CPSC 340: Machine Learning and Data Mining

Today: Semi-Supervised Learning

• Our usual supervised learning framework:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	••••	Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1

• In semi-supervised learning, we also have unlabeled examples:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	••••
0.3	0	1.2	0.3	0.10	0.01	
0.6	0.7	0	0.3	0	0.01	
0	0.7	0	0.6	0	0	
0.3	0.7	0	0	0.20	0.01	

• The semi-supervised learning (SSL) framework:

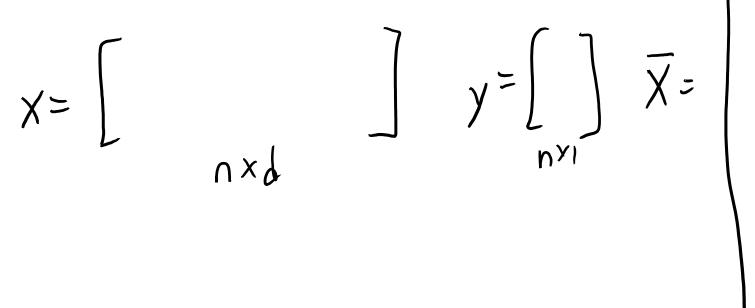
$$X = \begin{bmatrix} y = 1 \\ n^{rd} \end{bmatrix} \quad \begin{array}{c} y = 1 \\ n^{rd} \end{bmatrix} \quad \begin{array}{c} \overline{X} = 1 \\ n^{rd} \end{bmatrix}$$

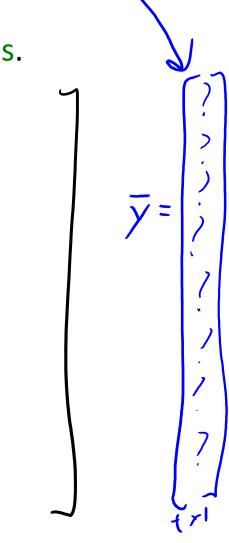
- This arises a lot:
 - Usually getting unlabeled data is easy but getting labeled data is hard.
 - Why build a classifier if getting labels is easy?
- Common situation:
 - A small number of labeled examples.
 - A huge number of unlabeled examples: t >> n.

Transductive vs. Inductive SSL

• Transductive SSL:

- Only interested in labels of the **given** unlabeled examples.





t × l

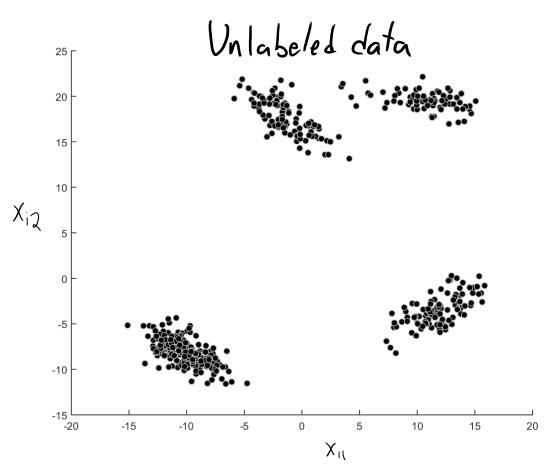
Transductive vs. Inductive SSL

- Transductive SSL:
 - Only interested in labels of the **given** unlabeled examples.
- Inductive SSL:

