CPSC 540: Machine Learning
Convergence of Gradient Descent

Mark Schmidt
University of British Columbia

Winter 2017
Admin

- **Auditing/registration forms:**
 - Submit them at end of class, pick them up end of next class.
 - I need your prereq form before I’ll sign registration forms.
 - I wrote comments on the back of some forms.

- **Assignment 1 due Friday.**
 - 1 late day to hand in Monday, 2 late days for Wednesday.
Last Time: Convex Optimization

- We discussed convex optimization problems.
 - Off-the-shelf solvers are available for solving medium-sized convex problems.

- We discussed ways to show functions are convex:
 - For any \(w \), \(f(u) \) is below chord for any convex combination \(u \).
 - \(f \) is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with affine map.
 - Show that \(\nabla^2 f(w) \) is positive semi-definite for all \(w \),
 \[
 \nabla^2 f(w) \succeq 0 \quad \text{(zero matrix)}
 \]

- Formally, the notation \(A \succeq B \) means that for any vector \(v \) we have
 \[
 v^T A v \geq v^T B v,
 \]
 or equivalently “all eigenvalues of \(A \) are at least as big as all eigenvalues of \(B \)”.
Cost of L2-Regularized Least Squares

Two strategies from 340 for L2-regularized least squares:

1. Closed-form solution,
 \[w = (X^T X + \lambda I)^{-1} (X^T y), \]
 which costs \(O(nd^2 + d^3) \).
 - This is fine for \(d = 5000 \), but may be too slow for \(d = 1,000,000 \).

2. Run \(t \) iterations of gradient descent,
 \[w^{k+1} = w^k - \alpha_k \nabla f(w^k), \]
 which costs \(O(ndt) \).
 - I’m using \(t \) as total number of iterations, and \(k \) as iteration number.

Gradient descent is faster if \(t \) is not too big:
- If we only do \(t < \max\{d, d^2/n\} \) iterations.
Cost of Logistic Regression

- Gradient descent can also be applied to other models like logistic regression,

\[f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^i w^T x^i)), \]

which we can’t formulate as a linear system or linear program.
- Setting \(\nabla f(w) = 0 \) gives a system of transcendental equations.

- But this objective function is convex and differentiable.
 - So gradient descent converges to a global optimum.

- Alternately, another common approach is Newton’s method.
 - Requires computing Hessian \(\nabla^2 f(w^k) \), and known as “IRLS” in statistics.
Digression: Logistic Regression Gradient and Hessian

- With some tedious manipulations, gradient for logistic regression is

 \[\nabla f(w) = X^T r. \]

 where vector \(r \) has \(r_i = -y^i h(-y^i w^T x^i) \) and \(h \) is the sigmoid function.

- We know the gradient has this form from the multivariate chain rule.
 - Functions for the form \(f(Xw) \) always have \(\nabla f(w) = X^T r \) (see bonus slide).

- With some more tedious manipulations we get

 \[\nabla^2 f(w) = X^T DX. \]

 where \(D \) is a diagonal matrix with \(d_{ii} = h(y_i w^T x^i) h(-y^i w^T x^i) \).

 - The \(f(Xw) \) structure leads to a \(X^T DX \) Hessian structure
Cost of Logistic Regression

- Gradient descent costs $O(nd)$ per iteration to compute Xw^k and XT^k.
- Newton costs $O(nd^2 + d^3)$ per iteration to compute and invert $\nabla^2 f(w^k)$.

- Newton typically requires substantially fewer iterations.

- But for datasets with very large d, gradient descent might be faster.
 - If $t < \max\{d, d^2/n\}$ then we should use the “slow” algorithm with fast iterations.

- So, how many iterations t of gradient descent do we need?
Outline

1. Gradient Descent Progress Bound
2. Gradient Descent Convergence Rate
Gradient Descent for Finding a Local Minimum

- A typical gradient descent algorithm:
 - Start with some initial guess, w^0.

 - Generate new guess w^1 by moving in the negative gradient direction:
 $$w^1 = w^0 - \alpha_0 \nabla f(w^0),$$
 where α_0 is the step size.

 - Repeat to successively refine the guess:
 $$w^{k+1} = w^k - \alpha_k \nabla f(w^k), \quad \text{for } k = 1, 2, 3, \ldots$$
 where we might use a different step-size α_t on each iteration.

 - Stop if $\|\nabla f(w^k)\| \leq \epsilon$.
 - In practice, you also stop if you detect that you aren’t making progress.
Gradient Descent Progress Bound

Gradient Descent Convergence Rate

Gradient Descent in 2D
Lipschitz Continuity of the Gradient

- Let's first show a basic property:
 - If the step-size α_t is small enough, then gradient descent decreases f.

