DSCI 575: Advanced Machine Learning

Sequence Mining Winter 2017

Sequence Mining

- Finding patterns in data organized according to a sequence:
 - Customer purchases:
 - 'Star Wars' followed by 'Empire Strikes Back' followed by 'Return of the Jedi'.
 - Stocks/bonds/markets:
 - Stocks going up followed by bonds going down.
 - Environmental:
 - CO₂ going up is followed by temperatures going up.
 - Website/telephone system navigation.
 - Biological sequences.
 - DNA: ATGCTTCGGCAAGACTCAAAAAATA...
 - RNA: ATGCUUCGGCAAGACUCAAAAAUA...
 - Protein: GIVEQCCTSICSLYQLENYCN

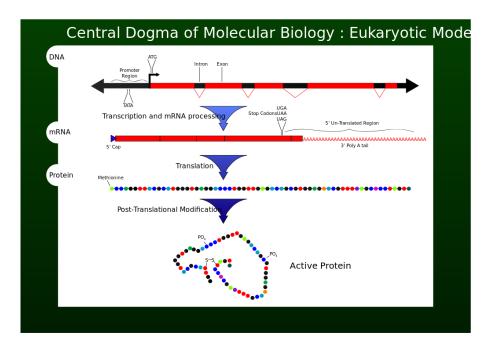
Sequential Pattern Analysis

- In data mining, called sequential pattern analysis:
 - If you buy product A, are you likely to buy product B at a later time?
- Similar to association rules, but now order matters.
 - Many issues stay the same.
- Exist sequential generalization of association rule methods:
 - Generalized sequential pattern (GSP) algorithm is like a priori algorithm.
- We're going to instead focus on methods from bioinformatics...

Biological Sequences

- We are generated huge quantities of biological data.
- Much of it is stored as sequences.

- DNA, RNA, and proteins.



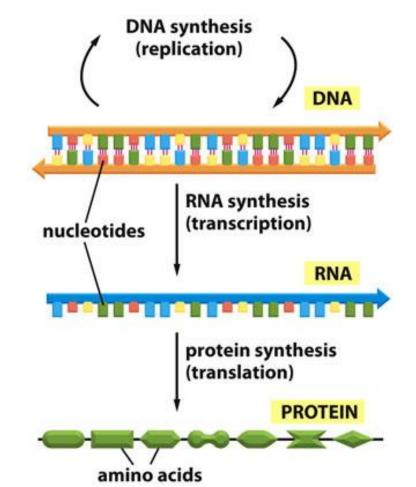


Figure 1-2 Essential Cell Biology 3/e (© Garland Science 2010)

Whole Genome Sequencing

- First single-celled organisms' genomes sequenced in late 90s.
- Many animals/plants in early 2000s.
- Human genome project finished in 2003.
- Late 2000s and 2010s:
 - Characterizing variation and function.
 - HapMap, ENCODE, 1000 genomes, 23andMe.
 - Potential to study infrequent variations.
 - New insights into rare diseases.
 - Promise of personalized medicine.
- Way more data than understanding:
 - One of most important scientific problems.

http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html

	SNP		SN	Р		SNF	,	
I SNPs	ŧ		ŧ			¥		
Chromosome 1	AACACG	C C A	TTCG	GGTC		A G T C <mark>G</mark>	ACCG.	
Chromosome 2	AACACG	C C A	TTCG	GGTC	/	GTCA	ACCG.	
Chromosome 3	AACATG	C C A	TTCGC	GGTC	/	GTCA	ACCG.	
Chromosome 4	AACACG	C C A	TTCG	GGTC	/	A G T C G	ACCG.	
					/			
Haplotypes				***				
	Haplotype 1	CTCAA	AGTAC	GGTT	CAGO	GCA		
	Haplotype 2	TTGAT	TGCGC	AACA	GTA	ATA		
	Haplotype 3	CCCGA	TCTGI	GATA	CTGO	TG		
	Haplotype 4	TCGAT	TCCGG	GGTT	CAGA	ACA		
		+	+		+			
T		A	т		C			
Tag SNPs		G	c		G			

Bioinformatics

- Bioinformatics: biology and databases and data analysis.
 - It's a huge area, with many interesting variations on DM/ML methods.
- Big focus on analyzing sequences.
 We'll discuss some of the classic ideas today.
- But sequences aren't everything:
 - How do molecules 'fold' in three-dimensions?
 - Which molecules can 'fit' together?
 - What genes perform similar functions?
 - How do molecule concentrations affect each other?
 - What are signaling 'pathways'?

