
EM for Semi-Supervised Learning and Mixture Models

Mark Schmidt

February 4, 2021

This document goes over how to apply EM in a semi-supervised learning and a mixture model context.

1 Generic Algorithm

We have observed variables O, discrete hidden variables H, and parameters Θ. We want to do maximum
likelihood given our observed variables

max
Θ

p(O|Θ) =
∑
H

p(O,H|Θ).

A common approach is the expectation maximization (EM) algorithm, which uses iterations of the form

Θk+1 = argmax
Θ

Q(Θ|Θk),

where
Q(Θ|Θk) = EH|O,Θk [log p(O,H|Θ)] =

∑
H

p(H|O,Θk) log p(O,H|Θ).

The algorithm is most suitable when log p(O,H|Θ) has a “nice” form.

2 Semi-Supervised Learning

Consider the semi-supervised supervised learning scenario where we have labeled data (X, y) as well as
unlabeled data X̃ (and all examples are IID). We’ll assume that y only contains binary (0 or 1) values, but
the below extends in a straightforward way to the case where we have more than two classes. We’re going to
consider using a generative classifier that models the joint probability p(xi, yi) of features xi and labels yi.

In this setting, the “complete-data” likelihood (where we assume that we know the labels ỹ) is

p(X, y, X̃, ỹ) =

(
n∏

i=1

p(xi, yi)

)(
t∏

i=1

p(x̃i, ỹi)

)
,

but since we don’t actually have the ỹi values we’ll apply the EM algorithm.

1

2.1 Expectation Maximization Algorithm

If we want to optimize parameters Θ using the EM algorithm, the expected complete-data log-likelihood
which can be written as

Q(Θ|Θk) = Eỹ|X,y,X̃,Θk [log p(X, y, X̃, ỹ|Θ)]

=
∑
ỹ

p(ỹ|X, y, X̃,Θk) log p(X, y, X̃, ỹ|Θ)

=
∑
ỹ

p(ỹ|X, y, X̃,Θk)

[
n∑

i=1

log p(yi, xi|Θ) +

t∑
i=1

log p(ỹi, x̃i|Θ)

]

=

n∑
i=1

log p(yi, xi|Θ)
∑
ỹ

p(ỹ|X, y, X̃,Θk)︸ ︷︷ ︸
=1

+

t∑
i=1

∑
ỹ

p(ỹ|X, y, X̃,Θk) log p(ỹi, x̃i|Θ)

=

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹ

 t∏
j=1

p(ỹj |X, y, X̃,Θk)

 log p(ỹi, x̃i|Θ)

=

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹ

 t∏
j=1

p(ỹj |x̃j ,Θk)

 log p(ỹi, x̃i|Θ) (∗)

=

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt−1∈{0,1}

∑
ỹt∈{0,1}

 t∏
j=1

p(ỹj |x̃j ,Θk)

 log p(ỹi, x̃i|Θ)

=

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹi∈{0,1}

p(ỹi|x̃i,Θk) log p(ỹi, x̃i|Θ)
∑
ỹ1

p(ỹ1|x̃1,Θk)
∑
ỹ2

p(ỹ2|x̃2,Θk) · · ·
∑
ỹt

p(ỹt|x̃t,Θk)

︸ ︷︷ ︸
=1︸ ︷︷ ︸

=1︸ ︷︷ ︸
=1

=

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹi∈{0,1}

p(ỹi|x̃i,Θk) log p(ỹi, x̃i|Θ)

=

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹi∈{0,1}

riỹi log p(ỹi, x̃i|Θ). (∗∗)

Although the above looks complicated, the only three things we have used are the distributive law (
∑

i abi =
a
∑

i bi), that conditional probabilities sum to 1, and in (∗) that ỹj is conditionally independent of the other
examples given x̃j and Θk. In the last line we’ve defined

ri0 = p(ỹi = 0|x̃i,Θk), ri1 = p(ỹi = 1|x̃i,Θk),

which are our current estimates for the probabilities of each of the labels in the unlabeled examples. Typically,
we’ll compute these quantities by normalizing the joint probability, which for ri0 would give:

ri0 = p(ỹi = 0|x̃i,Θk) =
p(ỹi, x̃i|Θk)∑

y∈{0,1} p(y, x̃
i|Θk)

.

Thus, in the end the EM algorithm for semi-supervised learning alternates between two simple steps:

2

1. E-step: Compute probabilities ri0 and ri1 for all the unlabeled examples i based on the current Θk.

2. M-step: Maximize the expected complete-data log-likelihood (**), which is a weighted version of the
complete-data log-likelihood.

2.2 Multi-Class and Class-Probability Estimates

Following the argument above, the EM algorithm with k classes is given by

Θk+1 = argmax
Θ

n∑
i=1

log p(yi, xi|Θ) +

t∑
i=1

∑
ỹi∈{1,2,...,k}

riỹi log p(ỹi, x̃i|Θ),

where ric is defined as above.

