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Admin

Auditting/registration forms:

Submit them at end of class, pick them up end of next class.
I need your prereq form before I’ll sign registration forms.
I wrote comments on the back of some forms.

Assignment 1 due Friday.

1 late day to hand in Monday, 2 late days for Wednesday.
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Last Time: Convex Optimization

We discussed convex optimization problems.

Off-the-shelf solvers are available for solving medium-sized convex problems.

We discussed ways to show functions are convex:

For any w, f(u) is below chord for any convex combination u.
f is constructed from operations that preserve convexity.

Non-negative scaling, sum, max, composition with affine map.

Show that ∇2f(w) is positive semi-definite for all w,

∇2f(w) � 0 (zero matrix)

Formally, the notation A � B means that for any vector v we have

vTAv ≥ vTBv,

or equivalently “all eigenvalues of A are at least as big as all eigenvalues of B”.
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Cost of L2-Regularizd Least Squares

Two strategies from 340 for L2-regularized least squares:
1 Closed-form solution,

w = (XTX + λI)−1(XT y),

which costs O(nd2 + d3).

This is fine for d = 5000, but may be too slow for d = 1, 000, 000.

2 Run t iterations of gradient descent,

wk+1 = wk − αkX
T (Xwk − y)︸ ︷︷ ︸
∇f(wk)

,

which costs O(ndt).

I’m using t as total number of iterations, and k as iteration number.

Gradient descent is faster if t is not too big:

If we only do t < max{d, d2/n} iterations.
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Cost of Logistic Regression

Gradient descent can also be applied to other models like logistic regression,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

which we can’t formulate as a linear system or linear program.

Setting ∇f(w) = 0 gives a system of transcendental equations.

But this objective function is convex and differentiable.

So gradient descent converges to a global optimum.

Alternately, another common approach is Newton’s method.

Requires computing Hessian ∇2f(wk), and known as “IRLS” in statistics.
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Digression: Logistic Regression Gradient and Hessian

With some tedious manipulations, gradient for logistic regression is

∇f(w) = XT r.

where vector r has ri = −yih(−yiwTxi) and h is the sigmoid function.

We know the gradient has this form from the multivariate chain rule.

Functions for the form f(Xw) always have ∇f(w) = XT r (see bonus slide).

With some more tedious manipulations we get

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

The f(Xw) structure leads to a XTDX Hessian structure
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Cost of Logistic Regression

Gradient descent costs O(nd) per iteration to compute Xwk and XT rk.

Newton costs O(nd2 + d3) per iteration to compute and invert ∇2f(wk).

Newton typically requires substantially fewer iterations.

But for datasets with very large d, gradient descent might be faster.

If t < max{d, d2/n} then we should use the “slow” algorithm with fast iterations.

So, how many iterations t of gradient descent do we need?
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Gradient Descent for Finding a Local Minimum

A typical gradient descent algorithm:

Start with some initial guess, w0.

Generate new guess w1 by moving in the negative gradient direction:

w1 = w0 − α0∇f(w0),

where α0 is the step size.

Repeat to successively refine the guess:

wk+1 = wk − αk∇f(wk), for k = 1, 2, 3, . . .

where we might use a different step-size αt on each iteration.
Stop if ‖∇f(wk)‖ ≤ ε.

In practice, you also stop if you detect that you aren’t making progress.
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Gradient Descent in 2D
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Lipschitz Contuity of the Gradient

Let’s first show a basic property:

If the step-size αt is small enough, then gradient descent decreases f .

We’ll analyze gradient descent assuming gradient of f is Lipschitz continuous.

There exists an L such that for all w and v we have

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖.

“Gradient can’t change arbitrarily fast”.

This is a fairly weak assumption: it’s true in almost all ML models.

Least squares, logistic regression, deep neural networks, etc.
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Lipschitz Contuity of the Gradient

For C2 functions, Lipschitz continuity of the gradient is equivalent to

∇2f(w) � LI,

for all w.

“Eigenvalues of the Hessian are bounded above by L”.

For least squares, minimum L is the maximum eigenvalue of XTX.

This means vT∇2f(u)v ≤ vT (LI)v for any u and v, or that

vT∇2f(u)v ≤ L‖v‖2.
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Descent Lemma

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w) + 1

2
(v − w)T∇2f(u)(v − w),

for any w and v (with u being some convex combination of w and v).

Lipschitz continuity implies the green term is at most L‖v − w‖2,

f(v) ≤ f(w) +∇f(w)T (v − w) + L

2
‖v − w‖2,

which is called the descent lemma.