Finding/Testing Similar Sequences

- A classic bioinformatics problem:
 - You find an interesting part of a biological sequence.
 - E.g., this gene makes your mice live much longer or immune to a disease.
 - Do similar sequences appear elsewhere?
 - Either in the same organism, or in other organisms.
- Want to test relatedness of sequences and find related sequences.
 - Heavy use of dynamic programming.
 - Other tricks to handle huge datasets.
- We'll start from simplest case, and get more complicated.

String Search

- Simplest variant is string search:
 - We have a sequence of length 'n'
 - We have a query of length 'm'.
 - Does query occur in sequence?
- Example:
 - Sequence: "GIVEQCCTSICSLYQLENYCN" (insulin).
 - Query: "TSI".
- Naïve algorithm:
 - For each of 'n' positions, test whether the string starts there.
 - Cost is O(nm).
- Several algorithms reduce this to O(n + m) (e.g., Knurth-Morris-Pratt).

Longest Common Substring

- What if we have multiple queries for same sequence?
 - Sequence: "GIVEQCCTSICSLYQLENYCN".
 - Queries: "TSI", "CCT", "CST" (diabetes).
 - With 'k' queries of length <= 3, cost is O(n + km) with suffix trees.</p>
- A related problem is longest common substring:
 - Sequence 1: "GIVEQCCTSICSLYQLENYCN" (human).
 - Sequence 2: "GIVEQCCASVCSLYQLENYCN" (cow).
 - What is longest string that occurs in both sequences?
 - In this case it's "CSLYQLENYCN".
- Suffix trees solve this problem in O(n + m).

(pause)

Longest Common Substring vs. Subsequence

- Consider human/pig/cow insulin:
 - Sequence 1: "GIVEQCCTSICSLYQLENYCN" (human).
 - Sequence 2: "GIVEQCCASVCSLYQLENYCN" (cow).
 - Sequence 3: "GIVEQCCTSICSLYQLENYCN" (pig).
- Longest substring between human/pig is 22 (entire sequence).
- Longest substring between human/cow is 11: "CSLYQLENYCN".
 - But have we really cut the similarity in half?
- Longest common subsequence:
 - Longest exact match by deleting characters.
 - For human/cow it's 20: "GIVEQCCSCSLYQLENYCN" (still 22 for human/pig).

Longest Common Subsequence

- Longest common subsequence (LCS):
 - Sequence 1: "GIVEQCCTSICSLYQLENYCN" (human).
 - Sequence 2: "GIVEQCCASVCSLYQLENYCN" (cow).
 - LCS: "GIVEQCC[]S[]CSLYQLENYCN".
- Basis of most 'diff' commands (and version control like git).
- Finding LCS by brute force:
 - -2^{n} possible deletions in sequence 1.
 - 2^m possible deletions in sequence 2.
 - $O(min(n,m)2^{n+m}).$
- Can we do better?

Longest Common Subsequence

- Suppose we have the LCS for two sequences:
 - Sequence 1: "ACE".
 - Sequence 2:"ABCD".
 - LCS: "AC".
- Key idea: it's easy to update LCS if we append one character.
 - Updated sequence 2: "ABCDE".
 - New LCS: "ACE".
 - Either the new character extends LCS or not: compute this in O(m).
- O(mn)-time Algorithm:
 - 1. Start with all of sequence 1 and empty sequence 2 (LCS = []).
 - 2. Sequentially append sequence 2 to sequence 2, tracking LCS.

Dynamic Programming

- LCS algorithm is special case of dynamic programming.
- Dynamic programming efficiency requires two ingredients:
 - 1. Optimal substructure:
 - Can efficiently solve the problem given solutions to 'sub-problems' (i.e. recursion).
 - For LCS: we can quickly solve problem of length 'm' given solution of length (m-1).
 - 2. Overlapping sub-problems:
 - Limited number of *different* possible sub-problems.
 - For LCS: there are only O(mn) possible lengths for the two strings.
- Key trick: store solutions of sub-problems, instead re-computing.
 - Guarantees each sub-problem is solved at most once.

