
Introduction to probabilistic
programming

Frank Wood

fwood@cs.ubc.ca

Objectives For Today
Get you to

• Understand what probabilistic programming is

• Think generatively

• Understand inference

• Importance sampling

• SMC

• MCMC

• Understand something about how modern, performant higher-order
probabilistic programming systems are implemented at a very high level

AI:
Deep

Learning

Probabilistic Programming

ML:
Algorithms &
Applications

STATS:
Inference &

Theory

PL:
Evaluators &
Semantics

Probabilistic
Programming

Statistics

y

p(y|x)p(x)

p(x|p(x|y)

Intuition

Parameters

Program

Output

CS

Parameters

Program

Observations

Probabilistic Programming

Inference

Probabilistic Programs
“Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the ability to condition values of variables in a
program via observations.”

Gordon, Henzinger, Nori, and Rajamani
“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).

Key Ideas

Programming Language Abstraction Layer

Evaluators that automate Bayesian inference

Models

CARON ET AL.

This lack of consistency is shared by other models based on the Pólya urn construction (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier (2011) provide a
detailed discussion on this issue and describe cases where one should or should not bother about it.

It is possible to define a slightly modified version of our model that is consistent under marginal-
isation, at the expense of an additional set of latent variables. This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to
satisfy (B). This can be easily achieved if for k 2 I(mt

t)

Uk,t ⇠
⇢

p (·|Uk,t�1) if k 2 I(mt
t�1)

H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time series
literature, many approaches are available to build such transition kernels based on copulas (Joe,
1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize the full
model by the following Bayesian network in Figure 1. It can also be summarized using a Chinese
restaurant metaphor (see Figure 2).

Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed graphi-
cal model, representing conditional independencies between variables. All assignment
variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
P

im
t
i,t�1 of alive allocation variables at time

t can be written as

At =
t�1X

j=1

nX

k=1

Xj,k

8

Gaussian Mixture Model

¼

µc

y
i

k

k

i

N

K

K

α

Gπ

θc

y
i

k

k o

i

N

K

K

α

Gπ

θc

y
i

k

k o

i

N

1

1

Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM

ci |~⇡ ⇠ Discrete(~⇡)

~yi |ci = k ;⇥ ⇠ Gaussian(·|✓k).

~⇡|↵ ⇠ Dirichlet(·| ↵
K

, . . . ,
↵

K
)

⇥ ⇠ G0

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 16 / 19

WOOD GROUP

In this Q(z) is the question, �(x) = p(x,y) is the model and computationally charac-
terizing p⌧ (x|y) = �(x)

Z�
is “inference.”

To unify our vocabularly and align it with the probabilistic programming discussion
forthcoming let’s review: model based reasoning involves formulating questions whose
answers can be computed by averaging a function over the posterior distribution of
the latent variables in a generative model. Traditionally models are denoted mathe-
matically, usually as parameterized probability models. Probabilistic programming is
firstly about denoting models in a more principled way, using computer language syn-
tax. Inference (characterizing posteriors) is traditionally performed by first picking an
inference technique and then applying it to the model in hand, manually deriving the re-
quired updates and then coding an inference algorithm composed of all algorithms that
compute all of the individually derived updates according to a schedule often specified
by the inference algorithm too. Probabilistic programming is secondly about automat-
ing inference, namely, given a model specification, figuring out a way to compute and
represent p(x|y) with no required intervention from the user.

The structure of probabilistic programming languages bear some resemblance to
each other but vary syntactically and in terms of what kinds of models can be rep-
resented. To give you one example of how one language maps onto this formalism
consider Alg. 1 which gives, in Anglican (Wood et al., 2014) (specifically with the up-
dated syntax (Wood et al., 2015)), a concise mapping between the notation introduced
and how it might be expressed programmatically.

Anglican is language with sampling semantics which means that �(x) is repre-
sented by an infinite sequence of samples with the property that Eqn. 5 can be com-
puted as a converging Monte Carlo approximation

E[Q(z)] ⇡ 1

K

KX

k=1

Q(zk) (6)

E[Q(x)] ⇡ 1

K

KX

k=1

Q(xk) (7)

where zk = {xk [y} and xk ⇠ �(x). Note that this means that the Anglican program
(or any language with sampling semantics) can either return a sequence of zk’s or a
sequence of Q(zk)’s, it matters not.

p(x|y) = p(x,y)

p(y)
(8)

=
g(y|x)f(x)

p(y)
(9)

=
g(y|x)f(x)R
g(y|x)f(x)dx

(10)

/ g(y|x)f(x) (11)

8

WOOD GROUP

In this Q(z) is the question, �(x) = p(x,y) is the model and computationally charac-
terizing p⌧ (x|y) = �(x)

Z�
is “inference.”

To unify our vocabularly and align it with the probabilistic programming discussion
forthcoming let’s review: model based reasoning involves formulating questions whose
answers can be computed by averaging a function over the posterior distribution of
the latent variables in a generative model. Traditionally models are denoted mathe-
matically, usually as parameterized probability models. Probabilistic programming is
firstly about denoting models in a more principled way, using computer language syn-
tax. Inference (characterizing posteriors) is traditionally performed by first picking an
inference technique and then applying it to the model in hand, manually deriving the re-
quired updates and then coding an inference algorithm composed of all algorithms that
compute all of the individually derived updates according to a schedule often specified
by the inference algorithm too. Probabilistic programming is secondly about automat-
ing inference, namely, given a model specification, figuring out a way to compute and
represent p(x|y) with no required intervention from the user.

The structure of probabilistic programming languages bear some resemblance to
each other but vary syntactically and in terms of what kinds of models can be rep-
resented. To give you one example of how one language maps onto this formalism
consider Alg. 1 which gives, in Anglican (Wood et al., 2014) (specifically with the up-
dated syntax (Wood et al., 2015)), a concise mapping between the notation introduced
and how it might be expressed programmatically.

Anglican is language with sampling semantics which means that �(x) is repre-
sented by an infinite sequence of samples with the property that Eqn. 5 can be com-
puted as a converging Monte Carlo approximation

E[Q(z)] ⇡ 1

K

KX

k=1

Q(zk) (6)

E[Q(x)] ⇡ 1

K

KX

k=1

Q(xk) (7)

where zk = {xk [y} and xk ⇠ �(x). Note that this means that the Anglican program
(or any language with sampling semantics) can either return a sequence of zk’s or a
sequence of Q(zk)’s, it matters not.

p(x|y) = p(x,y)

p(y)
(8)

=
g(y|x)f(x)

p(y)
(9)

=
g(y|x)f(x)R
g(y|x)f(x)dx

(10)

/ g(y|x)f(x) (11)

8

Probabilistic-ML,Haskell,Scheme,…

2000

1990

2010

Long History
PL

HANSAI

IBAL

Figaro

ML STATS

WinBUGS

BUGS

JAGS

STAN
LibBi

Venture Anglican

Church

Probabilistic-C

Infer.NET

webPPL

Blog

Factorie

AI

Prism

Prolog

KMP

ProbLog

Simula

⇤o

Hakaru GambleR2

Existing Languages

Factor Graphs

Factorie Infer.NET

Graphical Models

STANBUGS

Unsupervised
Deep Learning

ProbTorchPYRO

Infinite Dimensional
Parameter Space Models

Anglican WebPPL

• Language restrictions
• Bounded loops
• No branching

BUGS

9

A Tutorial on Probabilistic Programming

by recognizing that certain programs correspond to closed-form integrals. Note that there
can be transformations of complex models to graphical models in which computationally
e�cient inference can be performed, but we digress. More on this later.

FIXME – Write an example of the program transformation of a the BUGS program by
moving lines up...

For now, let’s examine how one might write an interpreter from a simple language like
BUGS to an actual graphical representation of the model denotation, and, further, how one
might implement a “generic” inference engine for computing the conditional distribution
specified by the model.

To start, every variable name to the left of a ⇠ denotes a random variable – and to
the right a distribution. There is another operator which instantiates another variable
(again on the left) that is a deterministic function of values to its right.

Interpreting this kind of model then involves running a program to, in this case, build
a graphical model (for this model, Fig. 1). Note that in this quite simple example we don’t
have any deterministic variables, but, even in the general setting, these don’t cause trouble
in figuring out a way to interpret the program, just, potentially, how well the conditional
distribution denoted by the program can be characterized.

a b

c
x

y1y2

Figure 1: Graphical model for Gaussian unknown mean model

Now, given such a graphical structure, one can examine it and pattern match to, for
instance, per-vertex Gibbs operators for use in a global Gibbs sampling algorithm. As
this and programs allowed by the BUGS modeling language, describe directed graphical
models (and, in the case of many BUGS/JAGS packages will cause a compilation error
if you attempt to define a model with cycles) then you can compute the Markov blanket
for each node and attempt to pattern match it to an “e�cient” Gibbs operator for such
a node. In this case we might identify the Markov blanket of x as being all the variables
in the model and then, given the type of the variable (available, syntactically, from the
name of the of the random procedure, here dnorm). If each random procedure includes type
information in the form of its domain, a function that evaluates the density or distribution
of it’s output given its arguments, and, perhaps, whether or not it can form a conjugate
relationship with any other distributions, then, pattern matching on the graph can be used
to select amongst a bank of univariate (or, rather, single random variable – which might
not be univariate) samplers that apply to that particular pattern, and, in the case of Gibbs
kernels that require evaluating the probability of the variable at the node (like, for instance,

9

Spiegelhalter et al. "BUGS: Bayesian inference using Gibbs sampling, Version 0.50." Cambridge 1995.