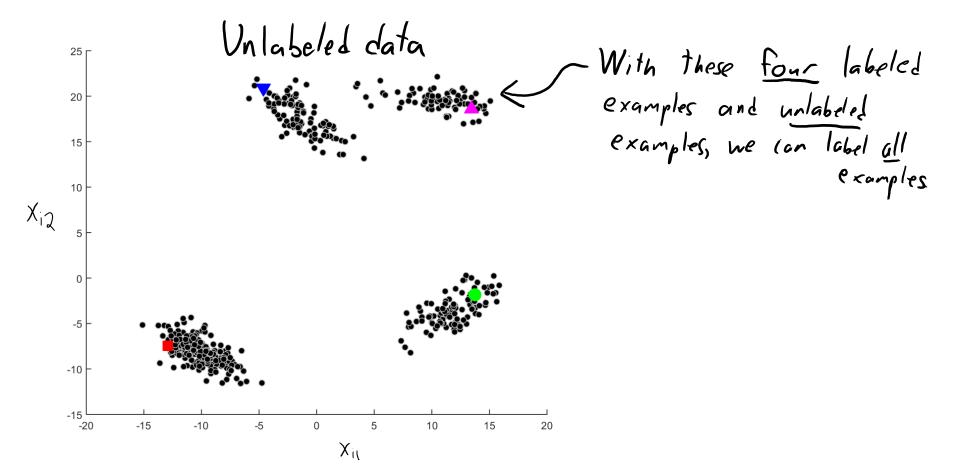
- Interested in the test set performance on new examples. Training $\chi = \left(\begin{array}{c} & & \\ &$

1×d

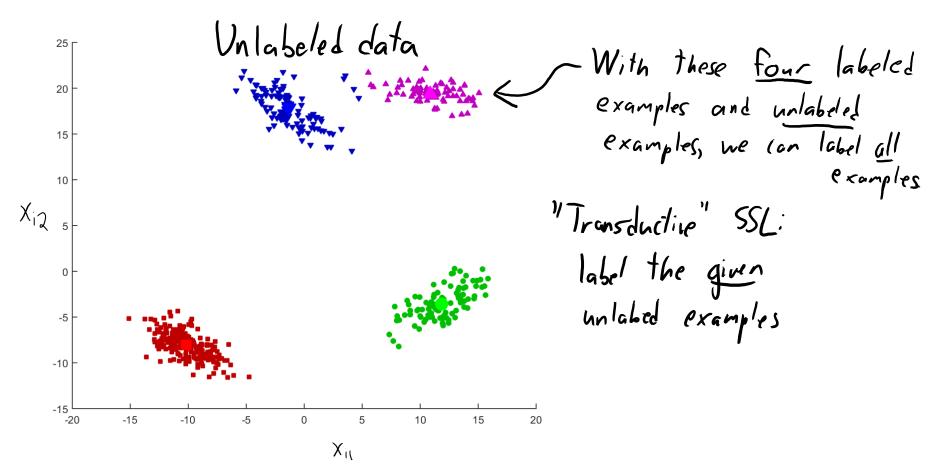
- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



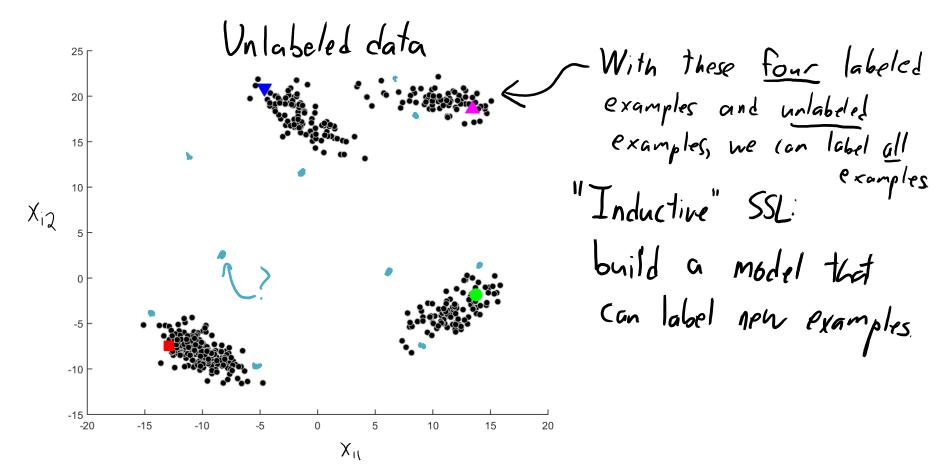
- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).



- Will unlabeled examples help in general?
 No!
- Consider choosing random ' x_i ' values, then computing ' y_i '.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of ' x_i ' says nothing about ' y_i '.

