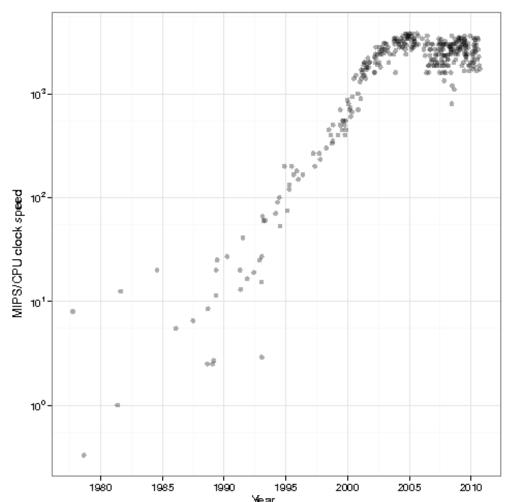
# UBC MLRG (Winter 2018): Parallel and Distributed Machine Learning

# Motivation for Parallel and Distributed Systems

• Clock speeds aren't increasing anymore:

- Though new tricks like 64-bit vs. 32-bit.

- But datasets keep getting bigger.
  MNIST: 60k, ImageNet: 1.4M.
- We need to use parallel computation.
  - Use more than 1 CPU to reduce time.
  - Lets you keep pace with growth of data.



https://csgillespie.wordpress.com/2011/01/25/cpu-and-gpu-trends-over-time/

# Motivation for Parallel and Distributed Systems

• Data might get so big it doesn't fit on one machine.



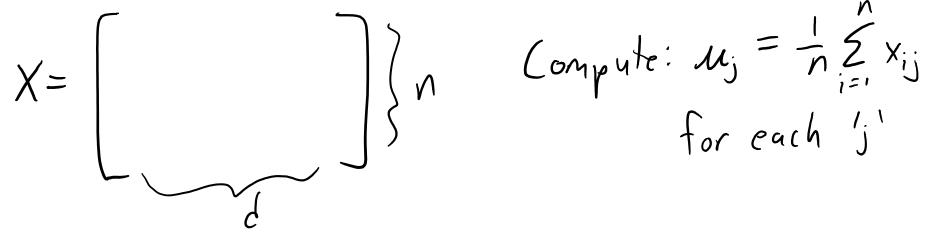
- We need to consider distributed data and distributed computation.
  - How can we solve ML problems efficiently in this setting?

## **3** Approaches to Machine Learning

- There are roughly three computational approaches to ML:
  - Counting (sufficient statistics, decision trees, naïve Bayes, KNN).
  - Optimization (least squares, logistic regression, PCA, deep learning).
  - Integration (random forests, graphical models, Bayesian methods).
- Today:
  - Issues arising in these settings when you parallelize/distributed.

#### **Counting-Based Learning**

• Consider finding the mean of a data matrix 'X':



• Usual cost with a processor is O(nd).

- For each of the 'd' values of 'j', add up the 'n' values of ' $x_{ii}$ '.

- Now suppose we have 'p' processors with shared memory:
  - Make each processor each up the number for O(n/d) examples.
  - So each processor takes O(nd/p) operations, and total time is O(nd/p).

# Linear Speedup

- This is called a "linear speedup":
  - We're 'p'-times faster with 'p' processors.
- Can we do better?
  - No!
  - Superlinear speedups aren't possible (in standard models of computation).
    - In practice, issues like caching levels might give superlinear in some situations.
- So a linear speedup is the best case scenario.
  - Our job is to design methods where speedup isn't too sublinear.

# **Embarrassingly Parallel**

- We say that computing the mean is "embarrassingly parallel".
  We can divide most of work into 'p' independent sub-problems.
- You'll rarely see papers about embarrassingly-parallel methods.
  It's not really that interesting.
- But, embarrassingly parallel problems are very common.
  You should always look for embarrassingly parallel approaches first.

## Issues: Lock and Synchronization

- This algorithm may not achieve linear speedup in practice.
- One reason is locking:
  - They can't all write to the same  $\mu_i$  values at once.
- Another is synchronization
  - One processor could take much longer than the others.
- Even with homogeneous hardware, another issue is load balancing:
  Data could be sparse with most non-zeroes assigned to the same processor.
- For this problem, simple modifications could alleviate these issues.
  - For more complicated problems, we need to think about these issues.

# **Distributed Computation**

• Suppose data was distributed (evenly) on 'p' different machines.

• Since they don't have shared memory, we need to communicate.

- Computing mean in this distributed setting:
  - Each computer computes mean of its own set of examples.
  - Each computer sends its mean to a "master" computer.
  - The "master" computer combines them together to get overall mean.