Adam Golinski, Frank Wood

model
{

x ~ dnorm(1, 1/5)
for(i in 1:N) {

y[i] ~ dnorm(x, 1/2)
}

}
"N" <- 2
"y" <- c(9, 8)

Code 1: BUGS model definition and data input for the
Conjugate Gaussian example.

sequence of stochastic and deterministic relations.

BUGS also o�ers for loop construct which is a syn-
tactic sugar that is unrolled for each value in the vec-
tor of values provided. Following JAGS Manual [10]:
for loops are used in the the BUGS language to sim-
plify writing repeated relations. A loop takes the form
for (i in expr) {exprs} where expr is any expres-
sion that evaluates to an integer vector. The contents
of the for loop inside the curly braces will then be
expanded with the index i taking each value in the
vector expr. For example

for (i in 1:3) {
Y[i] ~ dnorm(mu, tau)

}

is equivalent to

Y[1] ~ dnorm(mu, tau)
Y[2] ~ dnorm(mu, tau)
Y[3] ~ dnorm(mu, tau)

This implies that each loop construct is unrolled into a
sequence of relations according to the language defini-
tion in Table 1.

The relations in the model do not have to respect the
order dictated by the dependency relationships between
variables (or nodes in the framework of graphical mod-
els). This is an another important observation for the
design of the compiler.

Throughout the rest of this work we will use the Con-
jugate Gaussian example. See an example of a BUGS
model definition and the R language data input (as used
in JAGS) presented in Code 1 and the corresponding
graphical model in Figure 2.

2.2 Anglican FOPPL

The target language of the compiler we are introducing
in this work is a restricted subset of Anglican [12] and
Clojure [3] syntax that limits the expressivity of the
language in a way that makes it a FOPPL - for this

x

y

≥ N (µx = 1, ‡x =
Ô

5)

≥ N (µy = x, ‡y =
Ô

2)

N

Figure 2: The graphical model of the Conjugate Gaus-
sian example. Value of ‡y is fixed.

reason we will refer to it as Anglican FOPPL. A thor-
ough description and discussion of Anglican FOPPL is
given by Wood Group [14], while a concise definition
is presented in Table 2. Because Anglican FOPPL is
compatible with Anglican it is possible to run inference
on the translated models using the inference engines
implemented in Anglican.

3 Design of the compiler

The first stage of the compilation process is lexing
(recognizing the string tokens) and parsing the input
into a syntax tree according to a defined grammars.
The lexing and parsing grammars were adapted from
the JAGS implementation of the BUGS language [9]
and translated to ANTLRv4 [8] which is a modern,
flexible and popular lexing and parsing tool.

Next step in the operation of the compiler is transform-
ing the parse tree into an intermediate representation
referred to as an abstract syntax tree (abbreviated
as AST) by removing the syntactic information left-
over from the parsing process. AST aims to convey
the semantic information about the nature of the pro-
gram. To achieve that compiler performs multiple
passes over the tree data structure introducing consec-
utive changes to strip away the syntactic information.
Figure 7 presents an example of an AST for the Con-
jugate Gaussian example after the first pass of the
compiler.

Next, the AST is transformed into the Anglican pro-
gram by a further sequence of compiler passes. The
compiler performs a total of approximately 20 passes
to perform the translation process.

The most important processes happening during the
compilation process are (in appropriate order): lexing
and parsing, stripping syntactic content, translating
and reparameterizing functions and distributions, in-
versing link functions, unrolling loops, initiating array
variables, creating the dependency graph, translating
individual relations, ordering the relations in the topo-
logical sort order.

• Model class
• Finite graphical models

• Inference - sampling
• Gibbs

STAN : Finite Dimensional Differentiable Distributions

• Language restrictions
• Bounded loops
• No discrete random variables*

• Model class
• Finite dimensional differentiable distributions

• Inference
• Hamiltonian Monte Carlo

• Reverse-mode automatic differentiation
• Black box variational inference, etc.

10

WOOD GROUP

These languages include Anglican (Wood et al., 2014), Venture (Mansinghka et al.,
2014), and WebPPL (Goodman and Stuhlmüller, 2014).

14.1 Model Definition Syntax

The above systems make different trade-offs in terms of the models they can express
and the inference algorithms that the back end provides. In order to understand these
trade-offs, we compare the modeling and inference capabilities in a series of example
programs. To illustrate the basic model definition syntax in each system, we begin by
considering a simple one-dimensional linear dynamical system (LDS), with generative
model

x1 ⇠ Normal(0.0, 1.0) (153)
xt|xt�1 ⇠ Normal(a xt, q) for t = 2, . . . , T (154)
yt|xt ⇠ Normal(xt, 1.0) (155)

We assume that the parameters a and q are known, but specify them symbolically to
illustrate how their values can be passed to the model.

In our description

14.1.1 STAN

data {
int<lower=2> T;
real ys[T];
real a;
real q;

}
parameters {

real xs[T];
}
model {

xs[1] ~ normal(0.0, 1.0);
for (t in 2:T)

xs[t] ~ normal(a * xs[t - 1], q);
for (t in 1:T)

ys[t] ~ normal(xs[t], 1.0);
}

In Stan models are specified using an imperative syntax that minimally contains
three required blocks: data, parameters, and model. Figure 12 show these three
blocks for the 1-dimensional LDS. The data block defines the type signature of all
known variables and constants, whose values must be supplied to the back end prior
to inference. The parameters block defines type signatures for all unknown variables,

90

WOOD GROUP

(HMC) is one such approach. In HMC, we consider the joint distribution over all la-
tent random variables x in the target density as a real-valued potential energy function
U(x), with

⇡(x) =
1

Z
exp {�U(x)} . (72)

Hamiltonian Monte Carlo introduces auxiliary “momentum” variables p, with K(p) rep-
resenting the kinetic energy of the system. The momentum variables are typically
defined as from a zero-mean Gaussian with covariance M, noting that the dimension
of p is the same as the dimension of x (i.e., if x 2 RD, then also p 2 RD). This yields
a joint target distribution ⇡0(x,p) given by

⇡0(x,p) =
1

Z 0 exp{�U(x) � K(p)} (73)

=
1

Z 0 exp

⇢
�U(x) +

1

2
p>M�1p

�
. (74)

The total energy of the system is defined by a function known as the Hamiltonian,

H(x,p) = U(x) +K(p). (75)

By way of physical analogy, we can consider the energy “landscape” defined by U(x)
(with lower-energy states having higher probability), with the kinetic energy pushing our
sampler along this surface. If we consider this “movement” of the sampler over some
time ⌧ , the time evolution of the system is given by the differential equations

@x

@⌧
=

@H

@p
= M�1p (76)

@p

@⌧
= �@H

@x
= �rxU(x). (77)

Considering the flow from some initial point x(0),p(0) to x(⌧),p(⌧), Hamiltonian sys-
tems are known to preserve total energy H(·), preserve volume, and be time reversible.
Solving the differential equation can be accomplished via any numerical integration
technique which is volume-preserving and time-reversible; ideally it would (at least ap-
proximately) also preserve total energy. Since holding total energy fixed also holds the
joint density fixed, MCMC proposals which integrate the Hamiltonian for some distance
⌧ make steps which keep the joint density fixed and thus (were it not for the numeric
integration error) would produce an acceptance rate of 1. The volume-preserving prop-
erty means that it is unnecessary to compute any change-of-variables Jacobian term
in the acceptance ratio.

MCMC with Hamiltonian dynamics then proceeds by alternately sampling the mo-
mentum variables, and then simulating the forward dynamics. Since ⇡0(x,p) factorizes
into a product of independent distributions on x and p, the momentum variables p are

52

STAN Development Team "Stan: A C++ Library for Probability and Sampling." 2014.

rx log p(x,y)

Goal
p(x|y)

Modeling language desiderata
• Unrestricted language (C++, Python, Lisp, etc.)

• “Open-universe” / infinite dim. parameter spaces

• Mixed variable types

• Pros

• Unfettered access to existing libraries

• Easily extensible

• Cons

• Inference is going to be harder

• More ways to shoot yourself in the foot

Deterministic Simulation and Other Libraries
(defquery arrange-bumpers []
 (let [bumper-positions []

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)]

 {:balls balls
 :num-balls-in-box num-balls-in-box
 :bumper-positions bumper-positions}))

goal: “world” that puts ~20% of balls in box…

(defquery arrange-bumpers []
 (let [number-of-bumpers (sample (poisson 20))
 bumpydist (uniform-continuous 0 10)
 bumpxdist (uniform-continuous -5 14)
 bumper-positions (repeatedly
 number-of-bumpers
 #(vector (sample bumpxdist)
 (sample bumpydist)))

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)]

 {:balls balls
 :num-balls-in-box num-balls-in-box
 :bumper-positions bumper-positions}))

Open Universe Models and Nonparametrics

(defquery arrange-bumpers []
 (let [number-of-bumpers (sample (poisson 20))
 bumpydist (uniform-continuous 0 10)
 bumpxdist (uniform-continuous -5 14)
 bumper-positions (repeatedly
 number-of-bumpers
 #(vector (sample bumpxdist)
 (sample bumpydist)))

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)

 obs-dist (normal 4 0.1)]

 (observe obs-dist num-balls-in-box)

 {:balls balls
 :num-balls-in-box num-balls-in-box
 :bumper-positions bumper-positions}))

Conditional (Stochastic) Simulation

New Kinds of Models

yx

program source code program return value

scene description image

cognitive process observed behavior

policy and world rewards

simulation simulator output

p(x|y) = p(y|x)p(x)
p(y)

A TUTORIAL ON PROBABILISTIC PROGRAMMING

a b

c
x

y1y2

Figure 1: Graphical model for Gaussian unknown mean model

x

y

Figure 2: General graphical model

error if you attempt to define a model with cycles) then you can compute the Markov
blanket for each node and attempt to pattern match it to an “efficient” Gibbs operator
for such a node. In this case we might identify the Markov blanket of x as being all the
variables in the model and then, given the type of the variable (available, syntactically,
from the name of the of the random procedure, here dnorm). If each random proce-
dure includes type information in the form of its domain, a function that evaluates the
density or distribution of it’s output given its arguments, and, perhaps, whether or not
it can form a conjugate relationship with any other distributions, then, pattern matching
on the graph can be used to select amongst a bank of univariate (or, rather, single
random variable – which might not be univariate) samplers that apply to that particular
pattern, and, in the case of Gibbs kernels that require evaluating the probability of the
variable at the node (like, for instance, an enumerative local kernel for a discrete node),
compute the probability of a new value for the random variable at that node.

