we obtain

$$\|X\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d x_{ij}^2},$$

which is called the Frobenius norm. The induced matrix norm, with respect to a paritcular vector norm, measures how multiplying by the matrix can change a vector's norm. For p-norms we define the induced matrix norm by

$$||X||_p = \sup\left\{\frac{||Xw||_p}{||w||_p}\right\}.$$

In the case of the vector L2-norm, the induced matrix norm is the maximum singular value of X,

$$||X||_2 = \sigma_1(X).$$