- Example where SSL is not possible:
 - Try to detect food allergy by trying 'random' combinations of food.
 - The actual 'random' process isn't important, as long it doesn't depend on 'y_i'.
 - Unlabeled data would be more random combinations:

• You can generate all possible unlabeled data, but it says nothing about labels.

- Example where SSL is possible:
 - Trying to classify images as 'cat' vs. 'dog':

- Unlabeled data would be images of cats or dogs: not random images.
 - Unlabeled data contains information about what images of cats and dogs look like.
 - E.g., clusters or manifolds in unlabeled images.
- Contrast this with 'cat' vs. 'not cat':
 - If we generate random images then label them, unlabeled data won't help.
 - If we know that half our unlabeled images are cats, unlabeled could help.

• When can unlabeled examples help?

- Consider 'y_i' somehow influencing data we collect:
 - Now there is information about labels contained in unlabeled examples.
 - Example 1: we try to have an even number of $y_i = +1$ and $y_i = -1$.
 - Example 2: we need to choose non-random ' x_i ' to correspond to a valid ' y_i '
 - We are almost always in this case.

(pause)

SSL Approach 1: Self-Taught Learning

- Self-taught learning is similar to k-means:
 - 1. Fit a model based on the labeled data.
 - 2. Use the model to label the unlabeled data.
 - 3. Use estimated labels to fit model based on labeled and unlabeled data.
 - 4. Go back to 2.
- Obvious problem: it can reinforce errors and even diverge.
- Possible fixes:
 - Only use labels are you very confident about.
 - Regularize the loss from the unlabeled examples:

$$f(w) = \frac{1}{2} || \chi_{w} - \gamma ||^{2} + \frac{3}{2} || \bar{\chi}_{w} - \hat{\gamma} ||^{2}$$

A controls how much we trust suresses or unlabeled data

»prediction from step 2

SSL Approach 1: Self-Taught Learning

Input: -Labeled examples {X,y} - Unlabeled examples X Popular Variants: 1. "Expectation maximization" 2 "Yarowsky" algorithm (language)

Train on
$$\{X,y\}$$
:
model = fit(X,y)
2. Guess labels:
 $\hat{y} = model. predict(\bar{X})$
3. Train on bigger data set:
model = fit($[X]_{y}$], 7)

SSL Approach 2: Co-Training

- Assumes that we have 2 sets of features:
 - Both sets are sufficient to give high accuracy.
 - The sets are conditionally independent given the label.
 - E.g., image features (set 1) and caption features (set 2).

to touch.

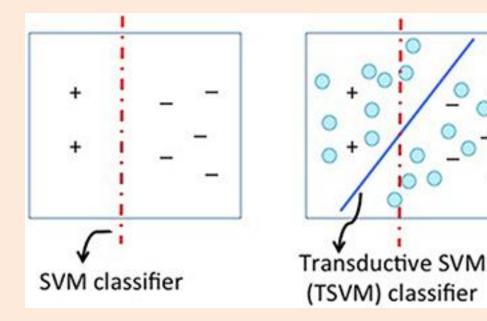
• Co-training:

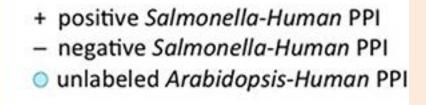
- 1. Using labeled set, fit model 1 based on set 1, fit model 2 based on set 2.
- 2. Label a random subset of unlabeled examples based on both models.
- 3. Move examples where each classifier is most confident to labeled set.
- 4. Go back to 1.
- Hope is that models "teach" each other to achieve consensus.
 - Theoretically works if assumptions above are satisfied.

$$\begin{array}{c} \text{SSL Approach 2: Co-Training} \\ (1. Split features into X, and X_2 \\ X = \begin{bmatrix} X_1 & X_2 \\ \vdots & X_1 & X_2 \end{bmatrix} \\ We choose subset \\ to avoid a bras \\ trom having similar \\ modell = fit(X_{1,1}y) \\ \text{model} Z = fit(X_{2,2}y) \\ \text{Choose random subset of unlabeled examples and predict label:} \\ \hat{y_1} = \text{model predict}(\tilde{X}_1) \\ \hat{y_2} = \text{model predict}(\tilde{X}_2) \\ \text{S. For each model find the \tilde{x} values in the sample that model is \tilde{x} subset } \\ \text{H. Add these examples to labeled set.} \end{array}$$