In this case p(x; a, b) is univariate normal so we know that x 2 R and, additionally,
if a and b are fixed and y1 and y2 are either normally distributed with mean x (as they
are in this example) or normally distributed with means given by affine functions of x
(which can be detected by a pattern like y[i] ~ dnorm(d*x+e,c) which again isn’t
hard to detect, particularly as this particular program is equivalent and could trivially be
rewritten to

f <- d*x+e
y[i] ~ dnorm(f,c)

23

Thinking Generatively

CAPTCHA breaking

yx

text image
Mansinghka, Kulkarni, Perov, and Tenenbaum

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).

Can you write a
program to do this?

SMKBDF

Captcha Generative Model
(defm sample-char []
 {:symbol (sample (uniform ascii))
 :x-pos (sample (uniform-cont 0.0 1.0))
 :y-pos (sample (uniform-cont 0.0 1.0))
 :size (sample (beta 1 2))
 :style (sample (uniform-dis styles))
 …})

(defm sample-captcha []
 (let [n-chars (sample (poisson 4))
 chars (repeatedly n-chars
 sample-char)

noise (sample salt-pepper)
…]

gen-image))

Conditioning
(defquery captcha [true-image]
 (let [gen-image (sample-captcha)]

(observe (similarity-kernel gen-image)
true-image)

gen-image))

(doquery :ipmcmc captcha true-image)

Inference

Generative
Model

Perception / Inverse Graphics

20

Kulkarni, Kohli, Tenenbaum, Mansinghka
"Picture: a probabilistic programming language for

scene perception." CVPR (2015).

Mansinghka, Kulkarni, Perov, and Tenenbaum.
"Approximate Bayesian image interpretation using

generative probabilistic graphics programs." NIPS (2013).

Observed
Image

Inferred
(reconstruction)

Inferred model
re-rendered with

novel poses

Inferred model
re-rendered with

novel lighting

Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture
In this section, we will explain the essential architectural

components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S

⇢ and tolerance variables X
⇢,

and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X

⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.
We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:

P (Spres
i

= 1) = 0.5 P (Sx

i
= x) =

⇢
1/w 0  x  w
0 otherwise

P (Sy

i
= y) =

⇢
1/h 0  x  h
0 otherwise

P (Sglyph id
i

= g) =

(
1/G 0  Sglyph id

i
< G

0 otherwise
P (S✓

i
= g) =

⇢
1/2✓max �✓max  S✓

i
< ✓max

0 otherwise

Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths Xi

j
⇠ � · Beta(1, 2), a global image blur on the rendered

image Xblur rendered ⇠ � · Beta(1, 2), a global image blur on the original test image Xblur test ⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within

4

Captcha Solving Scene Description

yx

scene description image

xy y x

Directed Procedural Graphics

21

EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Generating Design Suggestions under Tight Constraints with

Gradient-based Probabilistic Programming

Daniel Ritchie Sharon Lin Noah D. Goodman Pat Hanrahan

Stanford University

Figure 1: Physical realizations of stable structures generated by our system. To create these structures, we write programs that
generate random structures (e.g. a random tower or a randomly-perturbed arch), constrain the output of the program to be near
static equilibrium, and then sample from the constrained output space using Hamiltonian Monte Carlo.

Abstract

We present a system for generating suggestions from highly-constrained, continuous design spaces. We formulate
suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate
probability mass around sub-manifolds of the design space. These sampling problems are intractable using typical
random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient-based MCMC method.
We implement HMC in a high-performance probabilistic programming language, and we evaluate its ability to
efficiently generate suggestions for two different, highly-constrained example applications: vector art coloring
and designing stable stacking structures.

1. Introduction

Considering multiple possibilities is critical in design. Ex-
posure to different examples facilitates creativity—for in-
stance, prototyping multiple alternatives can lead to better-
quality final designs [KDK14, DGK⇤10]. Exploring the
whole space of creative options seems to help people avoid
fixation and overcome their unconscious biases [JS91].
Computation can assist with this exploration by generating

suggestions: given a model of the design space, computers
can synthesize examples that their users might never have
thought of independently.

In computer graphics, probabilistic inference has become
popular for computer-aided suggestion in domains as diverse
as color selection and furniture layout [LRFH13,YYW⇤12].
In this framework, the user provides a model of the de-
sign space by expressing her preferences as soft constraints,

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Ritchie, Lin, Goodman, & Hanrahan.
Generating Design Suggestions under Tight Constraints

with Gradient‐based Probabilistic Programming.
In Computer Graphics Forum, (2015)

Stable Static Structures

Ritchie, Mildenhall, Goodman, & Hanrahan.
“Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo.”

 SIGGRAPH (2015)

Procedural Graphics

yx

simulation constraint

Forward Sampling SOSMC-Controlled Sampling

Figure 3: SOSMC sampling from a random building complex
model with volume matching applied.

Figure 4: Using the object avoidance scoring function to make
gnarly trees grow around obstacles.

Figure 1 shows some examples of spaceships and trees sampled
according to this score function using SOSMC. Figure 3 applies
the same score function to encourage a building complex to take on
a crescent-like shape.

6.2 Object Avoidance

Volume matching allows an artist to specify what regions of space
a model should occupy; it can also be valuable to specify the space
a model should not occupy. For this control, the user provides a set
of objects with which the model should avoid contact. We rasterize
these objects onto a binary voxel grid Vavoid. The object avoidance
score function savoid is then

savoid(r) =
Y

x2D

1{Vr(x) " Vavoid(x)}

where " is logical NAND. This function imposes a hard constraint:
it returns 0 if Vr and Vavoid have any mutually filled cells and 1
otherwise.

Figure 4 shows two examples of using object avoidance to generate
trees that avoid obstacles. On the left, the tree avoids a wall with
three protruding ledges; on the right, it grows through and around
the SIGGRAPH logo. These examples also use a weaker version of
the volume matching score function (� = 0.05) to encourage the
trees to grow to a tall, full shape.

6.3 Image Matching

It is also useful to specify projective properties of a model, such as
how it looks from a particular viewpoint or when lit from a particu-

Front View Top View

Figure 5: The image matching scoring function is used to control
the appearance of a building complex from a particular viewpoint.
(Left): The model as viewed from the target viewpoint. (Right): The
model viewed from above.

Target

Front View

Top View

Figure 6: Using image matching to control the appearance of
a spaceship’s front profile. The SOSMC-sampled results closely
match the target when viewed head on but exhibit a variety of struc-
tures when viewed from other angles.

lar angle. We implement this type of control through image-based
comparisons. If Itarget is a target binary image defined over domain
D, and Ir is a rendering of the model described by trace r onto D,
then the image matching score function simatch is

simatch(r) = N (sim(Ir, Itarget), 1,�)

sim(I1, I2) =

P
x2D W (x) · 1{I1(x) = I2(x)}P

x2D W (x)

where W is a ‘weight image’ defined over D. The weight image
allows users to draw strokes over parts of the image domain where
strict matching is more or less important. For the results shown in
this paper, W is uniform unless explicitly shown. As with volume
matching, � is 0.02 unless otherwise specified.

Figure 5 shows a use of the image matching scoring function to en-
force a target silhouette for a building complex when viewed from
a particular angle. Note that the generated model is still free to
exhibit random structure when viewed from other angles.

In Figure 6, we use image matching to control the profile of a space-
ship. The generated models bear strong similarity to the target im-
age when viewed from the front but are otherwise unconstrained,
revealing diverse structure when viewed from other angles.

Figure 7 shows another use of image matching: controlling the
shadows cast by toy blocks strewn about a floor. Here, we decrease
the score error tolerance by an order of magnitude (� = 0.002), use

Program Induction

22

Perov and Wood.
"Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation"

AGI (2016).

yx

program source code program output

x ⇠ p(x)

x ⇠ p(x|y)

y

ỹ ⇠ p(·|x)ỹ ⇠ p(·|x)

Thinking Generatively about Discriminative Tasks

(defquery lin-reg [x-vals y-vals]
 (let [m (sample (normal 0 1)) 
 c (sample (normal 0 1))
 f (fn [x] (+ (* m x) c))]
 (map (fn [x y]

 (observe
 (normal (f x) 0.1) y))

 x-vals y-vals))
 [m c])

([0.58 -0.05] [0.49 0.1] [0.55 0.05] [0.53 0.04] ….