The descent lemma also holds for C1 functions (bonus slide).
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Descent Lemma

The descent lemma gives us a convex quadratic upper bound on f :

f(x)

f(x) + ∇f(x)T(y-x)

f(y)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

This bound is minimized by a gradient descent step from w with αk = 1/L.
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Gradient Descent decreases f for αk = 1/L

So let’s consider doing gradient descent with a step-size of αk = 1/L,

wk+1 = wk − 1

L
∇f(wk).

If we substitle wk+1 and wk into the descent lemma we get

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) +
L

2
‖wk+1 − wk‖2.

Now if we use that (wk+1 − wk) = − 1
L∇f(w

k) in gradient descent,

f(wk+1) ≤ f(wk)− 1

L
∇f(wk)T∇f(wk) +

L

2
‖ 1
L
∇f(wk)‖2

= f(wk)− 1

L
‖∇f(wk)‖2 + 1

2L
‖∇f(wk)‖2

= f(wk)− 1

2L
‖∇f(wk)‖2.
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Implication of Lipschitz Continuity

We’ve derived a bound on guaranteed progress when using αk = 1/L.

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

f(x) Guaranteed
Progress

If gradient is non-zero, αk = 1/L is guaranteed to decrease objective.

Amount we decrease grows with the size of the gradient.

Same argument shows that any αk < 2/L will decrease f .
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Choosing the Step-Size in Practice

In practice, you should never use αk = 1/L.
L is usually expensive to compute, and this step-size is really small.

You only need a step-size this small in the worst case.

One practical option is to approximate L:

Start with a small guess for L̂ (like L̂ = 1).
Before you take your step, check if the progress bound is satisfied:

f(wk − (1/L̂)∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− 1

2L̂
‖∇f(wk)‖2.

Double L̂ if it’s not satisfied, and test the inequality again.

Worst case: eventually have L ≤ L̂ < 2L and you decrease f at every iteration.

Good case: L̂ << L and you are making way more progress than using 1/L.
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Choosing the Step-Size in Practice

An approach that usually works better is a backtracking line-search:
Start each iteration with a large step-size α.

So even if we took small steps in the past, be optimistic that we’re not in worst case.

Decrease α until if Armijo condition is satisfied (this is what findMin.jl does),

f(wk − α∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− αγ‖∇f(wk)‖2 for γ ∈ (0, 1/2],

often we choose γ to be very small like γ = 10−4.

We would rather take a small decrease instead of trying many α values.

Good codes use clever tricks to initialize and decrease the α values.

Usually only try 1 value per iteration.

Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

Good reference on these tricks: Nocedal and Wright’s Numerical Optimization book.
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Convergence Rate of Gradient Descent

In 340, we claimed that ∇f(wk) converges to zero as k goes to ∞.

For convex functions, this means it converges to a global optimum.
However, we may not have ∇f(wk) = 0 for any finite k.

Instead, we’re usually happy with ‖∇f(wk)‖ ≤ ε for some small ε.

Given an ε, how many iterations does it take for this to happen?

We’ll first answer this question only assuming that
1 Gradient ∇f is Lipschitz continuous (as before).
2 Step-size αk = 1/L (this is only to make things simpler).
3 Function f can’t go below a certain value f∗ (“bounded below”).

Most ML objectives f are bounded below (like the squared error being at least 0).
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Convergence Rate of Gradient Descent

Key ideas:
1 We start at some f(w0), and at each step we decrease f by at least 1

2L‖∇f(w
k)‖2.

2 But we can’t decrease f(wk) below f∗.
3 So ‖∇f(wk)‖2 must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

Since we want to bound ‖∇f(wk)‖, let’s rearrange as

‖∇f(wk)‖2 ≤ 2L(f(wk)− f(wk+1)).
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Convergence Rate of Gradient Descent

So for each iteration k, we have

‖∇f(wk)‖2 ≤ 2L[f(wk)− f(wk+1)].

Let’s sum up the squared norms of all the gradients up to iteration t,

t∑
k=1

‖∇f(wk)‖2 ≤ 2L

t∑
k=1

[f(wk)− f(wk+1)].

Now we use two tricks:
1 On the left, use that all ‖∇f(wk)‖ are at least as big as their minimum.
2 On the right, use that this is a telescoping sum:

t∑
k=1

[f(wk)− f(wk+1)] = f(w0)− f(w1) + f(w1)︸ ︷︷ ︸
0

− f(w2) + f(w2)︸ ︷︷ ︸
0

− . . . f(wt+1)

= f(w0)− f(wt+1).
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Convergence Rate of Gradient Descent

With these substitutions we have

t∑
k=1

min
j∈{1,...,t}

{
‖∇f(wj)‖2

}
︸ ︷︷ ︸

no dependence on k

≤ 2L[f(w0)− f(wt+1)].