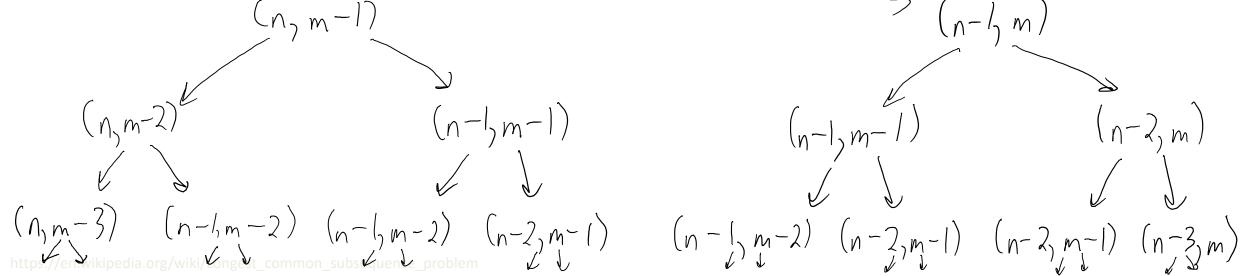
LCS with Dynamic Programming

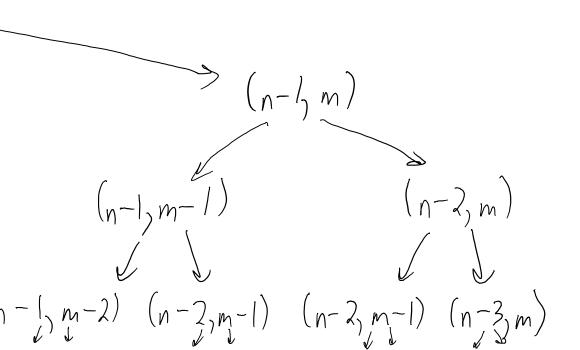
• Let's define the LCS recursively:

$$LCS(X_i, Y_j) = \begin{cases} \emptyset & \text{if } i = 0 \text{ or } j = 0\\ LCS(X_{i-1}, Y_{j-1}) \frown x_i & \text{if } x_i = y_j\\ \text{longest}(LCS(X_i, Y_{j-1}), LCS(X_{i-1}, Y_j)) & \text{if } x_i \neq y_j \end{cases}$$

Exponential number of recursive calls in naïve method:

n.m



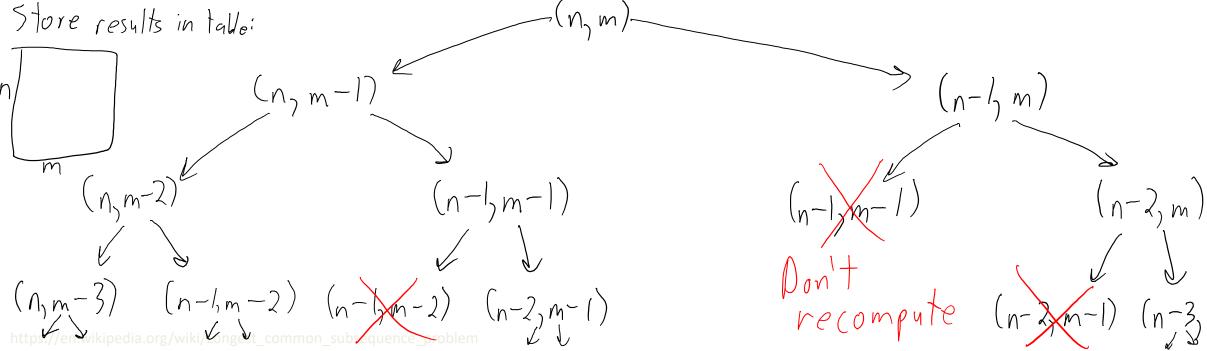


LCS with Dynamic Programming

• Let's define the LCS recursively:

$$LCS(X_i, Y_j) = \begin{cases} \emptyset & \text{if } i = 0 \text{ or } j = 0\\ LCS(X_{i-1}, Y_{j-1}) \frown x_i & \text{if } x_i = y_j\\ \text{longest}(LCS(X_i, Y_{j-1}), LCS(X_{i-1}, Y_j)) & \text{if } x_i \neq y_j \end{cases}$$