(doquery :ipmcmc lin-reg data options)

(Re-?) Introduction to
Bayesian Inference

• Measure the temperature of some water using an
inexact thermometer

• The actual water temperature x is somewhere near
room temperature of 22°; we record an estimate y. 

Easy question: what is p(y | x = 25) ?

Hard question: what is p(x | y = 25) ?

A simple continuous example

x ⇠ Normal(22, 10)
y |x ⇠ Normal(x , 1)

• Our data is given by y

• Our generative model specifies the prior and likelihood

• We are interested in answering questions about the
posterior distribution of p(x | y)

General problem:

Posterior Likelihood Prior

• Typically we are not trying to compute a probability
density function for p(x | y) as our end goal

• Instead, we want to compute expected values of some
function f(x) under the posterior distribution

General problem:

Posterior Likelihood Prior

• Discrete and continuous:

• Conditional on another random variable:

Expectation

1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) ! 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f]. For a discrete distribution, it is given by

E[f] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a

1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) ! 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f]. For a discrete distribution, it is given by

E[f] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a

20 1. INTRODUCTION

finite sum over these points

E[f] ≃ 1
N

N∑

n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f] = E
[
(f(x) −E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f] = E[f(x)2] −E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] −E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x −E[x]} {y −E[y]}]
= Ex,y[xy] −E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[
{x −E[x]}{yT −E[yT]}

]

= Ex,y[xyT] −E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡cov[x,x].

• We can approximate expectations using samples
drawn from a distribution p. If we want to compute  
 
 
 
we can approximate it with a finite set of points
sampled from p(x) using  
 
 
 
 
which becomes exact as N approaches infinity.

Key Monte Carlo identity

20 1. INTRODUCTION

finite sum over these points

E[f] ≃ 1
N

N∑

n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f] = E
[
(f(x) −E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f] = E[f(x)2] −E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] −E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x −E[x]} {y −E[y]}]
= Ex,y[xy] −E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[
{x −E[x]}{yT −E[yT]}

]

= Ex,y[xyT] −E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡cov[x,x].

1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) ! 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f]. For a discrete distribution, it is given by

E[f] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a

• Simple, well-known distributions: samplers exist (for
the moment take as given)

• We will look at:

1. Build samplers for complicated distributions out of
samplers for simple distributions compositionally

2. Rejection sampling

3. Likelihood weighting

4. Markov chain Monte Carlo

How do we draw samples?

• In our example with estimating the water temperature,
suppose we already know how to sample from a
normal distribution.  
 
 
 
We can sample y by literally simulating from the
generative process: we first sample a “true”
temperature x, and then we sample the observed y.

• This draws a sample from the joint distribution p(x, y).

Ancestral sampling from a model

x ⇠ Normal(22, 10)
y |x ⇠ Normal(x , 1)

Samples from the joint distribution

• What if we want to sample from a conditional
distribution? The simplest form is via rejection.

• Use the ancestral sampling procedure to simulate
from the generative process, draw a sample of x
and a sample of y. These are drawn together from
the joint distribution p(x, y).

• To estimate the posterior p(x | y = 25), we say that
x is a sample from the posterior if its corresponding
value y = 25.

• Question: is this a good idea?

Conditioning via rejection

Conditioning via rejection

Black bar shows measurement at y = 25.
How many of these samples from the joint have y = 25 ?

• One option is to sidestep sampling from the
posterior p(x | y = 3) entirely, and draw from some
proposal distribution q(x) instead.

• Instead of computing an expectation with respect
to p(x|y), we compute an expectation with respect
to q(x):

Conditioning via importance sampling

Ep(x|y)[f(x)] =

Z
f(x)p(x|y)dx

=

Z
f(x)p(x|y)q(x)

q(x)
dx

= Eq(x)


f(x)

p(x|y)
q(x)

�

• Define an “importance weight”

• Then, with  
 
 

• Expectations now computed using weighted
samples from q(x), instead of unweighted samples
from p(x|y)

Conditioning via importance sampling

W (x) =
p(x|y)
q(x)

xi ⇠ q(x)

Ep(x|y)[f(x)] = Eq(x) [f(x)W (x)] ⇡ 1

N

NX

i=1

f(xi)W (xi)

• Typically, can only evaluate W(x) up to a constant
(but this is not a problem):

• Approximation:

Conditioning via importance sampling

W (xi) =
p(xi|y)
q(xi)

w(xi) =
p(xi, y)

q(xi)

W (xi) ⇡
w(xi)PN
j=1 w(xj)

Ep(x|y)[f(x)] ⇡
NX

i=1

w(xi)PN
j=1 w(xj)

f(xi)

• We already have very simple proposal distribution
we know how to sample from: the prior p(x).

• The algorithm then resembles the rejection
sampling algorithm, except instead of sampling
both the latent variables and the observed
variables, we only sample the latent variables

• Then, instead of a “hard” rejection step, we use the
values of the latent variables and the data to assign
“soft” weights to the sampled values.

Conditioning via importance sampling

Likelihood weighting schematic

Draw a sample of x from the prior

What does p(y|x) look like for this sampled x ?

Likelihood weighting schematic

What does p(y|x) look like for this sampled x ?

Likelihood weighting schematic

What does p(y|x) look like for this sampled x ?

Likelihood weighting schematic

Compute p(y|x) for all of our x drawn from the prior

Likelihood weighting schematic

Assign weights (vertical bars) to samples
for a representation of the posterior

Likelihood weighting schematic

• Problem: Likelihood weighting degrades poorly as the
dimension of the latent variables increases, unless we
have a very well-chosen proposal distribution q(x).

• An alternative: Markov chain Monte Carlo (MCMC)
methods draw samples from a target distribution by
performing a biased random walk over the space of the
latent variables x.

• Idea: create a Markov chain such that the sequence of
states x0, x1, x2, … are samples from p(x | y)

Conditioning via MCMC

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

p(xn|xn�1)

• MCMC also uses a proposal distribution, but this proposal
distribution makes local changes to the latent variables x.
The proposal q(x' | x) defines a conditional distribution
over x' given a current value x.

• Typical choice: add small amount of Gaussian noise

• We use the proposal and the joint density to define an
“acceptance ratio”  
 

• Metropolis-Hastings: with probability A we “move” state
with the new value x’, otherwise we stay at x.

Conditioning via MCMC

A(x ! x0) = min

✓
1,

p(x0, y)q(x|x0)

p(x, y)q(x0|x)

◆

The (unnormalized) joint distribution p(x,y)  
is shown as a dashed line

MCMC schematic

Initialize arbitrarily (e.g. with a sample from the prior)

MCMC schematic

Propose a local move on x from a transition distribution

MCMC schematic

Here, we proposed a point in a region of  
higher probability density, and accepted

MCMC schematic

Continue: propose a local move, and accept or reject.
At first, this will look like a stochastic search algorithm!

MCMC schematic

MCMC schematic

Once in a high-density region, it will explore the space

MCMC schematic

Once in a high-density region, it will explore the space

MCMC schematic

Helpful diagnostic: a “trace plot” of the path of the sampled
values, as the number of MCMC iterations increases

MCMC schematic

Histogram of trace plot, overlaid on prior probability density

How It Works:
 PPL Inference

Start With A Program

57

52 Graph-based Inference

in G. Vertices in G represent random variables, and arcs dependencies
among them. For each random variable in G, we will define a prob-
ability density or mass in the graph. For observed random variables,
we additionally define the observed value, as well as a logical predicate
that indicates whether the observe expression is on the control flow
path, conditioned on the values of the latent variables.

Definition of a Bayesian Network

We define a Bayesian network G as a tuple (V, A, P, Y) containing (i)
a set of vertices V that represent random variables; (ii) a set of arcs
A ™ V ◊V (i.e. directed edges) that represent conditional dependencies
between random variables; (iii) a map P from vertices to deterministic
expressions that specify the probability density or mass function for
each random variable; (iv) a partial map Y that for each observed
random variable contains a pair (E, �) consisting of a deterministic
expression E for the observed value, and a predicate expression � that
evaluates to true when this observation is on the control flow path.

[Zinkov: This feels like a place a graph should be shown for some
example model]

Before presenting a set of translation rules that can be used to
compile any FOPPL program to a Bayesian network, we will illustrate
the intended translation using a simple example:

(let [z (sample (bernoulli 0.5))
mu (if (= z 0) -1.0 1.0)
d (normal mu 1.0)
y 0.5]

(observe d y)
z)

This program describes a two-component Gaussian mixture with a sin-
gle observation. The program first samples z from a Bernoulli distri-
bution, based on which it sets a likelihood parameter µ to ≠1.0 or 1.0,
and observes a value y = 0.5 from a normal distribution with mean µ.
This program defines a joint distribution p(y = 0.5, z). The inference
problem is then to characterize the expected return value Ep(z | y)[z].

In the evaluation relation fl, „, e » G, E, the source code of the pro-

Program

Semantically Agreed Mathematical Object

58

52 Graph-based Inference

in G. Vertices in G represent random variables, and arcs dependencies
among them. For each random variable in G, we will define a prob-
ability density or mass in the graph. For observed random variables,
we additionally define the observed value, as well as a logical predicate
that indicates whether the observe expression is on the control flow
path, conditioned on the values of the latent variables.

