CPSC 540: Machine Learning

Mark Schmidt
University of British Columbia, Winter 2018
www.cs.ubc.ca/~schmidtm/Courses/540-W18

Some images from this lecture are taken from Google Image Search.
Big Data Phenomenon

• We are collecting and storing data at an unprecedented rate.

• Examples:
 – News articles and blog posts.
 – YouTube, Facebook, and WWW.
 – Credit cards transactions and Amazon purchases.
 – Gene expression data and protein interaction assays.
 – Maps and satellite data.
 – Large hadron collider and surveying the sky.
 – Phone call records and speech recognition results.
 – Video game worlds and user actions.
Machine Learning

• What do you do with all this data?
 – Too much data to search through it manually.

• But there is valuable information in the data.
 – Can we use it for fun, profit, and/or the greater good?

• Machine learning: use computers to automatically detect patterns in data and make predictions or decisions.

• Most useful when:
 – Don’t have a human expert.
 – Humans can’t explain patterns.
 – Problem is too complicated.
Machine Learning vs. Statistics

• Machine learning (ML) is very similar to statistics.
 – A lot of topics overlap.

• But ML places more emphasis on:
 1. Computation and large datasets.
 2. Predictions rather than descriptions.
 4. Models that work across domains.

• The field is growing very fast:
 – Influence of $$$ too.
Applications

• Spam filtering.
• Credit card fraud detection.
• Product recommendation.
• Motion capture.
• Machine translation.
• Speech recognition.
• Face detection.
• Object detection.
• Sports analytics.
• Cancer subtype discovery.
Applications

• Gene localization/functions/editing.
• Personal Assistants.
• Medical imaging.
• Self-driving cars.
• Scene completion.
• Image search and annotation.
• Artistic rendering.
• Physical simulations.
• Image colourization.
• Game-playing.
(pause)
CPSC 340 and CPSC 540

• There are two ML classes: CPSC 340 and 540.
 – They are structured as one full-year course: 540 starts where 340 ends.
• CPSC 340:
 – Introductory course on data mining and ML.
 – Emphasis on applications and core ideas of ML.
 – Covers implementation of methods based on counting and gradient descent.
 – Most useful techniques that you can apply to your research/work.
• CPSC 540:
 – Research-level ML methods and theory.
 – Assumes strong background on fundamental ML concepts.
 – Assumes stronger math/CS background
 – Much more work.
CPSC 340 and CPSC 540

• Since 540 starts where CPSC 340 ends, 540 is not an introductory ML course.

• I’m not covering any of the below, and will assume you already know these concepts:
 – Calculus in matrix notation.
 – Cross-validation.
 – Probabilistic classifiers.
 – Ensemble methods.
 – Radial basis functions.
 – Kernel trick.
 – Stochastic gradient.
 – Maximum likelihood estimation.
 – MAP estimation.
 – L1-regularization.
 – Softmax loss.
 – PCA.
 – Non-negative matrix factorization.
 – Collaborative filtering
 – Deep learning.
 – Convolutional neural networks.

• If you don’t know how to implement all the above, you will get lost very quickly if you don’t know this material.
CPSC 340 and CPSC 540

- If you can only take one class, take CPSC 340:
 - 340 covers the most useful methods and ideas.

- If want to work in ML you should take both courses:
 - There is not a lot of overlap between the topics, 540 is missing a lot important topics.
 - 540 is NOT an “advanced” version of 340.
 - It just covers the methods that require more advanced math/CS background.

- It is much better to do CPSC 340 first:
 - Many people have taken CPSC 340 *after* CPSC 540 (not recommended).
 - A few people took 540 then 340 then *540 again* (REALLY not recommended).

- There will be less overlap between 340 and 540 this year:
 - 340 has required multivariable calculus as a prereq since 2016.
 - It is more advanced than it was in 2015, and much more advanced than it was before 2015.
 - I’m not covering the “diff” between 340-2015 and 340-2016 this year.
CPSC 340 and CPSC 540

• Quotes from people who probably should have taken CPSC 340:

 – “I did Coursera and have done well in Kaggle competitions.”
 • Neither of these cover calculus in matrix notation or MLE and MAP estimation.

 – “I’ve used SVMs, PCA, and L1-regularization in my work.”
 • Sure, but do you know how to implement them from scratch?

 – “I’ve seen most of the 340 topics before.”
 • Sure, but at what level of detail and do you know how to implement them from scratch?

 – “I want to apply machine learning in my research.”
 • Great! Take 340 to learn the most useful tools and also what can go wrong.

