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Objectives For Today

Get you to
* Understand what probabilistic programming is
* Think generatively
* Understand inference
* Importance sampling
« SMC
« MCMC

e Understand something about how modern, performant higher-order
probabilistic programming systems are implemented at a very high level



Probabilistic Programming
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Probabillistic Programs

“Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the ability to condition values of variables in a
program via observations.”

Gordon, Henzinger, Nori, and Rajamani
“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).
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Evaluators that automate Bayesian inference
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Existing Languages

Graphical Models Factor Graphs
Y, “ ‘AY‘. , ’ Y
BUGS STAN Factorie Infer.NET
Infinite Dimensional Unsupervised
Parameter Space Models Deep Learning
S .@
STANFORD

Anglican WebPPL



BUGS

{
x ~ dnorm(1l, 1/5) %XI

for(i in 1:N) { @

y[i]l ~ dnorm(x, 1/2)
by

; (=) @

nN" <- 2
nyn <— C(9, 8)

« Language restrictions * Model class
» Bounded loops * Finite graphical models
» No branching * Inference - sampling
« Gibbs

Spiegelhalter et al. "BUGS: Bayesian inference using Gibbs sampling, Version 0.50." Cambridge 1995.



STAN : Finite Dimensional Differentiable Distributions

parameters {
real xs[T];

+
model {
xs[1] = normal(0.0, 1.0);
for (t in 2:T)
xs[t] ~ normal(a * xs[t - 1], q);
for (t in 1:T)
ys[t] ~ normal(xs[t], 1.0);
+

—> vX logp(X7 Y)

« Language restrictions
 Bounded loops

« No discrete random variables®
« Model class

Goal
p(x|y)

* Finite dimensional differentiable distributions

 [nference
« Hamiltonian Monte Carlo

 Reverse-mode automatic differentiation

 Black box variational inference, etc.

10

STAN Development Team "Stan: A C++ Library for Probability and Sampling." 2014.



Modeling language desiderata

» Unrestricted language (C++, Python, Lisp, etc.)
e “Open-universe” / infinite dim. parameter spaces
 Mixed variable types
* Pros
» Unfettered access to existing libraries
» Easily extensible
* Cons
e Inference is going to be harder

* More ways to shoot yourself in the foot



Deterministic Simulation and Other Libraries

(defquery arrange-bumpers []
(let [bumper-positions []

world (create-world bumper-positions)
end-world (simulate-world world)
balls ( end-world)

num-balls-in-box (balls-in-box end-world) ]

{ balls
num-balls-in-box
bumper-positions}))

goal: “world” that puts ~20% of balls in box...



Open Universe Models and Nonparametrics

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist))




Conditional (Stochastic) Simulation

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)




New Kinds of Models

x)p(x
plxly) = PV i
X y
program source code program return value
scene description image
policy and world rewards
cognitive process observed behavior

simulation simulator output



Thinking Generatively



CAPTCHA breaking

SMKBDF

Can you write a
program to do this?

Mansinghka, Kulkarni, Perov, and Tenenbaum
“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).



Captcha Generative Model

e 6

(defm sample-char []

{:symbol (sample (uniform ascii))
:X-pos (sample (uniform-cont 0.0 1.0))
:y-pos (sample (uniform-cont 0.0 1.0))
:size (sample (beta 1 2))

:style (sample (uniform-dis styles))

2D

(defm sample-captcha []
(let [n-chars (sample (poisson 4))
chars (repeatedly n-chars
sample-char)
noise (sample salt-pepper)

]

gen-image))



Conditioning

(defquery captcha [true-image]
(let [gen-image (sample-captcha)]
(observe (similarity-kernel gen-image)
true-image)
gen-image))

™~ Generative
Model

‘(doquery :ipmcmc captcha true-image) ‘

\

Inference




Captcha Solving
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Perception / Inverse Graphics

Scene Description
X

Inferred
(reconstruction)
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Inferred model
re-rendered with
novel lighting

Inferred model
re-rendered with
novel poses

scene description

Mansinghka, Kulkarni, Perov, and Tenenbaum.
'Approximate Bayesian image interpretation using

generative probabilistic graphics programs." NIPS (2013).

Kulkarni, Kohli, Tenenbaum, Mansinghka
"Picture: a probabilistic programming language for

scene perception." CVPR (2015). 20



Directed Procedural Graphics

Stable Static Structures

Procedural Graphics

simulation

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

constraint

Ritchie, Lin, Goodman, & Hanrahan.
Generating Design Suggestions under Tight Constraints
with Gradient-based Probabilistic Programming.