#### Map and Reduce Operations

- Computing mean on each computer is called a "map" operation.
   Each machine computes a simple "value" on its own data.
- Combining means is called a "reduce" operation.
  The "values" are combined with a simple binary operation.
- Standard distributed frameworks will implement these operations.
  And usually a few others.

# Analysis of Map then Reduce Approach

- The "map" step costs O(nd/p) on each machine.
- The "reduce" step involves each machine sending 'd' numbers.
- If they all send to "master", cost of reduce is O(dp).
  - So total cost is O(nd/p + dp), so for large 'p' we won't have linear speedup.
- You be more clever and organize communication in a binary tree:
  - Cost O(nd/p + d log(p)), so linear speedup if n/p > log(p).
  - Obviously, won't be linear with more machines than examples.
- Maybe you want to distribute features rather than examples?
   Only need to communicate O(d) numbers if each has O(d/p) features.

#### **Issues: Communication Costs**

- Communicating among machines adds extra costs.
  - We need to think about if this is worth it.
- Communication is usually expensive compared to computation.
  - Sometimes, some machines can communicate more cheaply than others.
- Also, how did you get data onto 'p' machines in the first place?
  - This cost is often ignored in papers, but it matters where the data "starts".
  - You don't want to send data to machines just to compute mean!
- If you have huge 'p', probability of failure becomes non-trivial.
  - How do you deal with computation or communication failure?

#### **Optimization-Based Learning**

• Optimization-based methods minimize average of continuous f<sub>i</sub>:

$$\begin{array}{c} \text{digmin} \quad \frac{1}{n} \sum_{i=1}^{n} f_i(w) \\ w \in \mathbb{R}^d \quad n = 1 \end{array}$$

• Standard approach is gradient descent (and faster variations):

$$w^{k+l} = w^{k} - \frac{\alpha_{k}}{n} \sum_{i=1}^{n} \nabla f_{i}(w^{k})$$

- This is often embarrassingly parallel:
  - Dominant cost is computing gradient on each of 'n' examples.
  - Each processor can compute gradients for O(n/p) examples.
- Papers look at fancier methods, but if you can do this you should.

## Fancier Optimization Methods

- Stochastic gradient methods:
  - Not so easy to parallelize, each iteration only uses 1 gradient.
  - You could have each processor compute 1 gradient and use 'batch' update.
    - Does not give a linear speedup: just reduces variance of gradient estimate.
  - Asynchronous approach: each processor read/updates "master" vector.
    - Works if you make the step-size smaller.
- Coordinate optimization methods:
  - Each machine updates one coordinate.
  - Doesn't work unless you make the step-size small enough.

## Fancier Optimization Methods

- Decentralized gradient:
  - Each machine takes a gradient descent step on its own data.
  - Parameters are averaged across neighbours in communication graph.
- Newton's method:
  - Newton has memory requirements and iteration cost.
    - But it takes very few iterations.
  - Cloud computing allows enormous memory/parallelism.
  - Maybe Newton makes sense again in this setting?

#### Integration-Based Learning

• Integration-based learning methods need to solve integrals:

$$\hat{\gamma}_i = \int f(x) \rho(x) dx$$

• Typical approach is Monte Carlo methods:

$$y_i \approx \frac{1}{m} \sum_{i=1}^{m} f(x_m)$$
 where  $x_m$  are distributed according to  $p(x)$ 

- Embarrassingly-parallel if you can generate IID samples from p(x):
   Have each processor generate its own independent samples.
- Typical cases like MCMC are more complicated:
  - Running independent MCMC chains is embarrassingly-parallel.
  - But speedup could be very sublinear if all chains are in "burn in" phase.

#### Schedule

| Date   | Торіс                                                          | Presenter |
|--------|----------------------------------------------------------------|-----------|
| Jan 30 | Motivation/Overview                                            | Mark      |
| Feb 6  | Distributed file systems (MAPREDUCE, HADOOP, Spark, etc.)      | Yasha     |
| Feb 13 | Asynchronous stochastic gradient (HOGWILD!, YellowFin, etc.)   | Michael   |
| Feb 27 | Synchronous stochastic gradient ("fit then average", Sync-Opt) | Sharan    |
| Mar 6  | Parallel coordinate optimization                               | Julie     |
| Mar 13 | Decentralized gradient (EXTRA)                                 | Devon     |
| Mar 20 | Decomposition methods (Elastic-Averaging, ADMM, etc.)          | Wu        |
| Mar 27 | Asynchronous/distributed SAG/SDCA/SVRG                         | Reza      |
| Apr 3  | Randomized Newton and least squares on the cloud               | Vaden     |
| Apr 10 | Parallel tempering and distributed particle filtering          | Nasim     |
| Apr 17 | Distributed deep networks (DDNNs, Downpour)                    | Alireza   |
| Apr 24 | Blockchain-based distributed learning                          | Raunak*   |