DSCI 573: Model Selection and Feature Selection

Structure Learning Winter 2018

Structure Learning: Unsupervised Feature Selection

• "News" data: presence of 100 words in 16k newsgroup posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

- Which words are related to each other?
- Problem of structure learning: unsupervised feature selection.

Structure Learning: Unsupervised Feature Selection

Naïve Approach: Association Networks

- A naïve approach to structure learning ("association networks"):
 - For each pair of variables, compute a measure of similarity or dependence.
- Using these n² similarity values either:
 - Select all pairs whose similarity is above a threshold.
 - Select the "top k" most similar features to each feature 'j'.
- Main problems:
 - Usually, most variables are dependent (too many edges).
 - "Sick" is getting connected to "Tuesdays" even if "tacos" are a variable.
 - "True" neighbours may not have the highest dependence.
 - "Sick" might get connected to "Tuesdays" before it gets connected to "milk".
- (Variation: best tree can be found as minimum spanning tree problem.)

Example: Vancouver Rain Data

• Consider modeling the "Vancouver rain" dataset.

• •	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	•••
Month (0	0	0	1	1	0	0	1	1	
Month 2	1	0	0	0	0	0	1	0	0	
Month 3	1	1	1	1	1	1	1	1	1	
Munth 4	1	1	1	1	0	0	1	1	1	
Months	0	0	0	0	1	1	0	0	0	
Month 6	0	1	1	0	0	0	0	1	1	

- The strongest signal in the data is the simple relationship:
 - If it rained yesterday, it's likely to rain today (> 50% chance that $x^{t-1} = x^t$).
 - But an "association network" might connect all days (all dependent).

Dependency Networks

- A better approach is dependency networks:
 - For each variable 'j', make it the target in a supervised learning problem.

- Forward selection, L1-regularization, ensemble methods, etc.
- Can capture conditional independence:
 - Might connect "sick" to "tacos", and "tacos" to "Tuesdays" (w/o sick-tacos).

Dependency Networks

• Dependency network fit to Vancouver rain data (different λ values):

Dependency Networks

• Variation on dependency networks on digit image pixels:

Summary

- Structure learning is "unsupervised" feature selection.
- Association networks make graph by finding similar features.
- Dependency networks use feature selection with feature 'j' as 'y'.