
DSCI 575:
Advanced Machine Learning

Markov Chains and Monte Carlo

Winter 2018

Example: Vancouver Rain Data

• Consider modeling the “Vancouver rain” dataset.

• A time-series dataset where xt = 1 if it rained on day ‘t’.

• The strongest signal in the data is the simple relationship:
– If it rained yesterday, it’s likely to rain today (> 50% chance that xt-1 = xt).

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 …

0 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 0 0

1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1

0 0 0 0 1 1 0 0 0

0 1 1 0 0 0 0 1 1

Example: Vancouver Rain Data

• If we assume xt are independent, we get p(xt = 1) = 0.41 (sadly).

– Real data vs. samples from independent Bernoulli model:

– Making days independent misses correlation.

Markov Chain Model of Rain Data

• A better model for the rain data is a Markov chain:

– Captures dependency of xt on xt-1.

– We model p(xt | xt-1): probability of rain today given yesterday’s value.

Markov Chain Ingredients (MEMORIZE)

• Markov chain ingredients:
– State space:

• Set of possible states (indexed by ‘s’) we can be in at time ‘t’ (“rain” or “not rain”).

– Initial probabilities:
• p(x1 = s) that we start in state ‘s’ at time 1.

– Transition probabilities:
• p(xt = s | xt-1 = s’) that we move to state s from state s’ at time ‘t’.

– Probability that it rains today, given what happened yesterday.

• For PageRank: each webpage is a state ‘s’.
– Initial probability is random.

– Go to random page with probability α, otherwise go to random neighbour.

Markov Chain Probability and Markov Property

• Markov chain probability for a sequence x1, x2,…,xd:

• This assumes the Markov property:

– That xt is independent of the past given xt-1.

• To predict “rain”, we only need to know whether it rained yesterday.

Markov Chain Applications

Homogeneous Markov Chains

• We usually assume that the Markov chain is homogeneous:

– Transition probabilities p(xt = s| xt-1 = s’) are same for all ‘t’.

• Given ‘n’ samples, MLE for homogeneous Markov chain is:

• So given one or more sequences, learning is just counting.

– Like in naïve Bayes.

Computation with Markov Chains

• Common things we do with Markov chains:

– Sampling: generate sequences that follow the probability.
• This is what our “random walk” algorithms are doing.

– Inference: compute probability of being in state ‘s’ at time ‘t’.

– Decoding: compute most likely sequence of states.

– Conditioning: do any of the above, assuming xt = s for some ‘t’ and ‘s’.
• For example, “filling in” missing parts of a sequence.

– Stationary distribution: probability of being ‘s’ at ‘t’ goes to ∞.
• PageRank.

Fun with Markov Chains

• Markov chains “explained visually”:

– http://setosa.io/ev/markov-chains

• Snakes and ladders:

– http://datagenetics.com/blog/november12011/index.html

• Candyland:

– http://www.datagenetics.com/blog/december12011/index.html

• Yahtzee:

– http://www.datagenetics.com/blog/january42012

• Chess pieces returning home and K-pop vs. ska:

– https://www.youtube.com/watch?v=63HHmjlh794

http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012
https://www.youtube.com/watch?v=63HHmjlh794

(pause)

Fundamental Problem: Sampling from a Density

• A fundamental problem in data science is sampling from a density.
– Generating examples xi that are distributed according to given density p(x).

– Basically, the “opposite” of learning: going from a model to data.

• Sometimes we use samples to “tell us what the model learning”.
– If the samples look like real data, then we have a good model.

• Samples can also be used in Monte Carlo estimation (later):
– Replace complicated p(x) with samples to solve hard problems at test time.

Simplest Case: Sampling from a Bernoulli

• Consider sampling from a Bernoulli, for example:

• Sampling methods assume we sample uniformly over [0,1].
– Usually, a “pseudo-random” number is good enough (Python/R).

• How to use a uniform sample to sample from the Bernoulli above:
1. Generate a uniform sample u ~ U(0,1).

2. Set x = 1 If u ≤ 0.9.

• With good uniform sampler, then we have x=1 with probability 0.9.