Definition of a Bayesian Network

We define a Bayesian network G as a tuple (V, A, P, Y) containing (i)
a set of vertices V that represent random variables; (ii) a set of arcs
A ™ V ◊V (i.e. directed edges) that represent conditional dependencies
between random variables; (iii) a map P from vertices to deterministic
expressions that specify the probability density or mass function for
each random variable; (iv) a partial map Y that for each observed
random variable contains a pair (E, �) consisting of a deterministic
expression E for the observed value, and a predicate expression � that
evaluates to true when this observation is on the control flow path.

[Zinkov: This feels like a place a graph should be shown for some
example model]

Before presenting a set of translation rules that can be used to
compile any FOPPL program to a Bayesian network, we will illustrate
the intended translation using a simple example:

(let [z (sample (bernoulli 0.5))
mu (if (= z 0) -1.0 1.0)
d (normal mu 1.0)
y 0.5]

(observe d y)
z)

This program describes a two-component Gaussian mixture with a sin-
gle observation. The program first samples z from a Bernoulli distri-
bution, based on which it sets a likelihood parameter µ to ≠1.0 or 1.0,
and observes a value y = 0.5 from a normal distribution with mean µ.
This program defines a joint distribution p(y = 0.5, z). The inference
problem is then to characterize the expected return value Ep(z | y)[z].

In the evaluation relation fl, „, e » G, E, the source code of the pro-

3.1. Compilation to a Bayesian Network 53

gram is represented as a single expression e. The variable fl is an empty
map, since there are no procedure definitions. At the top level, the flow
control predicate „ is true. The Bayesian network G = (V, A, P, Y) and
the result expression E that this program translates to are

V = {z, y},

A = {(z, y)},

P = [z ‘æ (pbern z 0.5),

y ‘æ (pnorm y (if (= z 0) -1.0 1.0) 1.0)],
Y = [y ‘æ 0.5]
E = z

The vertex set V of the net G contains two variables, whereas the arc
set A contains a single pair (z, y) to mark the conditional dependence
relationship between these two variables. In the map P , the probability
mass for z is defined as the target language expression (pbern z 0.5).
Here pbern refers to a function in the target languages that implements
probability mass function for the Bernoulli distribution. Similarly, the
density for y is defined using pnorm, which implements the probability
density function for the normal distribution. Note that the expression
for the program variable mu has been substituted into the density for
y. Finally, the map O contains a single entry that holds the observed
value for y.

Assigning Symbols to Variable Nodes

In the above example we used the mathematical symbol z
to refer to the random variable associated with the expression
(sample (bernoulli 0.5)) and the symbol y to refer to the observed
variable with expression (observe d y). In general there will be one
node in the network for each sample and observe expression that is
evaluated in a program. In the above example, there also happens to
be a program variable z that holds the value of the sample expression
for node z, and a program variable y that holds the observed value for
node y, but this is of course not necessarily always the case. A particu-
larly common example of this arises in programs that have procedures.

Program Mathematic Object

Rules of Inference

59

64 Graph-based Inference

fl, „, e1 » G1, E1 fl, „, e2 » G2, E2
(V, A, P, Y) = G1 ü G2 Choose a fresh variable v
F1 = Score(E1, v) ”= ‹ F = (if „ F1 1)
Z = (FreeVars(F1) \ {v}) fl V FreeVars(E2) fl V = ÿ

B = {(z, v) : z œ Z}

fl, „, (observe e1 e2) » (V fi {v}, A fi B, P ü [v ‘æ F], Y ü [v ‘æ E2]), E2

This translation rule first translates the sub-expressions e1 and e2.
We then construct a network (V, A, P, Y) by merging the networks of
the sub-expressions and pick a new variable v that will represent the
observed random variable. As in the case of sample statements, the
deterministic expression E1 that is obtained by translating e1 must
evaluate to a distribution. We use the Score function to construct an
expression F1 that represents the probability mass or density of v under
this distribution. We then construct a new expression F = (if „ F1 1)
to ensure that the probability of the observed variable evaluates to 1 if
the observe expression occurs in a branch that was not followed. The
free variables in this expression are the union of the free variables in
E1, the free variables in „ and the newly chosen variable v. We add a
set of arcs B to the network, consisting of edges from all free variables
in F to v, excluding v itself. Finally we add the expression F to P and
store the observed value E2 in Y.

In order for this notion of an observed random variable to make
sense, the expression E2 must be fully deterministic. For this reason
we require that FreeVars(E2) fl V = ÿ, which ensures that E2 cannot
reference any other random variables in the Bayesian network. Trans-
lation fails when this requirement is not met. [Zinkov: I think a better
explanation of FreeVars is warranted]

Procedure Call The remaining two cases are those for procedure
calls, one for a user-defined procedure f and the other for a primitive
procedure c. In both cases, we first translate arguments, and then the
procedure call itself by looking at the definition of the invoked proce-

52 Graph-based Inference

in G. Vertices in G represent random variables, and arcs dependencies
among them. For each random variable in G, we will define a prob-
ability density or mass in the graph. For observed random variables,
we additionally define the observed value, as well as a logical predicate
that indicates whether the observe expression is on the control flow
path, conditioned on the values of the latent variables.

Definition of a Bayesian Network

We define a Bayesian network G as a tuple (V, A, P, Y) containing (i)
a set of vertices V that represent random variables; (ii) a set of arcs
A ™ V ◊V (i.e. directed edges) that represent conditional dependencies
between random variables; (iii) a map P from vertices to deterministic
expressions that specify the probability density or mass function for
each random variable; (iv) a partial map Y that for each observed
random variable contains a pair (E, �) consisting of a deterministic
expression E for the observed value, and a predicate expression � that
evaluates to true when this observation is on the control flow path.

[Zinkov: This feels like a place a graph should be shown for some
example model]

Before presenting a set of translation rules that can be used to
compile any FOPPL program to a Bayesian network, we will illustrate
the intended translation using a simple example:

(let [z (sample (bernoulli 0.5))
mu (if (= z 0) -1.0 1.0)
d (normal mu 1.0)
y 0.5]

(observe d y)
z)

This program describes a two-component Gaussian mixture with a sin-
gle observation. The program first samples z from a Bernoulli distri-
bution, based on which it sets a likelihood parameter µ to ≠1.0 or 1.0,
and observes a value y = 0.5 from a normal distribution with mean µ.
This program defines a joint distribution p(y = 0.5, z). The inference
problem is then to characterize the expected return value Ep(z | y)[z].

In the evaluation relation fl, „, e » G, E, the source code of the pro-

3.1. Compilation to a Bayesian Network 53

gram is represented as a single expression e. The variable fl is an empty
map, since there are no procedure definitions. At the top level, the flow
control predicate „ is true. The Bayesian network G = (V, A, P, Y) and
the result expression E that this program translates to are

V = {z, y},

A = {(z, y)},

P = [z ‘æ (pbern z 0.5),

y ‘æ (pnorm y (if (= z 0) -1.0 1.0) 1.0)],
Y = [y ‘æ 0.5]
E = z

The vertex set V of the net G contains two variables, whereas the arc
set A contains a single pair (z, y) to mark the conditional dependence
relationship between these two variables. In the map P , the probability
mass for z is defined as the target language expression (pbern z 0.5).
Here pbern refers to a function in the target languages that implements
probability mass function for the Bernoulli distribution. Similarly, the
density for y is defined using pnorm, which implements the probability
density function for the normal distribution. Note that the expression
for the program variable mu has been substituted into the density for
y. Finally, the map O contains a single entry that holds the observed
value for y.

Assigning Symbols to Variable Nodes

In the above example we used the mathematical symbol z
to refer to the random variable associated with the expression
(sample (bernoulli 0.5)) and the symbol y to refer to the observed
variable with expression (observe d y). In general there will be one
node in the network for each sample and observe expression that is
evaluated in a program. In the above example, there also happens to
be a program variable z that holds the value of the sample expression
for node z, and a program variable y that holds the observed value for
node y, but this is of course not necessarily always the case. A particu-
larly common example of this arises in programs that have procedures.

Program Mathematic Object

Big Step Operational Semantics

60

Intuitive Evaluation Perspective

69

Algorithm 6 Relating Anglican syntactic constructs to model-based
reasoning notation

(defquery example [param y]
(let [x (sample (f (theta param)))] ; f(x)

(observe (g (phi param x)) y) ; g(y|x)
x))

(def posterior ((conditional example :method) parameter-value y-value))
(repeatedly K (fn [] sample posterior))
; samples xk ≥ p(x|y)

Algorithm 7 Relating Anglican syntactic constructs to model-based
reasoning notation

(defquery example [y]
(let [x (sample (beta 1 1))] ; f(x)

(observe (bernoulli x) y) ; g(y|x)
x))

(def posterior ((conditional example :importance) y-value))
(def samples (repeatedly K (fn [] sample posterior)))
; samples x(k) ≥ p(x|y)
(def Q (fn [x] (if (> 0.7 x) 1 0)))
(def EQ (mean (map Q samples)))
; computes expectation E(Q) =

s
Q(x)p(x|y)dx

}

• Syntactically denotes joint and conditioning

• Evaluator characterizes

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

WOOD GROUP

In this Q(z) is the question, �(x) = p(x,y) is the model and computationally charac-
terizing p⌧ (x|y) = �(x)

Z�
is “inference.”