In Computer Graphics Forum, (2015)

Ritchie, Mildenhall, Goodman, & Hanrahan.
“Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo.” 21

SIGGRAPH (2015)



Program Induction
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(lambda (stack-id) (safe-uc (* (if (< 0.0 (* (* (* -1.0 (begin (define
G 1147 (safe-uc 1.0 1.0)) 0.8)) (* 0.0 (+ 0.0 (safe-uc (* (* (dec -2 X v p(be)

.07_(safe—sqrt (begin (define G_ 1148 3.14159) (safe-log -1.0)))) 2.0)
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X ~ p(x)

program source code program output

Perov and Wood.
"Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation"
AGI (2016).



Thinking Generatively about Discriminative Tasks

(defquery lin-reg [x-vals y-vals]
(let [m (sample (normal 0 1))
c (sample (normal 0 1))
f(fn [x] (+ (" m x) c))]
(map (fn [x y]
(observe
(normal (f x) 0.1) y))
x-vals y-vals))
[m c])

(doquery :ipmcmc lin-reg data options)

10F

0.8
0.6 -
0.4}
0.2 |
0.0 |

([0.58 -0.05] [0.49 0.1] [0.55 0.05] [0.53 0.04] ....




(Re-"?) Introduction to
Bayesian Inference



A simple continuous example

* Measure the temperature of some water using an
iInexact thermometer

* The actual water temperature x is somewhere near
room temperature of 22°; we record an estimate y.

x ~ Normal(22,10)
y|x ~ Normal(x,1)

Easy question: whatis p(y | x = 25)7?

Hard question: whatis p(x | y = 25)?



General problem:

5= P01 =0y 12)p()/p())

L Posterior L Likelihood |— Prior

 Qur datais given by y
« Our generative model specities the prior and likelihood

 We are interested in answering questions about the
posterior distribution of p(x | y)



General problem:

5= P 19)=p(y [2)p()/p(Y) |

L Posterior L Likelihood |— Prior

* [ypically we are not trying to compute a probabillity
density function for p(x | y) as our end goal

* Instead, we want to compute expected values of some
function f(x) under the posterior distribution



EXpectation

e Discrete and continuous:

e Conditional on another random variable:

E.[fly] = Zp zly) f



Key Monte Carlo identity

 \We can approximate expectations using samples
drawn from a distribution p. If we want to compute

we can approximate it with a finite set of points
sampled from p(x) using

which becomes exact as N approaches infinity.



How do we draw samples?

o Simple, well-known distributions: samplers exist (for
the moment take as given)

e \We will look at:;

1. Build samplers for complicated distributions out of
samplers for simple distributions compositionally

2. Rejection sampling
3. Likelihood weighting

4. Markov chain Monte Carlo



Ancestral sampling from a model

* In our example with estimating the water temperature,
suppose we already know how to sample from a
normal distribution.

x ~ Normal(22,10)

¥|x ~ Normal(x, 1)

We can sample y by literally simulating from the
generative process: we first sample a “true”
temperature x, and then we sample the observed y.

e This draws a sample from the joint distribution p(x, y).



Samples from the joint distribution
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Conditioning via rejection

 What if we want to sample from a conditional
distribution”? The simplest form is via rejection.

e Use the ancestral sampling procedure to simulate
from the generative process, draw a sample of x
and a sample of y. These are drawn together from
the joint distribution p(x, y).

« To estimate the posterior p(x | y = 25), we say that
X is a sample from the posterior if its corresponding
value y = 25.

 Question: is this a good idea?



Conditioning via rejection
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Black bar shows measurement at y = 25.
How many of these samples from the joint have y =257



Conditioning via importance sampling

* One option is to sidestep sampling from the

posterior p(x | y = 3) entirely, and draw from some
proposal distribution g(x) instead.

* Instead of computing an expectation with respect
to p(x|y), we compute an expectation with respect

to g(x):
Ep(oly)Lf / f(z)p(zly)d

o()
= [ t@plat) &5 da

_E,., { f(x)p(fv\y)]

q()




Conditioning via importance sampling

 Define an “importance weight” W(z) = p(f(’j’?;)
q\x

* Then, with x; ~ q(x)

1 N

Ep(aly) [/ (2)] = Eq(a) [f ()W (2)] = = D [ (@)W (x:)

1=1

* Expectations now computed using weighted
samples from g(x), instead of unweighted samples

from p(x|y)



Conditioning via importance sampling

o Typically, can only evaluate W(x) up to a constant
(but this is not a problem):

e = pé‘?;l?) w(zs) = PZ0Y

e Approximation:




Conditioning via importance sampling

 We already have very simple proposal distribution
we know how to sample from: the prior p(x).

e [he algorithm then resembles the rejection
sampling algorithm, except instead of sampling
both the latent variables and the observed
variables, we only sample the latent variables

e Then, instead of a “hard” rejection step, we use the
values of the latent variables and the data to assign
“soft” weights to the sampled values.



Likelihood weighting schematic
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Likelihood weighting schematic
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What does p(y|x) look like for this sampled x ?