- We'll analyze gradient descent assuming gradient of f is Lipschitz continuous.
 - There exists an L such that for all w and v we have
 \[
 \|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|.
 \]
 - "Gradient can't change arbitrarily fast".

- This is a fairly weak assumption: it's true in almost all ML models.
 - Least squares, logistic regression, deep neural networks, etc.
Lipschitz Contuuity of the Gradient

- For C^2 functions, Lipschitz continuity of the gradient is equivalent to
 \[\nabla^2 f(w) \preceq LI, \]
 for all w.
- “Eigenvalues of the Hessian are bounded above by L”.
 - For least squares, minimum L is the maximum eigenvalue of $X^T X$.
- This means $v^T \nabla^2 f(u)v \leq v^T (LI)v$ for any u and v, or that
 \[v^T \nabla^2 f(u)v \leq L \|v\|^2. \]
For a C^2 function, a variation on the multivariate Taylor expansion is that
\[
f(v) = f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(u) (v - w),
\]
for any w and v (with u being some convex combination of w and v).

Lipschitz continuity implies the green term is at most $L \|v - w\|^2$,
\[
f(v) \leq f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} \|v - w\|^2,
\]
which is called the descent lemma.

The descent lemma also holds for C^1 functions (bonus slide).
The descent lemma gives us a **convex quadratic upper bound on** f:

$$f(x) + \nabla f(x)^T(y-x) + \frac{L}{2}\|y-x\|^2$$

This bound is **minimized** by a gradient descent step from w with $\alpha_k = 1/L$.
Gradient Descent decreases f for $\alpha_k = 1/L$

- So let’s consider doing gradient descent with a step-size of $\alpha_k = 1/L$,

$$w^{k+1} = w^k - \frac{1}{L} \nabla f(w^k).$$

- If we substitute w^{k+1} and w^k into the descent lemma we get

$$f(w^{k+1}) \leq f(w^k) + \nabla f(w^k)^T (w^{k+1} - w^k) + \frac{L}{2} \|w^{k+1} - w^k\|^2.$$

- Now if we use that $(w^{k+1} - w^k) = -\frac{1}{L} \nabla f(w^k)$ in gradient descent,

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{L} \nabla f(w^k)^T \nabla f(w^k) + \frac{L}{2} \left\| \frac{1}{L} \nabla f(w^k) \right\|^2$$

$$= f(w^k) - \frac{1}{L} \| \nabla f(w^k) \|^2 + \frac{1}{2L} \| \nabla f(w^k) \|^2$$

$$= f(w^k) - \frac{1}{2L} \| \nabla f(w^k) \|^2.$$
Implication of Lipschitz Continuity

- We’ve derived a bound on guaranteed progress when using $\alpha_k = 1/L$.

\[f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \| \nabla f(w^k) \|^2. \]

- If gradient is non-zero, $\alpha_k = 1/L$ is guaranteed to decrease objective.
- Amount we decrease grows with the size of the gradient.
- Same argument shows that any $\alpha_k < 2/L$ will decrease f.
Choosing the Step-Size in Practice

- In practice, you should never use $\alpha_k = 1/L$.
 - L is usually expensive to compute, and this step-size is really small.
 - You only need a step-size this small in the worst case.

- One practical option is to approximate L:
 - Start with a small guess for \hat{L} (like $\hat{L} = 1$).
 - Before you take your step, check if the progress bound is satisfied:
 \[f(w^k - (1/\hat{L})\nabla f(w^k)) \leq f(w^k) - \frac{1}{2\hat{L}} \|\nabla f(w^k)\|^2. \]
 - Double \hat{L} if it’s not satisfied, and test the inequality again.
 - Worst case: eventually have $L \leq \hat{L} < 2L$ and you decrease f at every iteration.
 - Good case: $\hat{L} << L$ and you are making way more progress than using $1/L$.
Choosing the Step-Size in Practice

- An approach that usually works better is a backtracking line-search:
 - Start each iteration with a large step-size α.
 - So even if we took small steps in the past, be optimistic that we’re not in worst case.
 - Decrease α until if Armijo condition is satisfied (this is what findMin.jl does),
 $$f(w^k - \alpha \nabla f(w^k)) \leq f(w^k) - \alpha \gamma \|\nabla f(w^k)\|^2 \quad \text{for} \quad \gamma \in (0, 1/2],$$
 often we choose γ to be very small like $\gamma = 10^{-4}$.
 - We would rather take a small decrease instead of trying many α values.

