
CPSC 540 Assignment 2 (due January 31 at midnight)

The assignment instructions are the same as for the previous assignment, but for this assignment you can
work in groups of 1-3. However, please only hand in one assignment for the group.

1. Name(s):

2. Student ID(s):

1 Calculation Questions

1.1 Convexity

Show that the following functions are convex, by only using one of the definitions of convexity (i.e., without
using the “operations that preserve convexity” or using convexity results stated in class):1

1. Upper bound on second-order Taylor expansion: f(v) = f(w) +∇f(w)T (v − w) + L
2 ‖v − w‖

2.

2. Probit regression: f(w) =
∑n
i=1− log p(yi|w, xi) (where the probability is defined as in the last assign-

ment).

3. Maximum function: f(w) = maxj∈{1,2,...,d} wj .

Hint: Max are is not differentiable in general, so you cannot use the Hessian for the last one. For the second
one, you can assume that PDF (z) ≥ −z · CDF(z) (where PDF(z) is the PDF of a standard normal and
CDF(z) is the CDF).

Show that the following functions are convex (you can use results from class and operations that preserve
convexity if they help):

4. 1-class SVMs: f(w,w0) =
∑N
i=1[max{0, w0 −wTxi} −w0] + λ

2 ‖w‖
2
2, where λ ≥ 0 and w0 is a variable.

5. Mixed-norm regularization: f(w) = ‖w‖p,q =
(∑

g∈G ‖wg‖pq
) 1

p

(for p ≥ 1 and q ≥ 1).

6. Minimum entropy over pairs of variables: f(w) = max{i,j | i 6=j}{wi logwi+wj logwj} subject to wi > 0
for all i.

1.2 Convergence of Gradient Descent

For these questions it will be helpful to use the “convexity inequalities” notes posted on the webpage.

1. In class we showed that if ∇f is L-Lipschitz continuous and f is strongly-convex, then with a step-size
of αk = 1/L gradient descent has a convergence rate of

f(wk)− f(w∗) = O(ρk).

1That C0 convex functions are below their chords, that C1 convex functions are above their tangents, or that C2 convex
functions have a positive semidefinite Hessian.

1



Show that under these assumptions that a convergence rate of O(ρk) in terms of the function values
implies that the iterations have a convergence rate of

‖wk − w∗‖ = O(ρk/2).

2. A basic variation on the Armijo line-search is to set the step-size αk to be αk = (0.5)p, where p is the
smallest constant such that

f(wk − αk∇f(wk)) ≤ f(wk)− αk
2
‖∇f(wk)‖2.

Show that if ∇f is Lipschitz-continuous and f is bounded below, that setting αk in this way means
gradient descent requires at most t = O(1/ε) iterations to find at least one iteration k with ‖∇f(wk)‖2 ≤
ε. Hint: you’ll first want to figure out a progress bound of the form

f(wk+1) ≤ f(wk)− γ‖∇f(wk)‖2,

for some constant γ that holds for all iterations. It may also help to recognize that if a function is
L-Lipschitz continuous that it is also L′-Lipschitz continuous for any L′ ≥ L.

3. Show that if ∇f is Lipschitz-continuous and f is convex (but not necessarily strongly-convex or PL),
that if we run gradient descent for k iterations with αk = 1/L we have

f(wk)− f(w∗) = O(1/k).

Hint: you will have to use one the C1 definition of convexity in our usual progress bound coming
from Lipschitz-continuity of the gradient. You can try to turn this into a telescoping sum in terms of
‖wk−w∗‖2 (which involves “completing the square”). Finally, note that our usual progress bound also
gives that f(wk+1) ≤ f(wk) for all k.

1.3 Beyond Gradient Descent

1. We can write the proximal-gradient update as

wk+
1
2 = wk − αk∇f(wk)

wk+1 = argmin
v∈Rd

{
1

2
‖v − wk+ 1

2 ‖2 + αkr(v)

}
.

Show that this is equivalent to setting

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)T (v − wk) +

1

2αk
‖v − wk‖2 + r(v)

}
.

2. In class we showed that if ∇f is coordinate-wise L-Lipschitz and satisfies PL then randomized coordi-
nate optimization with a step-size of 1/L satisfies

E[f(wk+1)− f∗] ≤
(

1− µ

Ld

)
[f(wk)− f∗].