Sampling from a Categorical Distribution

• Consider a more general categorical density like:

• We can divide the [0,1] interval based on probability values:

• If u ~ U(0,1), 40% of the time it lands in the x1 region.

– And 10% in x2, 20% in x3, and 30% in x4.

Sampling from a Categorical Distribution

• Consider a more general categorical density like:

• To sample from this categorical density we can use:

1. Generate u ~ U(0,1).

2. If u ≤ 0.4, output 1.

3. If u ≤ 0.4 + 0.1, output 2.

4. If u ≤ 0.4 + 0.1 + 0.2, output 3.

5. Otherwise, output 4.

Sampling from a Categorical Distribution

• General case for sampling from categorical:
1. Generate u ~ U(0,1).

2. If u ≤ p(x ≤ 1), output 1.

3. If u ≤ p(x ≤ 2), output 2.

4. If u ≤ p(x ≤ 3), output 3.

5. …

• The value p(x ≤ c) = p(x = 1) + p(x = 2) + … + p(x = c) is the CDF.
– “Cumulative distribution function”.

• The CDF can use be used to sample from continuous densities…

Inverse Transform Method (Exact 1D Sampling)

• We often use F(c) = p(x ≤ c) to denote the CDF:
– F(c) is between 0 and 1, gives proportion of times ‘x‘ is below ‘c’.
– F can be used for discrete and continuous variables:

• The inverse CDF (“quantile”) function F-1 is its inverse:
– Give u between 0 and 1, F-1(u) is the c such that p(x ≤ c) = u.

• Inverse transform method for exact sampling in 1D (how you sample normal):
– Sample u ~ U(0,1).
– Return F-1(u).

• Video on pseudo-random numbers and inverse-transform sampling from PBS.

https://en.wikipedia.org/wiki/Cumulative_distribution_function

https://www.youtube.com/watch?v=C82JyCmtKWg

Sampling from a Product Distribution

• Consider a model where the variables are independent:

• Because of independence, we can sample independently:

– Sample x1 from p(x1).

– Sample x2 from p(x2).

– Sample x3 from p(x3).

– Sample x4 from p(x4).

• But we can’t use this for Markov chains due to dependence.

Ancestral Sampling

• To sample dependent random variables we can use chain rule:

• The chain rule suggests the following sampling strategy:
– Sample x1 from p(x1).

– Sample x2 from p(x2 | x1) for the sampled x1.

– Sample x3 from p(x3 | x2, x1) for the sampled x1 and x2.

– Sample x4 from p(x4 | x3, x2, x1) for the sampled {x1, x2, x3}.

• This called ancestral sampling.
– It’s easy if conditional probabilities are simple.

– But may not be simple, binary conditional ‘t’ has 2t values of {x1, x2, … , xt}

Example: Ancestral Sampling for Markov Chains

• For Markov chains the chain rule simplifies to:

• So ancestral sampling simplifies (only depends on last time):

– Sample x1 from p(x1).

– Sample x2 from p(x2 | x1) for the sampled x1.

– Sample x3 from p(x3 | x2) for the sampled x2.

– Sample x4 from p(x4 | x3) for the sampled x3.

• In PageRank and label propagation, this is the random walk.

Markov Chain Toy Example: CS Grad Career

• “Computer science grad career” Markov chain:

– Initial probabilities:

– Transition probabilities:

– So p(xt = “Grad School” | xt-1 = “Industry”) = 0.01.

Example of Sampling x1

• Initial probabilities are:

– 0.1 (Video Games)

– 0.6 (Industry)

– 0.3 (Grad School)

– 0 (Video Games with PhD)

– 0 (Industry with PhD)

– 0 (Acadmia)

– 0 (Deceased)

• So initial CDF is:

– 0.1 (Video Games)

– 0.7 (Industry)

– 1 (Grad School)

– 1 (Video Games with PhD)

– 1 (Industry with PhD)

– 1 (Academia)

– 1 (Deceased)

• To sample the initial state x1:

– First generate u, which we’ll assume is u=0.724.

– Now find first CDF value bigger than u, which in this case is “Grad School”.

Example of Sampling x2, Given x1 = “Grad School”

• So we sampled x1 = “Grad School”.