SSL Approach 3: Entropy Regularization

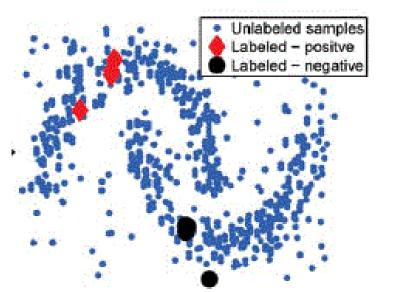
- Self-taught and co-training predictions may propagate errors.
- Instead of making predictions, encourage "predictability":
 - Entropy regularization: penalize "randomness" of labels on unlabeled.
 - Transductive SVMs: avoid decision boundaries in dense regions.

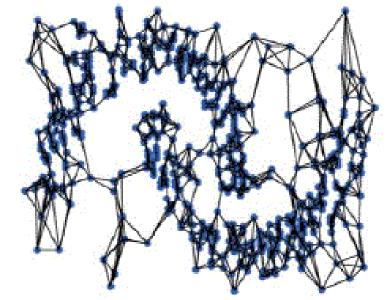


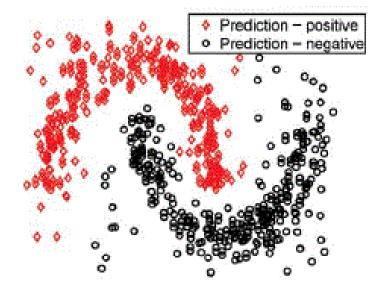


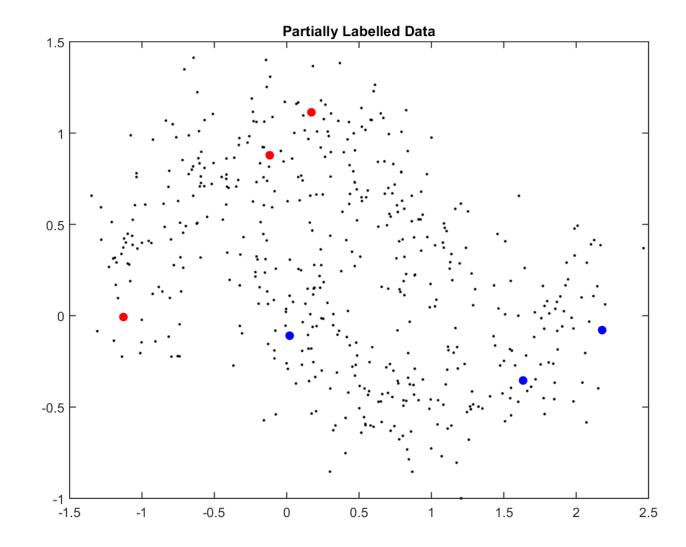
Graph-Based Methods (Label Propagation)

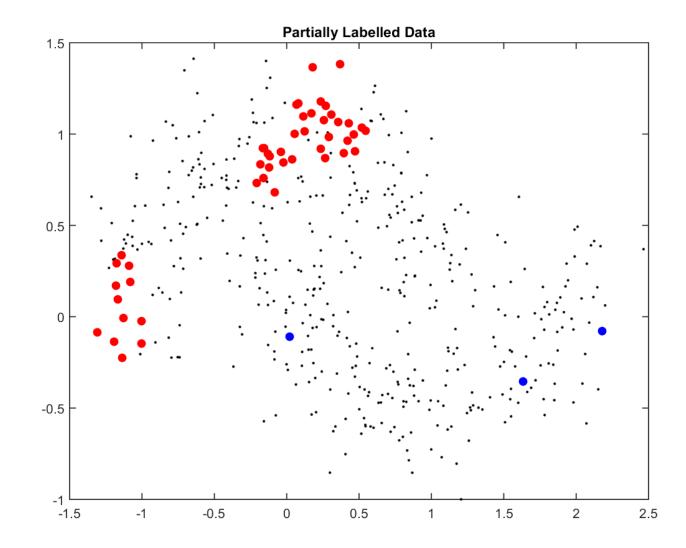
- We can only do SSL because (similar features ⇔ similar labels).
- Graph-based SSL uses this directly.
 - Define weighted graph on training examples:
 - For example, use KNN graph or points within radius ' ϵ '.
 - Weight is how 'important' it is for nodes to share label.