Now using that f(wt+1) ≥ f∗ we get

t min
k∈{1,...,t}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗],

and finally that

min
k∈{1,...,t}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
= O(1/t),

so if we run for t iterations, we’ll find at least one k︸ ︷︷ ︸
the minimum

with ‖∇f(wk)‖2 = O(1/t).
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Convergence Rate of Gradient Descent

Our “error on iteration t” bound:

min
k∈{1,...,t}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
.

We want to know when the norm is below ε, which is guaranteed if:

2L[f(w0)− f∗]
t

≤ ε.

Solving for t gives that this is guaranteed for every t where

t ≥ 2L[f(w0)− f∗]
ε

,

so gradient descent requires t = O(1/ε) iterations to achieve ‖∇f(wk)‖2 ≤ ε.



Gradient Descent Progress Bound Gradient Descent Convergence Rate

Summary

Gradient descent can be suitable for solving high-dimensional problems.

Guaranteed progress bound if gradient is Lipschitz, based on norm of gradient.

Practical step size strategies based on the progress bound.

Error on iteration t of O(1/t) for functions that are bounded below.

Implies that we need t = O(1/ε) iterations to have ‖∇f(xk)‖ ≤ ε.

Next time: didn’t I say that regularization makes gradient descent go faster?
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Checking Derivative Code

Gradient descent codes require you to write objective/gradient code.

This tends to be error-prone, although automatic differentiation codes are helping.

Make sure to check your derivative code:

Numerical approximation to partial derivative:

∇if(x) ≈
f(x+ δei)− f(x)

δ

For large-scale problems you can check a random direction d:

∇f(x)T d ≈ f(x+ δd)− f(x)
δ

If the left side coming from your code is very different from the right side,
there is likely a bug.
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Multivariate Chain Rule

If g : Rd 7→ Rn and f : Rn 7→ R, then h(x) = f(g(x)) has gradient

∇h(x) = ∇g(x)T∇f(g(x)),

where ∇g(x) is the Jacobian (since g is multi-output).

If g is an affine map x 7→ Ax+ b so that h(x) = f(Ax+ b) then we obtain

∇h(x) = AT∇f(Ax+ b).

Further, for the Hessian we have

∇2h(x) = AT∇2f(Ax+ b)A.
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Convexity of Logistic Regression

Logistic regression Hessian is

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

Since the sigmoid function is non-negative, we can compute D
1
2 , and

vTXTDXv = vTXTD
1
2D

1
2Xv = (D

1
2Xv)T (D

1
2Xv) = ‖XD

1
2 v‖2 ≥ 0,

so XTDX is positive semidefinite and logistic regression is convex.

It becomes strictly convex if you add L2-regularization, making solution unique.
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Lipschitz Continuity of Logistic Regression Gradient

Logistic regression Hessian is

∇2f(w) =

n∑
i=1

h(yiw
Txi)h(−yiwTxi)︸ ︷︷ ︸

dii

xi(xi)T

� 0.25

n∑
i=1

xi(xi)T

= 0.25XTX.

In the second line we use that h(α) ∈ (0, 1) and h(−α) = 1− α.

This means that dii ≤ 0.25.

So for logistic regression, we can take L = 1
4 max{eig(XTX)}.
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Why the gradient descent iteration?

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w) + 1

2
(v − w)T∇2f(u)(v − w),

for any w and v (with u being some convex combination of w and v).

If w and v are very close to each other, then we have

f(v) = f(w) +∇f(w)T (v − w) +O(‖v − w‖2),

and the last term becomes negligible.

Ignoring the last term, for a fixed ‖v − w‖ I can minimize f(v) by choosing
(v − w) ∝ −∇f(w).

So if we’re moving a small amount the optimal choice is gradient descent.
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Descent Lemma for C1 Functions

Let ∇f be L-Lipschitz continuous, and define g(α) = f(x+ αz) for a scalar α.

f(y) = f(x) +

∫ 1

0
∇f(x+ α(y − x))T (y − x)dα (fund. thm. calc.)

(± const.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
(∇f(x+ α(y − x))−∇f(x))T (y − x)dα

(CS ineq.) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
‖∇f(x+ α(y − x))−∇f(x)‖‖y − x‖dα

(Lipschitz) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
L‖x+ α(y − x)− x‖‖y − x‖dα

(homog.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
Lα‖y − x‖2dα

(

∫ 1

0
α =

1

2
) = f(x) +∇f(x)T (y − x) + L

2
‖y − x‖2.
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Equivalent Conditions to Lipschitz Continuity of Gradient

We said that Lipschitz continuity of the gradient

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖,

is equivalent for C2 functions to having

∇2f(w) � LI.

There are a lot of other equivalent definitions, see here:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

http://xingyuzhou.org/blog/notes/Lipschitz-gradient
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