– To sample x2, we’ll use the “Grad School” row in transition probabilities:

Example of Sampling x2, Given x1 = “Grad School”

• Transition probabilities:

– 0.06 (Video Games)

– 0.06 (Industry)

– 0.75 (Grad School)

– 0.05 (Video Games with PhD)

– 0.05 (Industry with PhD)

– 0.02 (Acadmia)

– 0.01 (Deceased)

• So transition CDF is:

– 0.06 (Video Games)

– 0.12 (Industry)

– 0.87 (Grad School)

– 0.92 (Video Games with PhD)

– 0.97 (Industry with PhD)

– 0.99 (Academia)

– 1 (Deceased)

• To sample the second state x2:

– First generate u, which we’ll assume is u=0.113.

– Now find first CDF value bigger than u, which in this case is “Industry”.

Sampling from a Markov Chain

• 100 Samples from “computer science grad career” Markov chain:

• Samples often give you an idea of what model knows.
– And what should be fixed.

(pause)

Computing Marginals and Conditionals

• Given a joint probability ‘p’, we often want to do “inferences”:

– Marginals: what p(x10 = “industry”)?

• What is the probability we’re in industry 10 years after graduation?

– Conditionals: what p(x10 = “industry” | x1 = “academia”).

• What is the probability of industry after 10 years, if we go to grad school?

• Where are we going with this?

– Faster calculation of PageRank: p(x∞ = “www.nba.com”).

– Bayesian machine learning requires doing calculation like this.

Monte Carlo: Inference by Sampling

• A basic Monte Carlo method for estimating probabilities of events:
1. Generate a large number of samples from the model.

2. Compute the frequency that the event happened in the samples.

• Monte Carlo is second most important class of ML algorithms.
– Originally developed to build better atomic bombs

• Run physics simulator to “sample”, then see if it lead to a chain reaction.

Monte Carlo Method for Rolling Di

• Probability of event:
– (number of samples where event happened) / (number of samples)

• Computing probability of a pair of dice rolling a sum of 7:
– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– …

• Monte Carlo estimate: fraction of samples where sum is 7.

Monte Carlo Method for Inequalities

• Monte Carlo estimate of probability that variable is threshold:

– Compute fraction of examples where sample is above threshold.

Monte Carlo Method for Mean

• A Monte Carlo approximation of the mean:
– Approximate the mean by average of samples.

• Visual demo of Monte Carlo approximation of mean and variance:

http://students.brown.edu/seeing-theory/basic-probability/index.html

Monte Carlo for Markov Chains (not MCMC yet)

• Our samples from the CS grad student Markov chain:

• You can estimate probabilities by looking at frequencies in samples.
– In how many out of 100 chains did we have x10 = “Industry”?

• This works for continuous states too.

Monte Carlo Methods

• Monte Carlo methods approximate expectations:

• Computing mean is the special case of g(x) = x.

• Computing probability of any event ‘A’ is also a special case:

– Set g(x) = 1 if ‘A’ happens and 0 if it does not happen.

• Monte Carlo method: generate ‘n’ IID samples xi from p(x) and use:

Monte Carlo Methods

• Monte Carlo estimate is unbiased approximation of expectation:

• The law of large numbers says that:

– Unbiased approximators “converge” to expectation (in probabilistic sense).

– So the more samples you get, the closer to the true value you start to get.

• Challenge with Monte Carlo methods:

– It may be hard to generate IID samples.

– This is where MCMC will fit in later.

Monte Carlo Methods for Markov Chain Inference

• Monte Carlo methods can approximate Markov chain expectations:

– Marginal p(x10 = “industry”) is number samples with “industry” at time 10.

– Average value at time 10, E[x10], is approximate by average x10 in samples.

– p(x10 ≤ 2) is approximated by frequency of x10 being less than 2.

– P(x10 ≤ 2, x11 ≥ 2) is approximated by frequency of both happening.

Monte Carlo for Conditional Probabilities

• We often want to compute conditional probabilities.

– We can ask “what leads to x10 = 4?” with queries like p(x1 | x10 = 4).

– We can ask “where does x10 = 4 lead?” with queries like p(x100 | x10 = 4).