To unify our vocabularly and align it with the probabilistic programming discussion
forthcoming let’s review: model based reasoning involves formulating questions whose
answers can be computed by averaging a function over the posterior distribution of
the latent variables in a generative model. Traditionally models are denoted mathe-
matically, usually as parameterized probability models. Probabilistic programming is
firstly about denoting models in a more principled way, using computer language syn-
tax. Inference (characterizing posteriors) is traditionally performed by first picking an
inference technique and then applying it to the model in hand, manually deriving the re-
quired updates and then coding an inference algorithm composed of all algorithms that
compute all of the individually derived updates according to a schedule often specified
by the inference algorithm too. Probabilistic programming is secondly about automat-
ing inference, namely, given a model specification, figuring out a way to compute and
represent p(x|y) with no required intervention from the user.

The structure of probabilistic programming languages bear some resemblance to
each other but vary syntactically and in terms of what kinds of models can be rep-
resented. To give you one example of how one language maps onto this formalism
consider Alg. 1 which gives, in Anglican (Wood et al., 2014) (specifically with the up-
dated syntax (Wood et al., 2015)), a concise mapping between the notation introduced
and how it might be expressed programmatically.

Anglican is language with sampling semantics which means that �(x) is repre-
sented by an infinite sequence of samples with the property that Eqn. 5 can be com-
puted as a converging Monte Carlo approximation

E[Q(z)] ⇡ 1

K

KX

k=1

Q(zk) (6)

E[Q(x)] ⇡ 1

K

KX

k=1

Q(xk) (7)

where zk = {xk [y} and xk ⇠ �(x). Note that this means that the Anglican program
(or any language with sampling semantics) can either return a sequence of zk’s or a
sequence of Q(zk)’s, it matters not.

p(x|y) = p(x,y)

p(y)
(8)

=
g(y|x)f(x)

p(y)
(9)

=
g(y|x)f(x)R
g(y|x)f(x)dx

(10)

/ g(y|x)f(x) (11)

8

• Defined as (up to a normalization constant)

• Simple notation hides complex dependency structure!

Trace Probability

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

Wood Group

consisting of the first j sampled values (with x0 ⌘ ;). We can then rewrite Equation 72 in
a form which explicitly represents the dependency structure, as

�(x) = p(x,y) =
NY

i=1

g̃i(xni)

✓
yi

�����̃i(xni)

◆ MY

j=1

f̃j(xj�1)

✓
xj

����✓̃j(xj�1)

◆
. (73)

Here, each �̃i and ✓̃j are deterministic procedures which take partial program traces xni ,xj

and return parameter vectors �i and ✓j ; similarly g̃i and f̃j are deterministic functions which
return density functions gi and fj . These procedures correspond exactly to the incremental
executions of P above. Note that the functional forms of the distributions gi and fj are all
those of random primitives, and so by construction we can sample from any fj(·|✓j) and
evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined as

⇡(x) , p(x|y) =
�(x)

Z
, Z = p(y) =

Z
�(x)dx (74)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is, given
a program execution trace x, we define z = Q(x). This allows us, in theory, to use the
posterior distribution over traces ⇡(x) to characterize the distribution over z given the
observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (75)

It should be clear that this characterization of a probabilistic program allows us to define
models literally as simulations, with the random elements controlled by sample and observe

statements. The generative procedure uses sample to create random variables; synthetic
data sets could be created simply by replacing any observe statement with sample, without
changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is easily
understood and provides intuition for more complex approaches. We approximate expecta-
tions of the output values z as weighted sum over sampled values, with

Ê[Q(x)] =
KX

k=1

WkQ(xk). (76)

A very simple way of generating trace samples x
k is to run K independent copies of the

program P, yielding K traces, each sampled according to some sequence of M
k di↵erent

54

y1 y2

{ {
etc

x4

x6

x1 x3x2 x4 x5 x6

A TUTORIAL ON PROBABILISTIC PROGRAMMING

Obscured by the notation above is the dependency structure induced by the prob-
abilistic program P . Each parameter vector �i and ✓j are themselves deterministic
functions of (potentially) every previous random choice in the program. So too are
gi and fj . Let ni denote the total number of random values sampled prior to the i

th

observe statement and the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial
program execution trace consisting of the first j sampled values (with x0 ⌘ ;). We
can then rewrite Equation 105 in a form which explicitly represents the dependency
structure, as

�(x) = p(x,y) =
NY

i=1

g̃i(xni)

✓
yi

�����̃i(xni)

◆ MY

j=1

f̃j(xj�1)

✓
xj

����✓̃j(xj�1)

◆
. (106)

Here, each �̃i and ✓̃j are deterministic procedures which take partial program traces
xni ,xj and return parameter vectors �i and ✓j ; similarly g̃i and f̃j are deterministic
functions which return density functions gi and fj . These procedures correspond ex-
actly to the incremental executions of P above. Note that the functional forms of the
distributions gi and fj are all those of random primitives, and so by construction we can
sample from any fj(·|✓j) and evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined
as

⇡(x) , p(x|y) = �(x)

Z
, Z = p(y) =

Z
�(x)dx (107)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is,
given a program execution trace x, we define z = Q(x). This allows us, in theory, to
use the posterior distribution over traces ⇡(x) to characterize the distribution over z
given the observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (108)

It should be clear that this characterization of a probabilistic program allows us to
define models literally as simulations, with the random elements controlled by sample
and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is eas-
ily understood and provides intuition for more complex approaches. We approximate

65

• Sequence of N observe’s

• Sequence of M sample’s

• Sequence of M sampled values

• Conditioned on these sampled values the entire trace is
deterministic

Execution (Trace)-Based Inference

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

Three Base Algorithms
• Likelihood Weighting

• Importance sampling with prior as proposal

• Metropolis Hastings

• Sequential Monte Carlo

Likelihood Weighting
• Run K independent copies of program simulating from

the prior

• Accumulate unnormalized weights (likelihoods)

• Use in approximate (Monte Carlo) integration

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (109)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk) =
M

kY

j=1

fj(x
k

j
|✓k

j
)

. For each of these K traces xk, we can compute an associated unnormalized weight
w(xk) as

w(xk) =
�(xk)

q(xk)
=

N
kY

i=1

gk
i
(yk

i
|�k

i
) (110)

where Nk denotes the number of observe statements yielding tuples {(gk
i
,�k

i
, yk

i
)}N

k

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk)Q(xk)

#
=

1

K

KX

k=1

Z
Q(xk)

2

4
N

kY

i=1

gk
i
(yk

i
|�k

i
)
M

kY

j=1

fk

j
(xk

j
|✓k

j
)

3

5 dx1 . . . xMk

(111)

=
1

K

KX

k=1

Z
Q(xk)�(xk)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

P
K

k=1 w(x
k)
i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (109)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk) =
M

kY

j=1

fj(x
k

j
|✓k

j
)

. For each of these K traces xk, we can compute an associated unnormalized weight
w(xk) as

w(xk) =
�(xk)

q(xk)
=

N
kY

i=1

gk
i
(yk

i
|�k

i
) (110)

where Nk denotes the number of observe statements yielding tuples {(gk
i
,�k

i
, yk

i
)}N

k

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk)Q(xk)

#
=

1

K

KX

k=1

Z
Q(xk)

2

4
N

kY

i=1

gk
i
(yk

i
|�k

i
)
M

kY

j=1

fk

j
(xk

j
|✓k

j
)

3

5 dx1 . . . xMk

(111)

=
1

K

KX

k=1

Z
Q(xk)�(xk)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

P
K

k=1 w(x
k)
i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

BLOG default inference engine:
http://bayesianlogic.github.io/pages/users-manual.html

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

W kQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

W kQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

W kQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

W kQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

https://www.java.com/

Likelihood Weighting
• Run K independent copies of program simulating from

the prior

• Accumulate unnormalized weights (likelihoods)

• Use in approximate (Monte Carlo) integration

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (109)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk) =
M

kY

j=1

fj(x
k

j
|✓k

j
)

. For each of these K traces xk, we can compute an associated unnormalized weight
w(xk) as

w(xk) =
�(xk)

q(xk)
=

N
kY

i=1

gk
i
(yk

i
|�k

i
) (110)

where Nk denotes the number of observe statements yielding tuples {(gk
i
,�k

i
, yk

i
)}N

k

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk)Q(xk)

#
=

1

K

KX

k=1

Z
Q(xk)

2

4
N

kY

i=1

gk
i
(yk

i
|�k

i
)
M

kY

j=1

fk

j
(xk

j
|✓k

j
)

3

5 dx1 . . . xMk

(111)

=
1

K

KX

k=1

Z
Q(xk)�(xk)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

P
K

k=1 w(x
k)
i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (109)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk) =
M

kY

j=1

fj(x
k

j
|✓k

j
)

. For each of these K traces xk, we can compute an associated unnormalized weight
w(xk) as

w(xk) =
�(xk)

q(xk)
=

N
kY

i=1

gk
i
(yk

i
|�k

i
) (110)

where Nk denotes the number of observe statements yielding tuples {(gk
i
,�k

i
, yk

i
)}N

k

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk)Q(xk)

#
=

1

K

KX

k=1

Z
Q(xk)

2

4
N

kY

i=1

gk
i
(yk

i
|�k

i
)
M

kY

j=1

fk

j
(xk

j
|✓k

j
)

3

5 dx1 . . . xMk

(111)

=
1

K

KX

k=1

Z
Q(xk)�(xk)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

P
K

k=1 w(x
k)
i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

BLOG default inference engine:
http://bayesianlogic.github.io/pages/users-manual.html