Likelihood weighting schematic
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Likelihood weighting schematic
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What does p(y|x) look like for this sampled x ?



Likelihood weighting schematic
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Likelihood weighting schematic
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Conditioning via MCMC

* Problem: Likelihood weighting degrades poorly as the
dimension of the latent variables increases, unless we
have a very well-chosen proposal distribution g(x).

* An alternative: Markov chain Monte Carlo (MCMC)
methods draw samples from a target distribution by
performing a biased random walk over the space of the
latent variables x.

e |dea: create a Markov chain such that the sequence of
states xo, X1, X2, ... are samples from p(x | y)

p(iﬂn!fn—ﬂ




Conditioning via MCMC

« MCMC also uses a proposal distribution, but this proposal
distribution makes local changes to the latent variables x.
The proposal g(x' | x) defines a conditional distribution
over x' given a current value x.

e Typical choice: add small amount of Gaussian noise
* We use the proposal and the joint density to define an

‘acceptance ratio”
/ /
A(a: _ ZIZ,) — min (1’ p(:l? ,y)q(SIZ/‘CIS ))
p(z,y)q(x’|z)

 Metropolis-Hastings: with probability A we "move” state
with the new value x’, otherwise we stay at x.



Measurement vy

MCMC schematic
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The (unnormalized) joint distribution p(x,y)
IS shown as a dashed line



MCMC schematic

MCMC initialization
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Initialize arbitrarily (e.g. with a sample from the prior)



MCMC schematic

First MCMC step
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Propose a local move on x from a transition distribution



Measurement y
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1 MCMC iteration
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Here, we proposed a point in a region of
higher probabillity density, and accepted



MCMC schematic

10 MCMC iterations
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Continue: propose a local move, and accept or reject.
At first, this will look like a stochastic search algorithm!



MCMC schematic

100 MCMC iterations
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MCMC schematic

200 MCMC iterations
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MCMC schematic
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Helpful diagnostic: a “trace plot” of the path of the sampled
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MCMC schematic
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How It Works:
PPL Inference



Start With A Program

(let [z (sample (bernoulli 0.5))
mu (if (= z 0) -1.0 1.0)
d (normal mu 1.0)
y 0.5]
(observe d y)
z)

Program

57



Semantically Agreed Mathematical Object

(let [z (sample (bermnoulli 0.5)) V ={z,y},
mu (if (= z 0) -1.0 1.0) A=A{(zy)},
d (()n;]rmal mu 1.0) » P = [z~ (Pbern 2 0.5),
y V. Y = (Pnorm ¥ (if (=2 0) -1.0 1.0) 1.0)]
(observe d y)
2) Y= [y~ 0.5]

E= z

Program Mathematic Object

58



Rules of Inference

(let [z (sgmple (bernoulli 0.5)) V= {2y}
mu (if (= z 0) -1.0 1.0) A={(z,9)}
d (normal mu 1.0) » P = [z (Dpem 2 0.5,
(observe d y)
Y= [y+— 0.5]
z)
E= z
Program Mathematic Object
p, ¢, e1d G1, By p, ¢, e2 ) Ga2, Eo
(V,A,P,Y) =G1 @ Gy Choose a fresh variable v
Fy = SCORE(FEq,v) # L F=(f¢F 1)

Z = (FREEVARS(Fy) \ {v}) NV FREEVARS(F2)NV =0
B={(z,v):z€ Z}

p, ¢, (observee; ex) | (VU{v}, AUB, PO v F|, Y@ [v— Es]), E»

Big Step Operational Semantics -



Intuitive Evaluation Perspective

(defquery example [yl
(let [x (sample (beta 1 1))] ; f(x)
(observe (bernoulli x) y) ; ¢g(y|x) @

X))

* Syntactically denotes joint and conditioning
N M

v(x) £ p(x,y) = | [ giwiléa) || £ (=;16;)
i=1 j=1

e Evaluator characterizes

p(xly) =

60



race Probability

e Defined as (up to a normalization constant)
N M

V(%) = p(x,y) = Hgi(yz‘\ﬁbz‘) H fi(@;16;)
i=1 j=1

e Simple notation hides complex dependency structure!

X6

—
- .