• Monte Carlo approach for estimating p(xt = s| xt’ = s’):

– Generate a large number of samples from the Markov chain.

– Use Monte Carlo estimates of p(xt = s, xt’ = s’) and p(xt’ = s’) to give:

(pause)

Last Time: Markov Chains and Monte Carlo

• Markov chains are a way to define a joint probability.

– You’ve seen other ways to define joint probabilities, like mixture models.

• Monte Carlo is an algorithm for approximating expectations:

– You can use Monte Carlo to compute expectations in a Markov chain.

– But Monte Carlo can be used with other probabilities, like mixture models.

Quick “Joint Probability Equations” Review

• Independence: if variables are {a1, a2, …, an} are independent then

• Marginalization rule: summing/integrating out over one variable

• Product rule: relates joint to conditional

• Bayes’ rule: reverse conditionals

Exact Marginal Calculation

• Monte Carlo tends to converge very slowly.
– You may need a huge number of samples.

• For discrete-state Markov chains, we can compute marginals directly.
– We’re given initial probabilities p(x1 = s) for all ‘s’ as part of the definition.

– We can use these and transition probabilities to compute p(x2 = s) for all ‘s’:

– We can repeat this calculation to obtain p(x3 = s) and subsequent marginals.

Exact Marginal Calculation

• Recursive formula for marginals at time ‘t’:

– Called Chapman-Kolmogorov (CK) equations.
• There are similar equations if all probabilities are Gaussian.

• Cost:
– Given previous time, CK equations for time ‘t’ and state ‘s’ cost O(k).

– Given previous time, to compute p(xt = s) for all ‘s’ costs O(k2).

– So cost to compute marginals up to time ‘t’ is O(tk2).
• I think this is fast: there are kt paths of length ‘t’ that this sums over.

Marginals in CS Grad Career

• CK equations can give marginals p(xt = s) from CS grad chain:

• Each row is a year ‘t’ (first year at top), each column is a state ‘s’.

Stationary Distribution and PageRank

• A stationary distribution of a homogeneous Markov chain is a vector π satisfying:

• “The probabilities don’t change across time” (also called “invariant distribution”).

• Under weak conditions, Markov chain marginals converge to stationary distribution.
– p(xt = s) converges to πs as ‘t’ goes to ∞.

– If we fit a Markov chain to the rain example, we have πrain = 0.41.

– In the CS grad student example, we have πdead = 1.

• The PageRank is the stationary distribution of the “random surfer” Markov chain.
– The “power method” used by Google repeatedly applies CK equations.

– Faster than SVD which takes O(k3): iterations cost O(z) where ‘z’ is number of links.

Uniqueness of Stationary Distribution

• Does a stationary distribution π exist and is it unique?

• Sufficient condition for existence/uniqueness is positive transitions:

– “Damped” PageRank adds probability α of jumping to random page.

• Weaker sufficient conditions for existence/uniqueness (“ergodic”):

– “Irreducible” (doesn’t get stuck in part of the graph)

– “Aperiodic” (probability of returning to state isn’t on fixed intervals).

(pause)

Decoding in Markov Chains

• Decoding: finding the sequence with highest probability.

– For fixed ‘t’, find {x1,x2,…,xt} that maximizes p(x1,x2,..,xt).

• For CS grad student (t = 60) the decoding is “industry” for all years.

– Decoding often doesn’t look like a typical sample.

– It can also change if you increase ‘t’.

• Viterbi decoding is a dynamic programming algorithm.

– Computes optimal decoding of Markov chain in O(tk2).

– Has various applications like decoding digital TV.

Application: Voice Photoshop

• Application: Adobe VoCo uses Viterbi as part of synthesizing voices:

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I3l4XLZ59iw

Summary

• Markov chains model dependency between states xt across time.

– Based on Markov assumption: “independence of past given last time”.

• Inverse transform can generate 1d samples.

• Ancestral sampling can generate d-dimensional samples.

• Monte Carlo methods approximate expectation using samples.

• CK equations compute exact marginals of Markov chain.

• Stationary distribution of homogeneous Markov chain (PageRank).