• O(mn) recursive calls with dynamic programming method:



Edit Distance

- LCS considers deletions of elements.
- We might also consider replacements:
 - Sequence 1: "GIVEQCCTSICSLYQLENYCN"
 - Sequence 2: "GIVEQCCASVCSLYQLENYCN".
 - Where different replacements have different 'costs'.
 - Some proteins can be substituted and molecule will be similar, some are disastrous.
- Edit distance:
 - Min 'cost' of turning string 1 into 2 via additions/deletions/replacements.
 - Can also be computed by dynamic programming:
 - Minimize over the 3 operations.

ance	GAATTCAG GGA-TC-G	GAATTCAG GCAT-C-G
nts:	GAATTC-A	GAATTC-A
CN".		
CN".	GGA-TCGA	GCAT-CGA

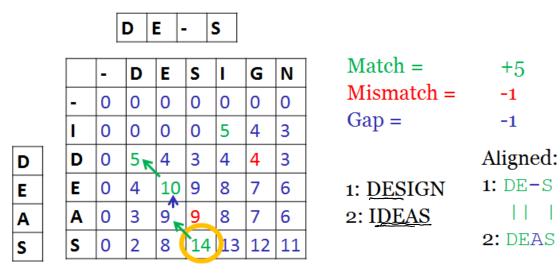
Edit Distance

- Edit distance between strings 'X' and 'Y' is ED(X_m,Y_n) where is min of: $ED(X_{i}, Y_{j}) = \begin{pmatrix} ED(X_{i-1}, Y_{i-1}) & \text{if } X_{i} = Y \\ Min \begin{pmatrix} ED(X_{i-1}, Y_{j}) + cost('delete X_{i}') \\ ZED(X_{i}, Y_{j-1}) + cost('insert Y_{j}') \\ ZED(X_{i-1}, Y_{j-1}) + cost('replace X_{i} with Y_{j}')$
 - Cost is still O(mn), and if costs are non-negative this is a distance.

(pause)

Local Edit Distance / Local Alignment

- Local alignment (Smith-Waterman): •
 - Positive 'score' for matches, negative 'score' for add/delete/replace.
 - Set negative 'd_{ii}' values to zero, and maximize d_{ii} over 'i' and 'j'.
 - Note that in bioinformatics you maximize 'score' rather than minimize 'distance'.
 - Finds substrings with small edit distance:



+5

-1

-1

Smith-Waterman Scoring

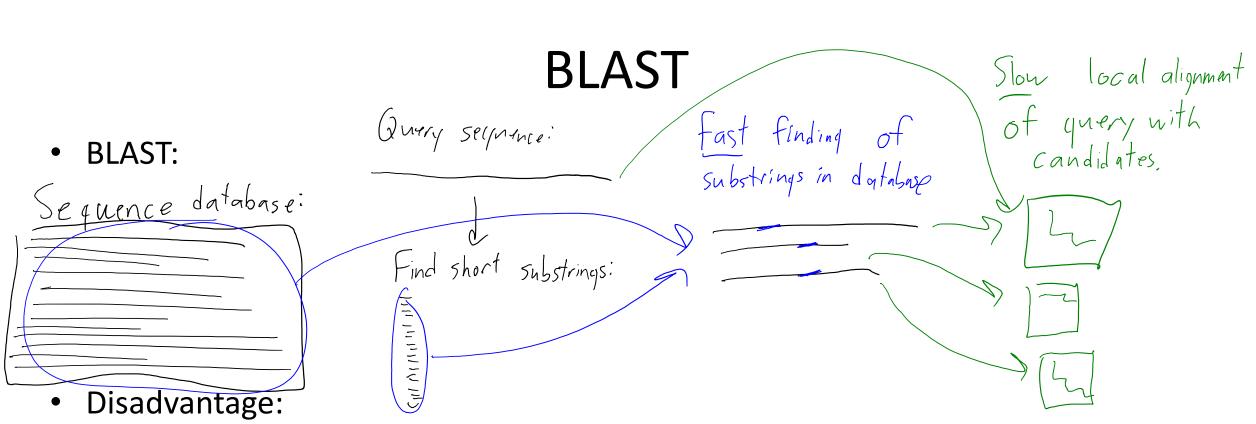
BLAST

- Basic Local Alignment Search Tool (BLAST):
 - A method for searching biological sequences.
 - Most cited paper in 1990s of all of science.