We often use the product rule to write the joint probability of an xi and yi as

p(yi, xi|Θ) = p(xi|yi,Θ)p(yi|Θ).

Many supervised learning algorithms differ only in how they address the class-conditional density estimation
problem of modelling p(xi|yi,Θ). Naive Bayes assumes that the xij are conditionally independent given yi,
while Gaussian discriminant analysis assumes that this is a Gaussian distribution. Regardless of the choice
of density estimator, updating the Θ associated with p(xi|yi,Θ) in the semi-supervised case will take the
form a weighted version of the problem we solve in the supervised case.

On the other hand, estimating the parameters of p(yi|Θ) is typically easy. If we assume a categorical
distribution for yi then the solution to the EM update is given by

πk+1
c =

nc +
∑t

i=1 r
i
c

n+ t
,

where nc is the number of instances of class c in the labeled data. This result is intuitive: we count the
number of times we saw c (as in the fully observed case), plus the probability that we associate with class c
on the unlabeled examples. (This result can be shown by using Lagrange multipliers to enforce the constraint
on the update that

∑
c π

k+1
c = 1.)

2.3 Efficient Calculation of Observed-Data Log-Likelihood

The “observed-data” likelihood that EM is trying to maximize is given by

p(X, y, X̃) =
∑
ỹ

(
n∏

i=1

p(xi, yi)

)(
t∏

i=1

p(x̃i, ỹi)

)

=
∑

ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt∈{0,1}

(
n∏

i=1

p(xi, yi)

)(
t∏

i=1

p(x̃i, ỹi)

)
.

where we’ve used
∑

ỹ to denote the sum over all 2t possible values of the ỹ vector. Technically, we don’t need
to be able to compute the observed-data log-likelihood to apply the EM algorithm: we could just run the EM
algorithm knowing that it will increase the observed-data log-likelihood on each iteration. But computing
the observed-data log-likelihood can useful for debugging an implementation, for diagnosing convergence of
EM, or as a direct target of optimization if we don’t like EM.

Even though the observed-data likelihood seems intractable to compute because it sums over 2t terms, the
independence between examples makes it easy to compute. In particular, the observed-data likelihood can

3

be written

p(X, y, X̃) =
∑

ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt∈{0,1}

(
n∏

i=1

p(xi, yi)

)(
t∏

i=1

p(x̃i, ỹi)

)

=

(
n∏

i=1

p(xi, yi)

)
︸ ︷︷ ︸

labeled

∑
ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt∈{0,1}

(
t∏

i=1

p(x̃i, ỹi)

)
︸ ︷︷ ︸

unlabeled

=

(
n∏

i=1

p(xi, yi)

) t∏
i=1

 ∑
yi∈{0,1}

p(x̃i, ỹi)

 (∗ ∗ ∗)

In the second line we use that the observed examples (xi, yi) do not depend on any ỹi so we can take the
factor outside the sum (in other words, we are again using that

∑
i abi = a

∑
i bi). The third line is based

on the same idea, but uses independence to “factorize” the sum. We’ll see arguments like this several times
when we discuss graphical models, so it’s worth going over it in detail. In particular, in the third line the
logic is that

∑
ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt−1∈{0,1}

∑
ỹt∈{0,1}

(
t∏

i=1

p(x̃i, ỹi)

)
=

∑
ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt−1∈{0,1}

∑
ỹt∈{0,1}

(
t−1∏
i=1

p(x̃i, ỹi)

)
p(x̃t, ỹt)

=
∑

ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt−1∈{0,1}

(
t−1∏
i=1

p(x̃i, ỹi)

) ∑
ỹt∈{0,1}

p(x̃t, ỹt)

=

 ∑
ỹt∈{0,1}

p(x̃t, ỹt)

 ∑
ỹ1∈{0,1}

∑
ỹ2∈{0,1}

· · ·
∑

ỹt−1∈{0,1}

(
t−1∏
i=1

p(x̃i, ỹi)

)

=

 ∑
ỹt∈{0,1}

p(x̃t, ỹt)

 ∑
ỹt−1∈{0,1}

p(x̃t−1, ỹt−1)

 · · ·
 ∑

ỹ1∈{0,1}

p(x̃1, ỹ1)


=

t∏
i=1

 ∑
yi∈{0,1}

p(x̃i, ỹi)

 .
The first line just takes the last term outside of the product. In the second line we take the terms not
depending on ỹt outside the sum over ỹt. This is the same as before, but we are now still left with the
remaining term p(x̃t, ỹt). In the third line we treat the sum over p(x̃t, ỹt) as a constant that does not depend
on the sums over the other ỹi, so we can take it out of all the other sums. The fourth line comes from
repeating the first three lines for (t− 1), then (t− 2), and so on until we only have the sum over ỹ1 left. The
last line writes this in product notation which gives the result (∗ ∗ ∗). Thus, even though this is a sum over
2t terms, each containing a product over j terms, we only need to compute the product of j numbers that are
each a sum over only 2 terms. This trick is a simple form of what is known as dynamic programming.