Consider a C2 function satisfying PL where coordinate i has its own Lipschitz constant Lj ,

∇2
jjf(w) ≤ Lj .

Consider using a step-size of 1/Ljk and sampling jk proportional to the Lj , p(jk = j) =
Lj∑
j′ Lj′

. Show

that this gives a faster convergence rate. Hint: the previous result corresponds to using L = maxj{Lj}.

2



3. Consider an SVM problem where the xi are sparse. In the bonus slides, we show how to efficiently
apply stochastic subgradient methods in this setting by using the representation wk = βkvk. Now
consider a case where we know an L2 ball that contains the optimal solution. In other words, we know
a τ such that ‖w∗‖ ≤ τ . If τ is small enough, we can use a projected stochastic subgradient method
(projecting onto the L2-ball):

wk+
1
2 = wk − αkgk − αkλwk

wk+1 =

{
wk+

1
2 if ‖wk+ 1

2 ‖ ≤ τ
τ

‖wk+1
2 ‖
wk+

1
2 if ‖wk+ 1

2 ‖ > τ

By constraining the wk to a smaller set, this can sometimes dramatically improve the performance
in the early iterations.2 However, the projection operator is a full-vector operation so this would
substantially slow down the runtime of the method. Derive a recursion that implements this algorithm
without using full-vector operations. Hint: you may need to track more information than βk and vk.

2 Computation Questions

2.1 Proximal-Gradient

If you run the demo example group.jl, it will load a dataset and fit a multi-class logistic regression (softmax)
classifier. This dataset is actually linearly-separable, so there exists a set of weights W that can perfectly
classify the training data (though it may be difficult to find a W that perfectly classifiers the validation
data). However, 90% of the columns of X are irrelevant. Because of this issue, when you run the demo you
find that the training error is 0 while the test error is something like 0.2980.

1. Write a new function, logRegSoftmaxL2, that fits a multi-class logistic regression model with L2-
regularization (this only involves modifying the objective function). Hand in the modified loss function
and report the validation error achieved with λ = 10 (which is the best value among powers to 10).
Also report the number of non-zero parameters in the model and the number of original features that
the model uses.

2. While L2-regularization reduces overfitting a bit, it still uses all the variables even though 90% of them
are irrelevant. In situations like this, L1-regularization may be more suitable. Write a new function,
logRegSoftmaxL1, that fits a multi-class logistic regression model with L1-regularization. You can use
the function findMinL1, which minimizes the sum of a differentiable function and an L1-regularization
term. Report the number of non-zero parameters in the model and the number of original features
that the model uses.

3. L1-regularization achieves sparsity in the model parameters, but in this dataset it’s actually the original
features that are irrelevant. We can encourage sparsity in the original features by using group L1-
regularization. Write a new function, proxGradGroupL1, to allow (disjoint) group L1-regularization.
Use this within a new function, softmaxClassiferGL1, to fit a group L1-regularized multi-class logistic
regression model (where rows of W are grouped together and we use the L2-norm of the groups). Hand
in both modified functions (logRegSoftmaxGL1 and proxGradGroupL1 ) and report the validation error
achieved with λ = 10. Also report the number of non-zero parameters in the model and the number
of original features that the model uses.

2We can obtain a value for τ for any L2-regularized problem where the loss is bounded below, by using that f(w∗)+ λ
2
‖w∗‖2 ≤

f(0) and replacing f(w∗) with its lower bound (which can be 0 for SVMs).

3



2.2 Coordinate Optimization

The function example CD.jl loads a dataset and tries to fit an L2-regularized logistic regression model using
coordinate optimization. Unfortunately, if we use Lf as the Lipschitz constant of ∇f , the runtime of this

procedure is O(d3 + nd2
Lf

µ log(1/ε)). This comes from spending O(d3) computing Lf , having an iteration

cost of O(nd), and requiring a O(d
Lf

µ log(1/ε)) iterations. This non-ideal runtime is also reflected in practice:
the algorithm’s iterations are relatively slow and even after 500 “passes” through the data it isn’t particularly
close to the optimal function value.