X4 Xj=T1 X XTI
—

' a )

(e (@~(z(() e

N

v(x) = p(x,y) = | [ 3i(xn,) (yf,;

i=1 j=1




-xecution (Trace)-Based Inference
Sequence of N observe’s

{(gi> b, vi) iy
Sequence of M sample’s
{(f5,05) 1%
Sequence of M sampled values

{z; }j\g

Conditioned on these sampled values the entire trace is
deterministic



Three Base Algorithms
» Likelihood Weighting

* Importance sampling with prior as proposal
* Metropolis Hastings

e Sequential Monte Carlo



Likelihnood Weighting

 Run K independent copies of program simulating from
the prior

k :Mk .
o) = T] ia165)



Likelihnood Weighting

 Run K independent copies of program simulating from
the prior

k :Mk .
o) = T] ia165)

* Accumulate unnormalized weights (likelihoods)

wxt) = 250 = [Tkt 1oh



Likelihnood Weighting

 Run K independent copies of program simulating from
the prior

k :Mk (k| gk
o) =TT 5100

* Accumulate unnormalized weights (likelihoods)

wxt) = 250 = [Tkt 1oh

« Use in approximate (Monte Carlo) integration

w(xF)

Wk =
K
D g w(xF) —

BLOG default inference engine:
ianlogic.qgithub.i




Likelihood Weighting Schematic
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Metropolis Hastings = “Single Site” MCMC = LMH

Posterior distribution of execution traces is proportional to trace score with
observed values plugged in

’V(X> il p(X,Y) — Egz(yz\@) ];Efj(ﬂfjwj) 7T(X) L p(X\y) _ %

Metropolis-Hastings acceptance rule

Need proposal

Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum “Church: a language for generative models.” UAI 2008. 68
Wingate, Stuhimiller, Goodman “Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation” AISTATS 2011



LMR Proposal

Probability of new part of
proposed execution trace

q(x'[x%) = = r(xglep) H fi(3163)

J=¢+1

Number of samples in
original trace



LMH Acceptance Ratio

“Single site update” = sample from the prior = run program forward
’f(xfm|xm> — fm(xf/m’@m)a Om = ‘9;7@
MH acceptance ratio

Probability of original trace continuation
Number of sample statements restarting proposal trace at mth sample

In original trace /
/ M
Y(X )M [T, fi(z;]05)
M/

/ / / /
y(x)M' [ [, f5(x5]65)
Number of sample statements Probability of proposal trace continuation
In new trace restarting original trace at mth sample

70



L MH Schematic
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L MH Variants

Q—b. .—b. Q—PQ .—V. Q—V.

\A \A \A

D. Wingate, A. Stuhlmueller, and N. D. Goodman.
"Lightweight implementations of probabilistic programming languages via transformational compilation." AISTATS (2011).

*o—> 0 .—V' .—V‘ .—P. .—V. .—V.

\A \A \A

WebPPL
Anglican

Q—V' C—V. Q—V. .—VQ 0—?0

\A \A \A

'C3: L|ghtwe|ght Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching."
D. Ritchie, A. Stuhimuller, and N. D. Goodman. arXiv:1509.02151 (2015).

with continuations:



2015 : Probabilistic Programming

* Restricted (i.e. STAN, BUGS, infer.NET)
« Easier inference problems -> fast
* Impossible for users to denote some models
* Fixed computation graph
* Unrestricted (i.e. Anglican, WebPPL)
* Possible for users to denote all models
« Harder inference problems -> slow
* Dynamic computation graph

« Fixed, trusted model; one-shot inference

73



The Al/Repeated-Inference Challenge

‘Bayesian inference is computationally expensive. Even
approximate, sampling-based algorithms tend to take many
iterations before they produce reasonable answers. In
contrast, human recognition of words, objects, and scenes is
extremely rapid, often taking only a few hundred milliseconds
—only enough time for a single pass from perceptual
evidence to deeper interpretation. Yet human perception
and cognition are often well-described by probabilistic
inference in complex models. How can we reconcile the
speed of recognition with the expense of coherent
probabilistic inference” How can we build systems, for
applications like robotics and medical diagnosis, that exhibit
similarly rapid performance at challenging inference tasks?”

Stuhimuller A, Taylor J, Goodman N. Learning stochastic inverses. In Advances in Neural Information Processing Systems 2013 (pp. 3048-3056).



Resulting Trend In Probabillistic Programming

One-shot Probabilistic ”

Programming

Inference?
Unsupervised
Repeated lnfer?nc.e Deep
Compilation !
Learning
Yes No

Have fully-specified model?

75



Inference Compilation



Inference Compilation

Compilation Inference

Now C++, Python, or Clojure!

Training data Test data
fx(m) ym} | y
~_Probabilistic program
p(x,y)
NN architecture ™~
v SIS

\
O O 0 <« Compilation artlfact /

( Of /% x| y:9) l

Training — Posterior
Dy (p(x | y) || p(x|y)
q(x|y;9))
Expensive / slow Cheap / fast

Input: an inference problem denoted in a probabilistic programming language

Output: a trained inference network (deep neural network “compilation artifact”)

Le TA, Baydin AG, Wood F. Inference Compilation and Universal Probabilistic Programming. AISTATS. 2017.



Example Non-Conjugate Regression
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Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016.



Captcha Breaking
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$1.8M USD; '17-21 — Hasty: A Generative Model Compiler
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Data-Driven Discovery of Models (D3M)
Mr. Wade Shen
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