The expression (∗ ∗ ∗) lets us write the observed log-likelihood as

log p(X, y, X̃) =

n∑
i=1

log p(yi, xi) +

t∑
i=1

log

 ∑
ỹi∈{0,1}

p(ỹi, x̃i)

 .

which is easy to compute but non-convex.

4

3 Mixture Models

The most common usage of the EM algorithm is for fitting Gaussian mixture models. A mixture model
assumes that probability of xi is given by

p(xi) =

k∑
c=1

p(xi, zi = c)

=

k∑
c=1

p(zi = c)p(xi|zi = c).

We can view the values c as a set of k clusters of the data, while zi is the cluster membership of xi. One way
to intrepret this formula is is that we first generate the cluster zi according to p(zi), and then given zi we
sample the data point xi from p(xi|zi). Typically, p(xi|zi) has a simple form like a Gaussian distribution, so
it would be easy to fit the model if we knew the zi values. But, we don’t actually know the zi values. This
is where EM fits in: if we treat the zi as hidden values, then the EM iterations typically have a simple form.

3.1 General Mixture Models

Before specifically talking about the Gaussian case, let’s first look at the case of a general mixture model.
First, since the samples are IID the complete-data log-likelihood with parameters Θ is given by

log p(X, z|Θ) =

n∑
i=1

log p(xi, zi|Θ).

Following the same steps as the semi-supervised case, we can write the Q function in the EM algorithm in
the form

Q(Θ|Θk) = Ez|X,Θ[log p(X, z|Θ)]

=
∑
z

p(z|X,Θk) log p(X, z|Θ)

=
∑
z

p(z|X,Θk)

n∑
i=1

log p(xi, zi|Θ)

=

n∑
i=1

∑
z

p(z|X,Θk) log p(xi, zi|Θ)

=

n∑
i=1

∑
z

 n∏
j=1

p(zi|xi,Θk)

 log p(xi, zi|Θ)

=

n∑
i=1

 k∑
z1=1

k∑
z2=1

· · ·
k∑

zn=1

 n∏
j=1

p(zi|xi,Θk)

 log p(xi, zi|Θ)

=

n∑
i=1

k∑
zi=1

p(zi|xi,Θk) log p(xi, zi|Θ) :)

=

n∑
i=1

k∑
zi=1

rizi log p(xi, zi|Θ)

=

n∑
i=1

k∑
zi=1

rizi log p(zi|Θ) +

n∑
i=1

k∑
zi=1

rizi log p(xi|zi,Θ).

5

where we’ve introduced the “responsibilities” rizi = p(zi|xi,Θk) and where :) uses the earlier logic that the
sum over the kn products turns into a simple sum over k values by using that the terms are independent and
probabilities sum to 1. We can compute the responsibility of cluster c for example i given the old parameters
Θk using

ric = p(zi = c|xi,Θk) =
p(zi = c, xi|Θk)∑k

c′=1 p(z
i = c′, xi|Θk)

.

If we assume that zi follows a categorical distribution with parameters {θ1, θ2, . . . , θk}, then the minimizer
of this expression in terms of a generic θc is given by

θc =

∑n
i=1 r

i
c

n
.

This follows from the definition of the categorical distribution and introducing Lagrange multipliers to enforce
the constraints that

∑
c θc = 1. Note that this is always the update for θc, as long as we make the (very

realistic) assumption that p(xi|zi,Θ) is not a function of any θc.

3.2 Gaussian Mixture Models

We obtain a mixture of Gaussians in the case that each p(xi|zi,Θ) is a Gaussian distribution. Although it’s
straightforward to use other parameterizations, if we assume that each cluster c has its own mean µc and
full covariance Σc, then we have

log p(xi|zi = c,Θ) =
1

2
(xi − µc)

T Σ−1
c (xi − µc) +

1

2
log |Σc|+ const.

This implies that

Q(Θ|Θk) =

n∑
i=1

k∑
z′=1

rizi log p(zi|θzi) +

n∑
i=1

k∑
zi=1

rizi

(
1

2
(xi − µzi)T Σ−1

zi (xi − µzi) +
1

2
log |Σzi |

)
+ const.

The update for θc is given in the previous section. Taking the derivative with respect to µc and setting it
equal to zero we get

0 =

n∑
i=1

−ricΣ−1
c (xi − µc),

or equivalently that

Σ−1
c µc

n∑
i=1

ric = Σ−1
c

n∑
i=1

ricx
i.

Pre-multiplying by Σc and solving for µc gives

µc =

∑n
i=1 r

i
cx

i∑n
i=1 r

i
c

=

∑n
i=1 r

i
cx

i

nθc
,

which is the mean of the points that have been partially assigned to cluster c. Following a similar argument,
we get that the covariance is given by

Σc =

∑n
i=1 r

i
c(x

i − µc)(x
i − µc)

T

nθc
.

6