 – “I took a machine learning course at my old school.”
 • 340 is more broad/advanced than at most schools (talk to me if unsure).
Math Prerequisites

• Research-level ML involves a lot of math.

• You should be comfortable with:
 – Linear algebra, probability, multivariate calculus, mathematical proofs.
 – Suggested minimum requirements: Math 200, 220, 221, and 302.

• You should be able to do proofs based on:
 – Sequences of random gradient vectors.
 – Eigenvalues of second-derivative matrices.
Computer Science Prerequisites

• ML places a big emphasis on computation.
• You should be comfortable with:
 – Software engineering: reading/writing/debugging complex programs.
 – Data structures: pointers, trees, heaps, hashes, graphs.
 – Scientific computing: matrix factorization, gradient descent, condition number.
 – Algorithms and complexity:
 • Big-O, divide + conquer, randomized algorithms, dynamic programming, NP-completeness.
 – Suggested minimum requirements: CPSC 210, 221, 302, and 320:

• “I have programming experience in my work/research/courses”.
 – Great, for most people this is a poor replacement for knowing the fundamentals.
• "The early advice that you gave me to take CPSC 320 really helped me."
Prerequisite Form

• All students must submit the prerequisite form.
 – CS/ECEC/STAT grad students: submit in class/tutorial by January 10.
 – All others: submit to enroll in course.
 • I’ll sign enrollment forms between lectures once I have this form.
Reasons Not to Take This Course

• **High workload:**
 – “This course's workload was a bit more than I would have liked. It seems like this course takes twice the amount of time as another course.”

• **Haven’t taken CPSC 340:**
 – You’ll be missing half of the story, you won’t know many of the most important methods, and a lot of stuff will seem random.

• **Missing prerequisites (or low grades in prereq courses):**
 – It’s better to improve your MATH/CSPC background, and take the course later.
 • Many topics will make a lot more sense as you won’t be filling in background.
 – “I know too much math” said nobody ever.
 – “I’m too good at computer science”, see above (and think $$$ if necessary).
Auditing and Recording

• **Auditing** 540, an excellent option:
 – Pass/fail on transcript rather than grade.
 – Do 1 assignment or write a 2-page report on one technique from class or attend > 90% of classes.
 – But please do this officially:
 • http://students.ubc.ca/enrolment/courses/academic-planning/audit

• About recording lectures:
 – Do not record without permission.
 – All class material will be available online.
 – Videos of material from first month of a previous section are here:
 • https://www.youtube.com/watch?v=p4EnVHSml4U
Textbook and Other Optional Reading

• No textbook covers all course topics.
• The closest is Kevin Murphy’s “Machine Learning”.
 – But we’re using a very different order.

• For each lecture:
 – I’ll give relevant sections from this book.
 – I’ll give other related online material.
• There is a list of related courses on the webpage.
Textbook and Other Optional Reading

• Other good machine learning textbooks:
 – All of Statistics (Wasserman).
 – Elements of Statistical Learning (Hastie et al.).
 – Pattern Recognition and Machine Learning (Bishop).

• Good textbooks on specialized topics from this course:
 – Convex Optimization (Boyd and Vandenberghe).
 – Probabilistic Graphical Models (Koller and Friedman).
 – Deep Learning (Goodfellow et al.).
 – Bayesian Data Analysis (Gelman).

• Some of these are on reserve at the ICICS reading room.
Grading

• 40%: 5 assignments (written, math, and Julia programming).
• 30%: Final (date will be placed here when known).
• 30%: Course project (due date will be placed here when known).
 – There will be no post-course grade changes based on grade thresholds:
 • 49% will not be rounded to 50%, and 71% will not be rounded to 72%.

• No, you can’t do the assignments in Python, R, Matlab, and so on.
 – Julia is free and way faster than Python/R/Matlab.
 – Assignments have prepared code that we won’t translate to 3 languages.
 – TAs shouldn’t have to know 3 languages to grade
• For the course project, you can use any language.
Assignments

• Due at midnight on days where we have lectures:
 – First assignment due next Wednesday (January 10).
 • Subsequent assignments due every 3 weeks.

• Start early, the assignments are a lot of work:
 – Previous students estimated that each assignments takes 6-25 hours:
 • The was heavily correlated with satisfying prerequisites.
 • Please look through the assignment in previous offerings to see length/difficulty.

• Assignment 1 should be done on your own.
• Assignments 2-5 can be done in groups of 1 to 3.
 – Hand in one assignment for the group.
 – But each member should still know the material.
Late Assignment Policy

• You have up to **4 total “late classes”**.