1. Modify this code so that the runtime of the algorithm is O(ndLc

µ log(1/ε)), where Lc is the Lipschitz
constant of all partial derivatives ∇if . You can do this by modifying the iterations so they have a cost
O(n) instead of O(nd), and instead of using a step-size of 1/Lf they use a step-size of 1/Lc (which is
given by 1

4 maxj{‖xj‖2} + λ, where xj is column j of the matrix X). Hand in your code and report
the final function value and total time.

2. To further improve the performance, make a new version of the code which samples the variable to
update jt proportional to the individual Lipschitz constants Lj of the coordinates, and uses a step-size
of 1/Ljt . You can use the function sampleDiscrete (in misc.jl) to sample from a discrete distribution
given the probability mass function. Hand in your code, and report the final function value as well as
the number of passes.

3. Report the number of passes the algorithm takes as well as the final function value if you use uniform
sampling but use a step-size of 1/Ljt .

4. Suppose that when we use a step-size of 1/Ljt , we see that uniform sampling outperforms Lipschitz
sampling. Why could this be consistent with the bounds we’ve shown?

2.3 Stochastic Gradient

If you run the demo example SG.jl, it will load a dataset and try to fit an L2-regularized logistic regression
model using 10 “passes” of stochastic gradient using the step-size of αt = 1/λt that is suggested in many
theory papers. Note that in other high-level languages (like R/Matlab/Python) this demo would run really
slowly so you would need to write the inner loop in a low-level language like C, but in Julia you can directly
write the stochastic gradient code and have it run fast.

Unfortunately, despite Julia making this code run fast compared to other high-level languages, the perfor-
mance of this stochastic gradient method is atrocious. It often goes to areas of the parameter space where
the objective function overflows and the final value is usually in the range of something like 6.5− 7.5× 104.
This is quite far from the solution of 2.7068 × 104 and is even worse than just choosing w = 0 which gives
3.5 × 104. (This is unlike gradient descent and coordinate optimization, which never increase the objective
function if your step-size is small enough.)

1. Although αt = 1/λt gives the best possible convergence rate in the worst case, in practice it’s typically
horrible (as we’re not usually opitmizing the hardest possible λ-strongly convex function). Experiment
with different choices of step-size sequence to see if you can get better performance. Report the step-
size sequence that you found gave the best performance, and the objective function value obtained by
this strategy for one run.

2. Besides tuning the step-size, another strategy that often improves the performance is using a (possibly-
weighted) average of the iterations wt. Explore whether this strategy can improve performance. Report
the performance with an averaging strategy, and the objective function value obtained by this strategy
for one run. (Note that the best step-size sequence with averaging might be different than without
averaging.)

4



3. A popular variation on stochastic is AdaGrad, which uses the iteration

wk+1 = wk − αkDk∇f(wk),

where the element in position (j, j) of the diagonal matrix Dk is given by 1/
√
δ +

∑k
k′=0(∇jfik′ (wk

′))2.

Here, ik is the example i selected on iteration k and ∇j denotes element j of the gradient (and in
AdaGrad we typically don’t average the steps). Implement this algorithm and experiment with the
tuning parameters αt and δ. Hand in your code as well as the best step-size sequence you found and
again report the performance for one run.

4. Impelement the SAG algorithm with a step-size of 1/L, where L is the maximum Lipschitz constant
across the training examples (L = 1

4 maxi{‖xi‖2} + λ). Hand in your code and again report the
performance for one run.

3 Very-Short Answer Questions

Give a short and concise 1-sentence answer to the below questions.

1. What is a situation where we can violate the golden rule on our test set, and still have it be a reasonable
approximation of test error?

2. Do convex functions necessarily have a minima?

3. What is the purpose of the descent lemma?

4. Why did we show that the gradient norm converges to 0 when we run gradient descent? (As opposed
to showing that gradient descent finds the global optimum.)

5. What is the relationship between the projected-gradient method and the proximal-gradient method?

6. Why do we prefer the proximal-gradient method over the subgradient method?

7. Why did we say in 340 that regularizing by the L2-norm doesn’t give sparsity, and now we’re saying
we can use the L2-norm to give sparse solutions?

8. What is an example of a pattern that can be enforced with structured sparsity?

9. Under what condition do we prefer to use coordinate optimization over gradient descent?

10. For a machine learning objective that is the sum over n training examples, why should we never use
the subgradient method?

11. What is the advantage of SAG over stochastic gradient methods without a memory?

5