- Good codes use clever tricks to initialize and decrease the α values.
 - Usually only try 1 value per iteration.
- Even more fancy line-search: Wolfe conditions (makes sure α is not too small).
 - Good reference on these tricks: Nocedal and Wright’s Numerical Optimization book.
Outline

1. Gradient Descent Progress Bound
2. Gradient Descent Convergence Rate
Convergence Rate of Gradient Descent

- In 340, we claimed that $\nabla f(w^k)$ converges to zero as k goes to ∞.
 - For convex functions, this means it converges to a global optimum.
 - However, we may not have $\nabla f(w^k) = 0$ for any finite k.

- Instead, we’re usually happy with $\|\nabla f(w^k)\| \leq \epsilon$ for some small ϵ.
 - Given an ϵ, how many iterations does it take for this to happen?

- We’ll first answer this question only assuming that
 1. Gradient ∇f is Lipschitz continuous (as before).
 2. Step-size $\alpha_k = 1/L$ (this is only to make things simpler).
 3. Function f can’t go below a certain value f^* (“bounded below”).

- Most ML objectives f are bounded below (like the squared error being at least 0).
Convergence Rate of Gradient Descent

Key ideas:

1. We start at some $f(w^0)$, and at each step we decrease f by at least $\frac{1}{2L} \| \nabla f(w^k) \|^2$.
2. But we can’t decrease $f(w^k)$ below f^*.
3. So $\| \nabla f(w^k) \|^2$ must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

$$ f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \| \nabla f(w^k) \|^2. $$

Since we want to bound $\| \nabla f(w^k) \|$, let’s rearrange as

$$ \| \nabla f(w^k) \|^2 \leq 2L(f(w^k) - f(w^{k+1})). $$
Convergence Rate of Gradient Descent

- So for each iteration \(k \), we have
 \[
 \| \nabla f(w^k) \|^2 \leq 2L [f(w^k) - f(w^{k+1})].
 \]

- Let’s sum up the squared norms of all the gradients up to iteration \(t \),
 \[
 \sum_{k=1}^{t} \| \nabla f(w^k) \|^2 \leq 2L \sum_{k=1}^{t} [f(w^k) - f(w^{k+1})].
 \]

- Now we use two tricks:
 1. On the left, use that all \(\| \nabla f(w^k) \| \) are at least as big as their minimum.
 2. On the right, use that this is a telescoping sum:
 \[
 \sum_{k=1}^{t} [f(w^k) - f(w^{k+1})] = f(w^0) - f(w^1) + f(w^1) - f(w^2) + f(w^2) - \ldots f(w^{t+1})
 \]
 \[
 = f(w^0) - f(w^{t+1}).
 \]
Convergence Rate of Gradient Descent

- With these substitutions we have
 \[
 \sum_{k=1}^{t} \min_{j \in \{1, \ldots, t\}} \{ \| \nabla f(w^j) \|^2 \} \leq 2L[f(w^0) - f(w^{t+1})].
 \]
 no dependence on \(k \)

- Now using that \(f(w^{t+1}) \geq f^* \) we get
 \[
 t \min_{k \in \{1, \ldots, t\}} \{ \| \nabla f(w^k) \|^2 \} \leq 2L[f(w^0) - f^*],
 \]
 and finally that
 \[
 \min_{k \in \{1, \ldots, t\}} \{ \| \nabla f(w^k) \|^2 \} \leq \frac{2L[f(w^0) - f^*]}{t} = O(1/t),
 \]
 so if we run for \(t \) iterations, we'll find at least one \(k \) with \(\| \nabla f(w^k) \|^2 = O(1/t) \).
Convergence Rate of Gradient Descent

- Our “error on iteration t” bound:

$$\min_{k \in \{1, \ldots, t\}} \left\{ \|\nabla f(w^k)\|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t}.$$

- We want to know when the norm is below ϵ, which is guaranteed if:

$$\frac{2L[f(w^0) - f^*]}{t} \leq \epsilon.$$

- Solving for t gives that this is guaranteed for every t where

$$t \geq \frac{2L[f(w^0) - f^*]}{\epsilon},$$

so gradient descent requires $t = O(1/\epsilon)$ iterations to achieve $\|\nabla f(w^k)\|^2 \leq \epsilon$.
Summary

- **Gradient descent** can be suitable for solving high-dimensional problems.
- **Guaranteed progress bound** if gradient is Lipschitz, based on norm of gradient.
- **Practical step size strategies** based on the progress bound.
- **Error on iteration** t of $O(1/t)$ for functions that are bounded below.
 - Implies that we need $t = O(1/\epsilon)$ iterations to have $\|\nabla f(x^k)\| \leq \epsilon$.

- Next time: didn’t I say that regularization makes gradient descent go faster?
Checking Derivative Code

- Gradient descent codes require you to write objective/gradient code. This tends to be error-prone, although automatic differentiation codes are helping.