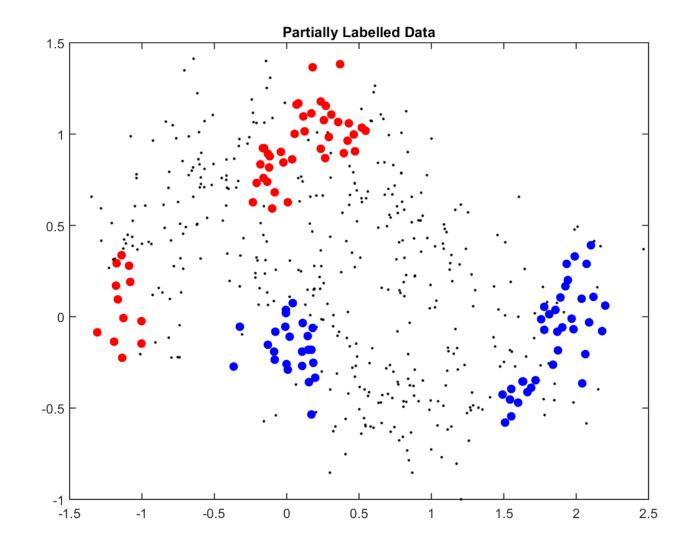


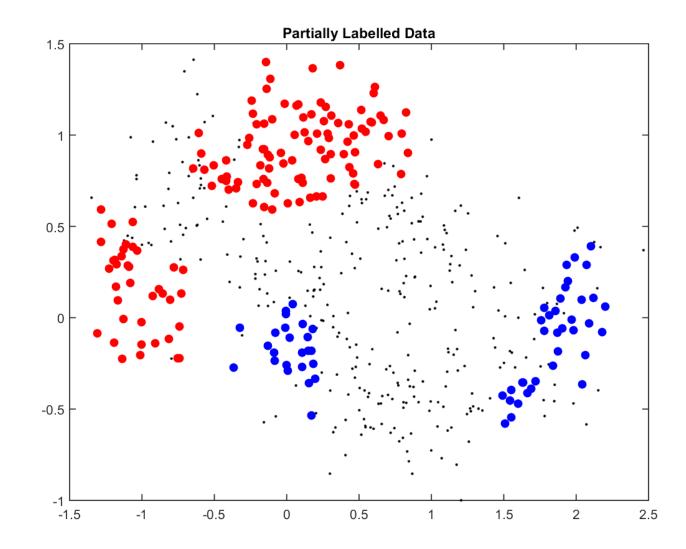


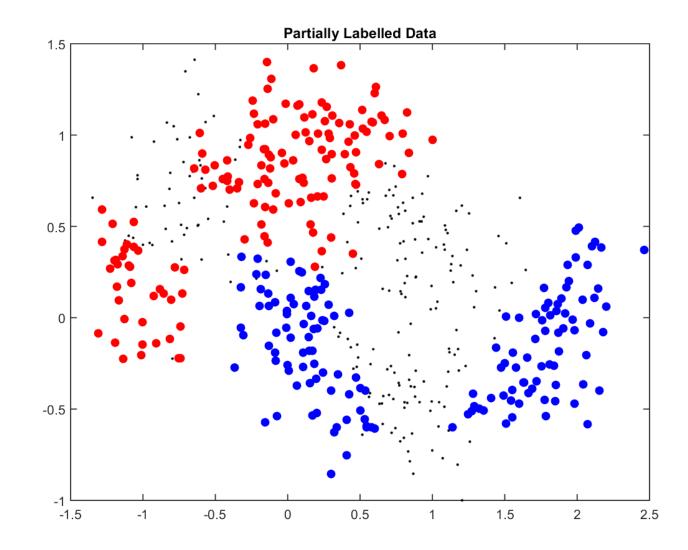


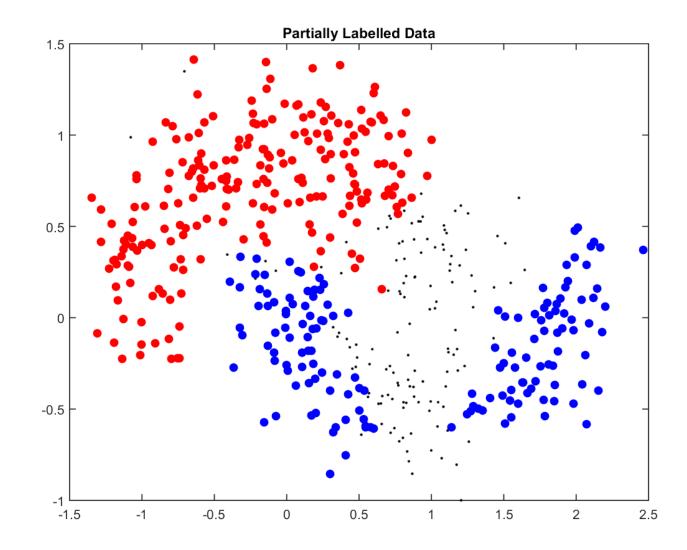


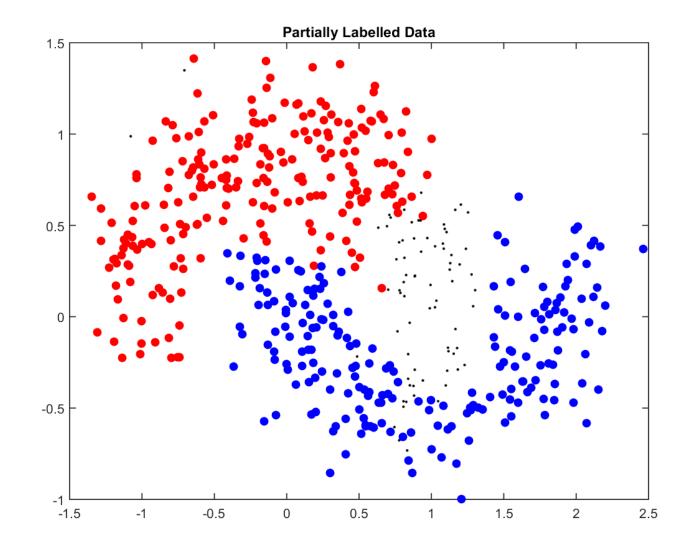


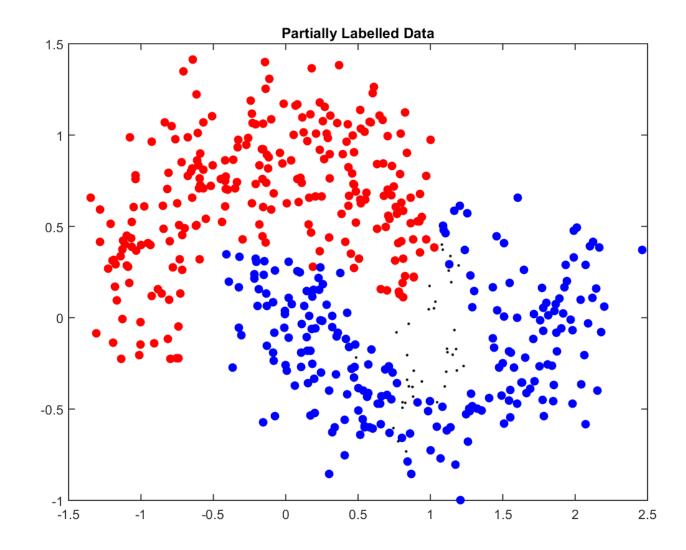


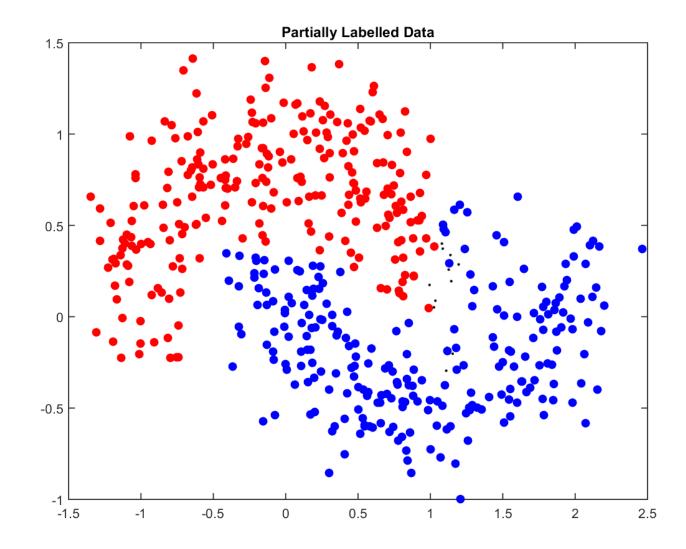


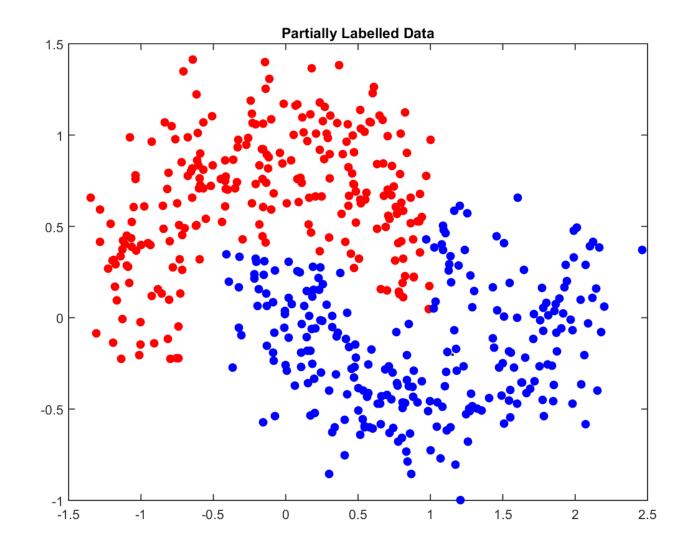












Graph-Based SSL (Label Propagation)

• Treat unknown labels as variables, minimize cost of disagreement:

$$f(\bar{y}) = \sum_{j=1}^{n} \sum_{j=1}^{k} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{k} W_{ij} (\bar{y}_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (\bar{y}_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (\bar{y}_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (\bar{y}_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (\bar{y}_