• Setup:

- We have a huge database of sequences.
- Individual sequences may be very long (human genome: ~3.2 billion).
- Quickly find similar sequences to a query sequence.
- Key ideas:
 - Find interesting and short substrings in query.
 - Fast phase: Find 'candidates' that contain any substring. -
 - Slow phase: apply dynamic programming on the 'candidates'.
 - Some other tricks to make it faster.

```
If there all 'l' strings
in database, finding indices
of 'k' substrings of
length 'm' costs O(KmR).
                                                        Sequences
```



- You could have false negatives in the first phase (you miss distantly-related sequences).
- PSI-BLAST:
 - Re-run with related sequences to find more distantly-related sequences.
- Related to hashing tricks for finding elements of a set:
 - Bloom filter: guaranteed to have no false negatives.
 - Count-min sketch: more recent probabilistic/online method.

Generalizations of Edit Distance

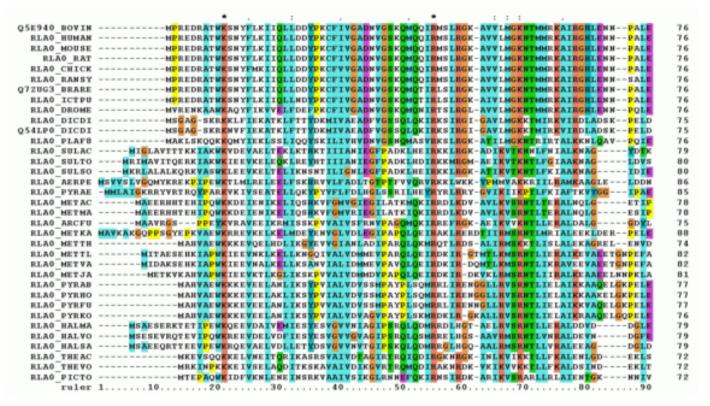
- We can have score based on insertion/deletion length ('gap score')
- Other common mutations:
 Reversal:
 ATGATAICGCGA
 ATGGCGCTATAA
 order flipped

- In general, we can't handle these efficiently: sub-problems don't overlap.

- But some special cases exist:
 - If reversals are 'contained' in each other, solve as 'context-free grammar'.

Multiple Sequence Alignment

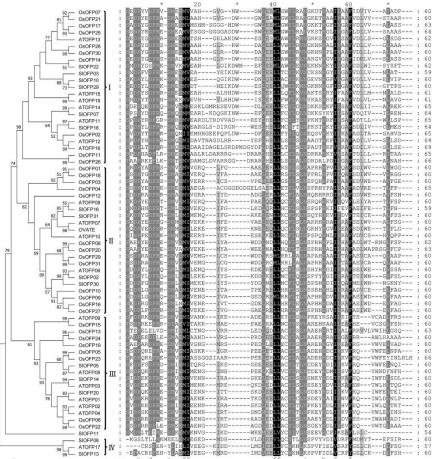
- Multiple Sequence Alignment:
 - We have several sequences and want to jointly align them:



Dynamic programming is exponential in number of sequences.

Multiple Sequence Alignment and Clustering

- Heuristic to avoid exponential cost of multiple sequence alignment:
 - First perform hierarchical clustering.
 - Clustering coud be interesting on its own.
 - Align sequences as we go up the tree.
- Popular method is Clustal:
 - 3 of top 15 all-time most-cited science papers:
 - BLAST, PSI-BLAST, Clustal.



Summary

- Sequence data arises in applications involving time/strings.
 - Common substrings can be found in linear time.
 - Edit distance can be found efficiently using dynamic programming.
 - BLAST combines the above two with other tricks.
- Multiple sequence alignment considers multiple sequences.