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

W kQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

W kQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

W kQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

W kQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

https://www.java.com/

Likelihood Weighting
• Run K independent copies of program simulating from

the prior

• Accumulate unnormalized weights (likelihoods)

• Use in approximate (Monte Carlo) integration

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (109)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk) =
M

kY

j=1

fj(x
k

j
|✓k

j
)

. For each of these K traces xk, we can compute an associated unnormalized weight
w(xk) as

w(xk) =
�(xk)

q(xk)
=

N
kY

i=1

gk
i
(yk

i
|�k

i
) (110)

where Nk denotes the number of observe statements yielding tuples {(gk
i
,�k

i
, yk

i
)}N

k

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk)Q(xk)

#
=

1

K

KX

k=1

Z
Q(xk)

2

4
N

kY

i=1

gk
i
(yk

i
|�k

i
)
M

kY

j=1

fk

j
(xk

j
|✓k

j
)

3

5 dx1 . . . xMk

(111)

=
1

K

KX

k=1

Z
Q(xk)�(xk)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

P
K

k=1 w(x
k)
i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (109)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk) =
M

kY

j=1

fj(x
k

j
|✓k

j
)

. For each of these K traces xk, we can compute an associated unnormalized weight
w(xk) as

w(xk) =
�(xk)

q(xk)
=

N
kY

i=1

gk
i
(yk

i
|�k

i
) (110)

where Nk denotes the number of observe statements yielding tuples {(gk
i
,�k

i
, yk

i
)}N

k

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk)Q(xk)

#
=

1

K

KX

k=1

Z
Q(xk)

2

4
N

kY

i=1

gk
i
(yk

i
|�k

i
)
M

kY

j=1

fk

j
(xk

j
|✓k

j
)

3

5 dx1 . . . xMk

(111)

=
1

K

KX

k=1

Z
Q(xk)�(xk)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

P
K

k=1 w(x
k)
i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

BLOG default inference engine:
http://bayesianlogic.github.io/pages/users-manual.html

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

W kQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

W kQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

W kQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

W kQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

Likelihood Weighting Schematic

...
...

z1, w1

z2, w2

zK , wK

Metropolis Hastings = “Single Site” MCMC = LMH
Posterior distribution of execution traces is proportional to trace score with
observed values plugged in

Metropolis-Hastings acceptance rule

Milch and Russell “General-Purpose MCMC Inference over Relational Structures.” UAI 2006.
Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum “Church: a language for generative models.” UAI 2008.
Wingate, Stuhlmüller, Goodman “Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation” AISTATS 2011

68

▪ Need proposal

A TUTORIAL ON PROBABILISTIC PROGRAMMING

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓) then returns
control to P which continues provided the value.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P
which continues.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we en-
counter N observe statements and M sample statements. This yields sequences of
tuples {(gi,�i, yi)}N

i=1 corresponding to the observe statements, and {(fj, ✓j)}M

j=1 cor-
responding to the sample statements, with the associated sequence of sampled values
(i.e. the program execution trace) {xj}M

j=1. The probability of this program execution
trace can be defined, up to an unknown normalizing constant, as a product of all ran-
dom choices x and all observed values y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj|✓j). (105)

Note that this ordering, as well as the cardinalities M and N , are not necessarily iden-
tical across different runs of the program.

Obscured by the notation above is the dependency structure induced by the prob-
abilistic program P . Each parameter vector �i and ✓j are themselves deterministic
functions of (potentially) every previous random choice in the program. So too are
gi and fj . Let ni denote the total number of random values sampled prior to the ith

observe statement and the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial
program execution trace consisting of the first j sampled values (with x0 ⌘ ;). We
can then rewrite Equation 105 in a form which explicitly represents the dependency
structure, as

�(x) = p(x,y) =
NY

i=1

g̃i(xni)

✓
yi

�����̃i(xni)

◆ MY

j=1

f̃j(xj�1)

✓
xj

����✓̃j(xj�1)

◆
. (106)

Here, each �̃i and ✓̃j are deterministic procedures which take partial program traces
xni ,xj and return parameter vectors �i and ✓j ; similarly g̃i and f̃j are deterministic
functions which return density functions gi and fj . These procedures correspond ex-
actly to the incremental executions of P above. Note that the functional forms of the
distributions gi and fj are all those of random primitives, and so by construction we can
sample from any fj(·|✓j) and evaluate any gi(yi|�i) — once the parameters are known.

67

WOOD GROUP

This estimator can be compactly represented using normalized weights,

Wk =
w(xk)

P
K

`=1 w(x
`)

(120)

bQK =
KX

k=1

WkQ(xk) (121)

bE⇡[Q(x)] =
KX

k=1

WkQ(xk)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each xk is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0)q(x|x0)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x0, of length M0. Now, given a trace xs, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

WOOD GROUP

The normalized posterior probability distribution over program traces can be defined
as

⇡(x) , p(x|y) = �(x)

Z
, Z = p(y) =

Z
�(x)dx (107)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is,
given a program execution trace x, we define z = Q(x). This allows us, in theory, to
use the posterior distribution over traces ⇡(x) to characterize the distribution over z
given the observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (108)

E[z] = E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)

�(x)

q(x)
q(x)dx (109)

E[Q(x)] =
1

Z

Z
Q(x)

�(x)

q(x)
q(x)dx ⇡ 1

Z

1

K

KX

k=1

Q(xk)w(xk) (110)

It should be clear that this characterization of a probabilistic program allows us to
define models literally as simulations, with the random elements controlled by sample
and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is eas-
ily understood and provides intuition for more complex approaches. We approximate
expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(xk). (111)

A very simple way of generating trace samples xk is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk

j
, ✓k

j
}M

k

j=1. To be clear what this means is running each copy of

68

LMH Proposal

Number of samples in
original trace

Probability of new part of
proposed execution trace

A TUTORIAL ON PROBABILISTIC PROGRAMMING

xs has length M s, and we pick a single random choice xs

`
by drawing ` uniformly from

the set of integers 1, . . . ,M s. Then, we apply a reversible transition kernel (x0
`
|xs

`
) to

propose a new value at that specific random choice. We now re-run the remainder of
the program P , starting with the partial program execution trace x0

`
= xs

`�1 ⇥ x0
`
, sim-

ulating the rest of the program to generate a new proposal trace x0 of length M 0. This
leads to an overall proposal density

q(x0|xs) =
1

M s
(x0

`
|xs

`
)

M
0Y

j=`+1

f 0
j
(x0

j
|✓0

j
) (124)

which in turn leads to an acceptance probability

↵ = min

1,

�(x0)M 0(xs

`
|x0

`
)
Q

M
s

j=`+1 f
s

j
(xs

j
|✓s

j
)

�(x)M s(x0
`
|xs

`
)
Q

M 0

j=`+1 f
0
j
(x0

j
|✓0

j
)

!
(125)

which defines a basic MCMC sampler targeting the space of program execution traces.

10.2.1 A DATABASE OF RANDOM CHOICES

For high-dimensional problems, the basic Metropolis-Hasting algorithm that arises by
proposing according to Equation 124 will still perform poorly, as after changing propos-
ing a single value x0

`
we re-run the rest of the program. This can be made more efficient

by re-using some of the sampled values in the remainder of the original trace xs.
Te be able to meaningfully re-use previously sampled values, we need to introduce

a concept of an address space A, which we use to uniquely label every random choice
we sample during program execution (?). On the initial execution, for each random
choice x0

j
2 Xj , we record a tuple (↵, x0

j
) 2 A ⇥ Xj . Then, when re-simulating the

remainder of the program in the proposal in Equation 124, if we encounter a sample
statement which has the same address ↵ as a sampled value in the previous trace,
and distribution (or “type”) of f is the same, then instead of re-simulating a new value
x0 we re-use the previous value associated with that ↵ in the database. If the proposal
is accepted, we update the random database, associating new values of x with each
↵, and removing from the database any tuples which do not exist in the updated trace.
Note that just because the value is re-used does not mean that we can drop that term
from the acceptance ratio in Equation 125 — in particular, even if some x0 = xs at some
address, the associated parameter vector ✓0 6= ✓s in general.

There is possibly a subtle point here regarding the reversibility of the proposal qRDB.

10.3 A sequential Monte Carlo algorithm

A sequential Monte Carlo algorithm for probabilistic program inference is in some sense
a refinement of the basic likelihood weighting or importance sampling method, which
can take advantage of incremental evidence when available to provide more efficient in-
ference in higher-dimensional models. For this discussion we assume that the number

71

LMH Acceptance Ratio
“Single site update” = sample from the prior = run program forward

MH acceptance ratio

70

(x0
m|xm) = fm(x0

m|✓m), ✓m = ✓0m

Number of sample statements
in original trace

Number of sample statements
in new trace

Probability of proposal trace continuation
restarting original trace at mth sample

A TUTORIAL ON PROBABILISTIC PROGRAMMING

Metropolis Hastings

• Execute program P .

• While executing P if a sample, observe, or predict is reached do:

– sample: P passes us a continuation k and an object (f, ✓) consisting of a
distribution f with parameter ✓. We sample a value x ⇠ f(·|✓), store sample
tuple (x,k,f ,✓), then call (k x).

– observe: P passes us a continuation k, an object (g,�) consisting of a
distribution g with parameter �, and a observed value y. We store observe
tuple (y,k,g,�), and call (k).

– predict: P passes us a continuation k, a label `, and a value z. We store
predict tuple (`, z) and call (k).