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (\bar{y}_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{k} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_j - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^{n} W_{ij} (y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{j=1}^{n} W_{ij} (y_j - \bar{y}_j)^2$$

$$P_{i=1} \int_{j=1}^$$

to "lubel

propayation" through

- - Treat labels y_i as variables (they might be wrong).
 - Weight how much you trust original labels.
 - Regularize the unlabeled \overline{y}_i towards a default value.
 - Can reflect that example is really far from any labeled example.

Example: Tagging YouTube Videos

- Example:
 - Consider assigning 'tags' to YouTube videos (e.g., 'cat').
 - Construct a graph based on sequences of videos that people watch.
 - Give high weight if video A is often followed/preceded by video B.
 - Use label propagation to tag all videos.
- Becoming popular in bioinformatics:
 - Label a subset of genes using manual experiments.
 - Find out which genes interact using more manual experiments.
 - Predict function/location/etc of genes using label propagation.
- Comments on graph-based SSL:
 - Transductive method: only estimates the unknown labels.
 - Often surprisingly effective even if you only have a few labels.
 - Does not need features if you have the weighted graph.

Summary

- Semi-supervised learning uses unlabeled data in supervised task.
 - Transductive learning only focuses on labeling this data.
 - SSL may or may not help, depending on structure of data.
- Self-taught/co-training alternate labeling/fitting.
- Graph-based SSL propagates labels in graph (no features needed).