• Example:
 – Assignment 1 is due Wednesday January 10.
 – You can use 1 late class to hand it in Friday January 12.
 – You can use 2 late classes to hand it in Monday January 15.
 – If you need multiple late days for Assignment 1, consider dropping the course.

• FAQ:
 – You cannot use more than 2 “late classes” on any one assignment (0 after that).
 – You cannot use more than 4 total “late classes” throughout the term (0 after that).
 • Otherwise, there is no penalty for using “late classes”.
 – You can use late classes on the assignments/project, but not the exam.
 – Number of late classes for a group:
 • If group member ‘i’ has c_i late classes, group can use at most $\text{ceil}(\text{mean}(c_i))$.
Assignment Issues

• No extensions will be considered beyond the late days.
 – Also, since you can submit more than once, so you have no excuse not to submit something preliminary by the deadline.

• Further, due to limited TA hours, these issues are a 50% penalty:
 – Missing names or student IDs on assignments.
 – Corrupted .zip submission files or not using a .zip file.
 – Submitting the wrong assignment (year or number).
 – Incorrect assignment names in submission files.
 – Not including answers in the correct location in the .pdf file.
Cheating and Plagiarism

• Read about UBC’s policy on “academic misconduct” (cheating):

• When submitting assignments, acknowledge all sources:
 – Put “I had help from Sally on this question” on your submission.
 – Put “I got this from another course’s answer key” on your submission.
 – Put “I copied this from the Coursera website” on your submission.
 – Otherwise, this is plagiarism (course material/textbooks are ok with me).

• At Canadian schools, this is taken very seriously.
 – Could receive 0 in course, be expelled from UBC, or have degree revoked.
Getting Help

- **Piazza** for assignment/course questions:
 - https://piazza.com/ubc.ca/winterterm22017/cpsc540

- **Instructor office-hours**:
 - Tuesdays 3:00-4:00 (ICICS 146) or by appointment (starting next week).

- **TA office hours**: TBA.

- **Weekly tutorials**:
 - Run by TAs covering related material.
 - Mondays 5:00-6:00 (DMP 110, starting next week).

- **Teaching Assistants**:
 - Reza Babanezhad.
 - Raunak Kumar.
 - Alireza Shafaei.
Final Exam

• Final exam details:
 – Date will be written here (eventually).
 – Closed book, three-page double-sided “cheat sheet”.
 – No requirement to pass the final (but recommended).

• Do not miss the final.
 – I don’t control when the final is, don’t make travel plans before April 25th.

• There will be two types of questions:
 – ‘Technical’ questions requiring things like pseudo-code or derivations.
 • Similar to assignment questions, and will only be related topics covered in assignments.
 – ‘Conceptual’ questions testing understanding of key concepts.
 • All lecture slide material except “bonus slides” is fair game here.
Course Project

• Course projects can be done in groups of 2-3 and have 3 parts:
 1. Project proposal (due with Assignment 4).
 2. Literature review (due with Assignment 5).
 3. Coding, experiments, application, or theory (due late April).
 • More details coming later in term, and I don’t care if you switch groups during the term.
Lectures

• All slides will be posted online (before lecture, and final version after).

• Please ask questions: you probably have similar questions to others.
 – I may deflect to the next lecture or Piazza for certain questions.

• Be warned that the course we will move fast and cover a lot of topics:
 – Big ideas will be covered slowly and carefully.
 – But a bunch of other topics won’t be covered in a lot of detail.

• Isn’t it wrong to have only have shallow knowledge?
 – In this field, it’s better to know many methods than to know 5 in detail.
 • This is called the “no free lunch” theorem: different problems need different solutions.
 • If you why something is important, and the core ideas, you can fill in details later.
Course Outline

• We’ll cover the following core machine learning research topics:
 – Large-scale machine learning (my research area).
 – Structured prediction (machine learning with multiple outputs).
 • Density estimation.
 • Graphical models.
 • Recurrent neural networks.
 – Bayesian methods.

• Topics needed to understand machine learning research papers.

• Some of these are not the “usual” machine learning topics.
 – Most of the “usual” topics are covered in CPSC 340 (overview of topics).
Bonus Slides

• I will include a lot of “bonus slides”.
 – May mention advanced variations of methods from lecture.
 – May overview big topics that we don’t have time for.
 – May go over technical details that would derail class.

• You are not expected to learn the material on these slides.
 – But you may find them interesting or useful in the future.

• I’ll use this colour of background on bonus slides.