- Make sure to check your derivative code:
 - Numerical approximation to partial derivative:
 \[
 \nabla_i f(x) \approx \frac{f(x + \delta e_i) - f(x)}{\delta}
 \]
 - For large-scale problems you can check a random direction \(d\):
 \[
 \nabla f(x)^T d \approx \frac{f(x + \delta d) - f(x)}{\delta}
 \]
 - If the left side coming from your code is very different from the right side, there is likely a bug.
Multivariate Chain Rule

- If \(g : \mathbb{R}^d \mapsto \mathbb{R}^n \) and \(f : \mathbb{R}^n \mapsto \mathbb{R} \), then \(h(x) = f(g(x)) \) has gradient

\[
\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),
\]

where \(\nabla g(x) \) is the Jacobian (since \(g \) is multi-output).

- If \(g \) is an affine map \(x \mapsto Ax + b \) so that \(h(x) = f(Ax + b) \) then we obtain

\[
\nabla h(x) = A^T \nabla f(Ax + b).
\]

- Further, for the Hessian we have

\[
\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.
\]
Convexity of Logistic Regression

- Logistic regression Hessian is
 \[\nabla^2 f(w) = X^T D X. \]
 where \(D \) is a diagonal matrix with \(d_{ii} = h(y_i w^T x^i)h(-y_i w^T x^i) \).

- Since the sigmoid function is non-negative, we can compute \(D^{\frac{1}{2}} \), and
 \[
 v^T X^T D X v = v^T X^T D^{\frac{1}{2}} D^{\frac{1}{2}} X v = (D^{\frac{1}{2}} X v)^T (D^{\frac{1}{2}} X v) = \| X D^{\frac{1}{2}} v \|^2 \geq 0,
 \]
 so \(X^T D X \) is positive semidefinite and logistic regression is convex.
 - It becomes strictly convex if you add L2-regularization, making solution unique.
Lipschitz Continuity of Logistic Regression Gradient

- Logistic regression Hessian is

\[
\nabla^2 f(w) = \sum_{i=1}^{n} \left(h(y_i w^T x^i) h(-y_i w^T x^i) d_{ii} x^i (x^i)^T \right)
\]

\[
\leq 0.25 \sum_{i=1}^{n} x^i (x^i)^T
\]

\[
= 0.25 X^T X.
\]

- In the second line we use that \(h(\alpha) \in (0, 1) \) and \(h(-\alpha) = 1 - \alpha \).
 - This means that \(d_{ii} \leq 0.25 \).

- So for logistic regression, we can take \(L = \frac{1}{4} \max\{\text{eig}(X^T X)\} \).
Why the gradient descent iteration?

- For a C^2 function, a variation on the multivariate Taylor expansion is that

$$f(v) = f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(u)(v - w),$$

for any w and v (with u being some convex combination of w and v).

- If w and v are very close to each other, then we have

$$f(v) = f(w) + \nabla f(w)^T (v - w) + O(\|v - w\|^2),$$

and the last term becomes negligible.

- Ignoring the last term, for a fixed $\|v - w\|$ I can minimize $f(v)$ by choosing $(v - w) \propto -\nabla f(w)$.

 So if we’re moving a small amount the optimal choice is gradient descent.
Descent Lemma for C^1 Functions

- Let ∇f be L-Lipschitz continuous, and define $g(\alpha) = f(x + \alpha z)$ for a scalar α.

\[
\begin{align*}
\text{(fund. thm. calc.)} & \quad f(y) = f(x) + \int_0^1 \nabla f(x + \alpha(y - x))^T(y - x) d\alpha \\
(\pm \text{ const.}) & \quad = f(x) + \nabla f(x)^T(y - x) + \int_0^1 (\nabla f(x + \alpha(y - x)) - \nabla f(x))^T(y - x) d\alpha \\
\text{(CS ineq.)} & \quad \leq f(x) + \nabla f(x)^T(y - x) + \int_0^1 \| \nabla f(x + \alpha(y - x)) - \nabla f(x) \| \| y - x \| d\alpha \\
\text{(Lipschitz)} & \quad \leq f(x) + \nabla f(x)^T(y - x) + \int_0^1 L \| x + \alpha(y - x) - x \| \| y - x \| d\alpha \\
\text{(homog.)} & \quad = f(x) + \nabla f(x)^T(y - x) + \int_0^1 L \alpha \| y - x \|^2 d\alpha \\
\left(\int_0^1 \alpha = \frac{1}{2} \right) & \quad = f(x) + \nabla f(x)^T(y - x) + \frac{L}{2} \| y - x \|^2.
\end{align*}
\]
Equivalent Conditions to Lipschitz Continuity of Gradient

- We said that Lipschitz continuity of the gradient

\[\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|, \]

is equivalent for C^2 functions to having

\[\nabla^2 f(w) \preceq LI. \]

- There are a lot of other equivalent definitions, see here: