
DSCI 575:
Advanced Machine Learning

Sequence Mining

Winter 2017

Sequence Mining

• Finding patterns in data organized according to a sequence:
– Customer purchases:

• ‘Star Wars’ followed by ‘Empire Strikes Back’ followed by ‘Return of the Jedi’.

– Stocks/bonds/markets:
• Stocks going up followed by bonds going down.

– Environmental:
• CO2 going up is followed by temperatures going up.

– Website/telephone system navigation.

– Biological sequences.
• DNA: ATGCTTCGGCAAGACTCAAAAAATA…

• RNA: ATGCUUCGGCAAGACUCAAAAAAUA…

• Protein: GIVEQCCTSICSLYQLENYCN

Sequential Pattern Analysis

• In data mining, called sequential pattern analysis:

– If you buy product A, are you likely to buy product B at a later time?

• Similar to association rules, but now order matters.

– Many issues stay the same.

• Exist sequential generalization of association rule methods:

– Generalized sequential pattern (GSP) algorithm is like a priori algorithm.

• We’re going to instead focus on methods from bioinformatics…

Biological Sequences

• We are generated huge quantities of biological data.

• Much of it is stored as sequences.

– DNA, RNA, and proteins.

http://trenchesofdiscovery.blogspot.ca/2012/09/the-human-machine-coding-and-uncoding.html
https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology

Whole Genome Sequencing

• First single-celled organisms’ genomes sequenced in late 90s.

• Many animals/plants in early 2000s.

• Human genome project finished in 2003.

• Late 2000s and 2010s:
– Characterizing variation and function.

– HapMap, ENCODE, 1000 genomes, 23andMe.

– Potential to study infrequent variations.

– New insights into rare diseases.

– Promise of personalized medicine.

• Way more data than understanding:
– One of most important scientific problems.

http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html

• Bioinformatics: biology and databases and data analysis.

– It’s a huge area, with many interesting variations on DM/ML methods.

• Big focus on analyzing sequences.

– We’ll discuss some of the classic ideas today.

• But sequences aren’t everything:

– How do molecules ‘fold’ in three-dimensions?

– Which molecules can ‘fit’ together?

– What genes perform similar functions?

– How do molecule concentrations affect each other?

– What are signaling ‘pathways’?

Bioinformatics

https://en.wikipedia.org/wiki/Bioinformatics

Finding/Testing Similar Sequences

• A classic bioinformatics problem:

– You find an interesting part of a biological sequence.

• E.g., this gene makes your mice live much longer or immune to a disease.

– Do similar sequences appear elsewhere?

• Either in the same organism, or in other organisms.

• Want to test relatedness of sequences and find related sequences.

– Heavy use of dynamic programming.

– Other tricks to handle huge datasets.

• We’ll start from simplest case, and get more complicated.

String Search

• Simplest variant is string search:

– We have a sequence of length ‘n’

– We have a query of length ‘m’.

– Does query occur in sequence?

• Example:

– Sequence: “GIVEQCCTSICSLYQLENYCN” (insulin).

– Query: “TSI”.

• Naïve algorithm:

– For each of ‘n’ positions, test whether the string starts there.

– Cost is O(nm).

• Several algorithms reduce this to O(n + m) (e.g., Knurth-Morris-Pratt).

Longest Common Substring

• What if we have multiple queries for same sequence?

– Sequence: “GIVEQCCTSICSLYQLENYCN”.

– Queries: “TSI”, “CCT”, “CST” (diabetes).

– With ‘k’ queries of length <= 3, cost is O(n + km) with suffix trees.

• A related problem is longest common substring:

– Sequence 1: “GIVEQCCTSICSLYQLENYCN” (human).

– Sequence 2: “GIVEQCCASVCSLYQLENYCN” (cow).

– What is longest string that occurs in both sequences?

• In this case it’s “CSLYQLENYCN”.

• Suffix trees solve this problem in O(n + m).

(pause)

Longest Common Substring vs. Subsequence

• Consider human/pig/cow insulin:

– Sequence 1: “GIVEQCCTSICSLYQLENYCN” (human).

– Sequence 2: “GIVEQCCASVCSLYQLENYCN” (cow).

– Sequence 3: “GIVEQCCTSICSLYQLENYCN” (pig).

• Longest substring between human/pig is 22 (entire sequence).

• Longest substring between human/cow is 11: “CSLYQLENYCN”.

– But have we really cut the similarity in half?

• Longest common subsequence:

– Longest exact match by deleting characters.

– For human/cow it’s 20: “GIVEQCCSCSLYQLENYCN” (still 22 for human/pig).

Longest Common Subsequence

• Longest common subsequence (LCS):

– Sequence 1: “GIVEQCCTSICSLYQLENYCN” (human).

– Sequence 2: “GIVEQCCASVCSLYQLENYCN” (cow).

– LCS: “GIVEQCC[]S[]CSLYQLENYCN”.

• Basis of most ‘diff’ commands (and version control like git).

• Finding LCS by brute force:

– 2n possible deletions in sequence 1.