• When P terminates “output” all stored predict tuples (`, z).

• Repeat forever

– Randomly select mth (x,k,f ,✓) sample tuple from M in the store.

– Sample a new value x0 ⇠ f(·|✓)
– Resume P by calling (k x0) if sample, observe, or predict reached do:

⇤ sample: P passes us a continuation k0 and an object (f 0, ✓0) consisting
of a distribution f 0 with parameter ✓0. We sample a value x0 ⇠ f 0(·|✓0),
store (x0,k0,f 0,✓0), then call (k0 x0).

⇤ observe: P passes us a continuation k0, an object (g0,�0) consisting of
a distribution g0 with parameter �0, and a observed value y. We store
(y, k0,g0,�0), and call (k0).

⇤ predict: P passes us a continuation k0, a label `0, and a value z0. We
store (`0, z0) and call (k0).

– When P terminates we compute

↵ = min

1,

�(x0)M
Q

M

j=m
fj(xj|✓j)

�(x)M 0QM 0

j=m
f 0
j
(x0

j
|✓0

j
)

!

and accept proposed trace and and output (`0, z0) w.p. ↵, keep old trace and
output (`, z) otherwise.

65

Probability of original trace continuation
restarting proposal trace at mth sample

LMH Schematic

...

...

z1

z1

z3

zK

LMH Variants

 "C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching."
D. Ritchie, A. Stuhlmuller, and N. D. Goodman. arXiv:1509.02151 (2015).

D. Wingate, A. Stuhlmueller, and N. D. Goodman.
"Lightweight implementations of probabilistic programming languages via transformational compilation." AISTATS (2011).

WebPPL
Anglicanwith continuations:

2015 : Probabilistic Programming
• Restricted (i.e. STAN, BUGS, infer.NET)

• Easier inference problems -> fast
• Impossible for users to denote some models
• Fixed computation graph

• Unrestricted (i.e. Anglican, WebPPL)
• Possible for users to denote all models
• Harder inference problems -> slow
• Dynamic computation graph

• Fixed, trusted model; one-shot inference

73

The AI/Repeated-Inference Challenge

“Bayesian inference is computationally expensive. Even
approximate, sampling-based algorithms tend to take many
iterations before they produce reasonable answers. In
contrast, human recognition of words, objects, and scenes is
extremely rapid, often taking only a few hundred milliseconds
—only enough time for a single pass from perceptual
evidence to deeper interpretation. Yet human perception
and cognition are often well-described by probabilistic
inference in complex models. How can we reconcile the
speed of recognition with the expense of coherent
probabilistic inference? How can we build systems, for
applications like robotics and medical diagnosis, that exhibit
similarly rapid performance at challenging inference tasks?”

Stuhlmüller A, Taylor J, Goodman N. Learning stochastic inverses. In Advances in Neural Information Processing Systems 2013 (pp. 3048-3056).

Resulting Trend In Probabilistic Programming

75

Probabilistic
Programming ?

Inference
Compilation

Unsupervised
Deep

Learning

Have fully-specified model?

Inference?

Yes No

One-shot

Repeated

Inference Compilation

Inference Compilation

Compilation

Probabilistic program
p0!;y)

Inference

Training data
!!!!); y!!)g

Test data
y

Posterior
p0! j y)

Training #

Expensive / slow Cheap / fast

SIS
NN architecture

Compilation artifact

q0! j y;#)

DKL 0p0! j y) jj
q0! j y;#))

Input: an inference problem denoted in a probabilistic programming language

Output: a trained inference network (deep neural network “compilation artifact”)

Le TA, Baydin AG, Wood F. Inference Compilation and Universal Probabilistic Programming. AISTATS. 2017.

Now C++, Python, or Clojure!

Example Non-Conjugate Regression

Figure 1: Representative output in the polynomial regression example. Plots show 100
samples each at 5% opacity, with the mean marked as a solid dashed line. These are all
proposed using the same neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples
by a factor 100, after 10000 samples of burnin. The neural network proposal density for the
weights yields estimated polynomial curves very close to the true posterior solution, albeit
slightly more di↵use. Any small mismatch is easily corrected via importance reweighing.

structure are shown in Figure 2. Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

wd ⇠ Laplace(0, 101�d) for d = 0, 1, 2;

tn ⇠ t⌫(w0 + w1zn + w2z
2
n, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and we place a uniform prior on (�10, 10) for zn. The goal is to
estimate the posterior distribution of weights for the constant, linear, and quadratic terms,
given any possible collected dataset {zn, tn}Nn=1. In the notation of the surrounding sections,
we have latent variables x ⌘ {w0, w1, w2} and observed variables y ⌘ {zn, tn}Nn=1.

8

Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016.

Captcha Breaking
TABLE I

SYNTHETIC CAPTCHA BREAKING RESULTS. RR: RECOGNITION RATE, BT: BREAKING TIME.

Type Baidu (2011) Baidu (2013) eBay Yahoo reCaptcha Wikipedia Facebook

Our method RR 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
BT 72 ms 67 ms 122 ms 106 ms 78 ms 90 ms 90 ms

Bursztein et al. [15] RR 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
BT 3.94 s 1.9 s 2.31 s 7.95 s 4.59 s

Starostenko et al. [16] RR 91.5% 54.6%
BT < 0.5 s

Gao et al. [17] RR 34% 55% 34%

Gao et al. [18] RR 51% 36%
BT 7.58 s 14.72 s

Goodfellow et al. [6] RR 99.8%

Stark et al. [8] RR 90%

C. Loss

By design, the softmax outputs determine the parameters for
the discrete probability distributions of the Captcha generator
parameters. The loss we minimize during training is the
negative sum of the log of the softmax outputs

L(✓) = 1

N

NX

n=1

"
�

TX

t=1

log
⇣
[⌘✓,t(y

(n))]
x(n)
t

⌘#
, (3)

where we use the notation [z]i to denote the ith element of
z. This is a standard loss used in training neural networks
for classification. The connection with Bayesian modeling in
which we interpret softmax outputs as probabilities of discrete
random variables in a joint importance sampling proposal
distribution is explored in more detail in Section IV-B.

III. EXPERIMENTS

We wrote synthetic data generative models for seven dif-
ferent Captcha styles, covering the types frequently found in
the Captcha breaking literature [16, 15, 18, 17]. For each
of these, we trained a neural architecture consisting of (1)
a CNN with six convolutions (3⇥3, with successively 64,
64, 64, 128, 128, 128 filters), max-pooling (2⇥2, step size
2) after the second, fifth, and sixth convolutions, and two
final fully-connected layers of 1024 units; (2) a stack of two
LSTMs of 512 hidden units each; and (3) fully-connected
layers of appropriate dimension mapping the LSTM output to
the corresponding softmax dimension of each latent variable.
ReLU activations were used after the convolutions and the
fully-connected layers overall.

We empirically verified that supplying the image embedding
CNN(y) to the LSTM at every time step makes the training
progress faster in our setup where we train the CNN from
scratch together with the rest of the components, compared

with the alternative of using CNN(y) only once and pretraining
CNN weights on an image recognition database as in Vinyals
et al. [21] and Karpathy and Fei-Fei [22].

The networks were implemented in Torch [25] and trained
with Adam [26] optimization, with initial learning rate ↵ =
0.0001, hyperparameters �1 = 0.9, �2 = 0.999, using mini-
batches of size 128. The generative models were implemented
in the Anglican probabilistic programming language [27]. A
ZeroMQ-based interface was developed to couple Torch with
Anglican.1

A. Initial results

As can be seen in Table I, this architecture, and our method
for training it using synthetic data, outperforms nearly all
state-of-the-art Captcha breakers in terms of both accuracy
and recognition times with the exception of Goodfellow et al.
[6], which used data drawn from the true reCaptcha generator.
The row labeled “our method” shows breaking results and
speeds for our neural network trained using synthetic data to
decode unlabeled Captchas from the same Captcha generator.
The Goodfellow et al. [6] and Stark et al. [8] rows show the
most directly comparable results, namely, using deep neural
networks to break unlabeled Captchas training on synthetic
data. The additional rows show breaking results for more
traditional segment-and-classify computer vision image pro-
cessing pipelines. These, in contrast to the others, do not have
access to the true Captcha generator but instead report test
results on real-world Captchas gathered in the wild. If robust,
> 90% accuracies would seem to confirm that Captcha, from
a computer security perspective [28, 29], is indeed broken.

While the capabilities of deep neural networks are impres-
sive, it should be noted that these kinds of results, on occasion,
can be somewhat misleading [13]. In particular, one should

1The full source code of our setup will be released in a public repository
by the camera-ready deadline.

$40M raise

I’m Hiring

• Postdoc(s)

• PhD students

~$???; ’17-’20 New Physics Via ATLAS Simulator Inversion

81

yx

event & detector simulators ATLAS detector output

S U B - AT O M I C S C A L E

30

pencil & paper calculable from first principles
p(z₁ | θ)

controlled approximation of first principles
p(z2 | z1, ν₁)

S U B - AT O M I C S C A L E

30

pencil & paper calculable from first principles
p(z₁ | θ)

H ! ZZ ! 4l

D E T E C T O R S I M U L AT I O N

•Conceptually: Prob(detector response | particles)

•Implementation: Monte Carlo integration over micro-physics

•Consequence: evaluation of the likelihood is intractable

34

e.g.
Sherpa

e.g.
Geant

$1.8M USD; ’17-’21 — Hasty: A Generative Model Compiler