– 2m possible deletions in sequence 2.

– O(min(n,m)2n+m).

• Can we do better?

Longest Common Subsequence

• Suppose we have the LCS for two sequences:
– Sequence 1: “ACE”.

– Sequence 2:“ABCD”.

– LCS: “AC”.

• Key idea: it’s easy to update LCS if we append one character.
– Updated sequence 2: “ABCDE”.

– New LCS: “ACE”.

– Either the new character extends LCS or not: compute this in O(m).

• O(mn)-time Algorithm:
1. Start with all of sequence 1 and empty sequence 2 (LCS = []).

2. Sequentially append sequence 2 to sequence 2, tracking LCS.

Dynamic Programming

• LCS algorithm is special case of dynamic programming.

• Dynamic programming efficiency requires two ingredients:

1. Optimal substructure:

• Can efficiently solve the problem given solutions to ‘sub-problems’ (i.e. recursion).

• For LCS: we can quickly solve problem of length ‘m’ given solution of length (m-1).

2. Overlapping sub-problems:

• Limited number of *different* possible sub-problems.

• For LCS: there are only O(mn) possible lengths for the two strings.

• Key trick: store solutions of sub-problems, instead re-computing.

– Guarantees each sub-problem is solved at most once.

LCS with Dynamic Programming

• Let’s define the LCS recursively:

• Exponential number of recursive calls in naïve method:

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

LCS with Dynamic Programming

• Let’s define the LCS recursively:

• O(mn) recursive calls with dynamic programming method:

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

Edit Distance

• LCS considers deletions of elements.

• We might also consider replacements:

– Sequence 1: “GIVEQCCTSICSLYQLENYCN”.

– Sequence 2: “GIVEQCCASVCSLYQLENYCN”.

– Where different replacements have different ‘costs’.

• Some proteins can be substituted and molecule will be similar, some are disastrous.

• Edit distance:

– Min ‘cost’ of turning string 1 into 2 via additions/deletions/replacements.

– Can also be computed by dynamic programming:

• Minimize over the 3 operations.

Edit Distance

• Edit distance between strings ‘X’ and ‘Y’ is ED(Xm,Yn) where is min of:

• Cost is still O(mn), and if costs are non-negative this is a distance.

(pause)

Local Edit Distance / Local Alignment

• Local alignment (Smith-Waterman):

– Positive ‘score’ for matches, negative ‘score’ for add/delete/replace.

– Set negative ‘dij’ values to zero, and maximize dij over ‘i’ and ‘j’.

• Note that in bioinformatics you maximize ‘score’ rather than minimize ‘distance’.

– Finds substrings with small edit distance:

http://2012.igem.org/Team:Johns_Hopkins-Software/Cloud

BLAST

• Basic Local Alignment Search Tool (BLAST):
– A method for searching biological sequences.

– Most cited paper in 1990s of all of science.

• Setup:
– We have a huge database of sequences.

– Individual sequences may be very long (human genome: ~3.2 billion).

– Quickly find similar sequences to a query sequence.

• Key ideas:
– Find interesting and short substrings in query.

– Fast phase: Find ‘candidates’ that contain any substring.

– Slow phase: apply dynamic programming on the ‘candidates’.

– Some other tricks to make it faster.

BLAST

• BLAST:

• Disadvantage:
– You could have false negatives in the first phase (you miss distantly-related sequences).

• PSI-BLAST:
– Re-run with related sequences to find more distantly-related sequences.

• Related to hashing tricks for finding elements of a set:
– Bloom filter: guaranteed to have no false negatives.
– Count-min sketch: more recent probabilistic/online method.

Generalizations of Edit Distance

• We can have score based on insertion/deletion length (‘gap score’)

• Other common mutations:

– Reversal:

– Transposition:

– In general, we can’t handle these efficiently: sub-problems don’t overlap.

• But some special cases exist:

– If reversals are ‘contained’ in each other, solve as ‘context-free grammar’.

Multiple Sequence Alignment

• Multiple Sequence Alignment:

– We have several sequences and want to jointly align them:

– Dynamic programming is exponential in number of sequences.
https://en.wikipedia.org/wiki/Multiple_sequence_alignment

Multiple Sequence Alignment and Clustering

• Heuristic to avoid exponential cost of multiple sequence alignment:

– First perform hierarchical clustering.

• Clustering coud be interesting on its own.

– Align sequences as we go up the tree.

• Popular method is Clustal:

– 3 of top 15 all-time most-cited science papers:

• BLAST, PSI-BLAST, Clustal.

http://figshare.com/articles/_Multiple_sequence_alignment_and_phylogenetic_tree_of_the_OVATE_domains_of_OFP_proteins_from_rice_Arabidopsis_and_tomato_/1333022

Summary

• Sequence data arises in applications involving time/strings.

– Common substrings can be found in linear time.

– Edit distance can be found efficiently using dynamic programming.

– BLAST combines the above two with other tricks.

• Multiple sequence alignment considers multiple sequences.

