
Gradient Descent Progress Bound Gradient Descent Convergence Rate

CPSC 540: Machine Learning
Convergence of Gradient Descent

Mark Schmidt

University of British Columbia

Winter 2017

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Admin

Auditting/registration forms:

Submit them at end of class, pick them up end of next class.
I need your prereq form before I’ll sign registration forms.
I wrote comments on the back of some forms.

Assignment 1 due Friday.

1 late day to hand in Monday, 2 late days for Wednesday.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Last Time: Convex Optimization

We discussed convex optimization problems.

Off-the-shelf solvers are available for solving medium-sized convex problems.

We discussed ways to show functions are convex:

For any w, f(u) is below chord for any convex combination u.
f is constructed from operations that preserve convexity.

Non-negative scaling, sum, max, composition with affine map.

Show that ∇2f(w) is positive semi-definite for all w,

∇2f(w) � 0 (zero matrix)

Formally, the notation A � B means that for any vector v we have

vTAv ≥ vTBv,

or equivalently “all eigenvalues of A are at least as big as all eigenvalues of B”.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Cost of L2-Regularizd Least Squares

Two strategies from 340 for L2-regularized least squares:
1 Closed-form solution,

w = (XTX + λI)−1(XT y),

which costs O(nd2 + d3).

This is fine for d = 5000, but may be too slow for d = 1, 000, 000.

2 Run t iterations of gradient descent,

wk+1 = wk − αkX
T (Xwk − y)︸ ︷︷ ︸
∇f(wk)

,

which costs O(ndt).

I’m using t as total number of iterations, and k as iteration number.

Gradient descent is faster if t is not too big:

If we only do t < max{d, d2/n} iterations.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Cost of Logistic Regression

Gradient descent can also be applied to other models like logistic regression,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

which we can’t formulate as a linear system or linear program.

Setting ∇f(w) = 0 gives a system of transcendental equations.

But this objective function is convex and differentiable.

So gradient descent converges to a global optimum.

Alternately, another common approach is Newton’s method.

Requires computing Hessian ∇2f(wk), and known as “IRLS” in statistics.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Digression: Logistic Regression Gradient and Hessian

With some tedious manipulations, gradient for logistic regression is

∇f(w) = XT r.

where vector r has ri = −yih(−yiwTxi) and h is the sigmoid function.

We know the gradient has this form from the multivariate chain rule.

Functions for the form f(Xw) always have ∇f(w) = XT r (see bonus slide).

With some more tedious manipulations we get

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

The f(Xw) structure leads to a XTDX Hessian structure

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Cost of Logistic Regression

Gradient descent costs O(nd) per iteration to compute Xwk and XT rk.

Newton costs O(nd2 + d3) per iteration to compute and invert ∇2f(wk).

Newton typically requires substantially fewer iterations.

But for datasets with very large d, gradient descent might be faster.

If t < max{d, d2/n} then we should use the “slow” algorithm with fast iterations.

So, how many iterations t of gradient descent do we need?

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Outline

1 Gradient Descent Progress Bound

2 Gradient Descent Convergence Rate

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Gradient Descent for Finding a Local Minimum

A typical gradient descent algorithm:

Start with some initial guess, w0.

Generate new guess w1 by moving in the negative gradient direction:

w1 = w0 − α0∇f(w0),

where α0 is the step size.

Repeat to successively refine the guess:

wk+1 = wk − αk∇f(wk), for k = 1, 2, 3, . . .

where we might use a different step-size αt on each iteration.
Stop if ‖∇f(wk)‖ ≤ ε.

In practice, you also stop if you detect that you aren’t making progress.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Gradient Descent in 2D

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Lipschitz Contuity of the Gradient

Let’s first show a basic property:

If the step-size αt is small enough, then gradient descent decreases f .

We’ll analyze gradient descent assuming gradient of f is Lipschitz continuous.

There exists an L such that for all w and v we have

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖.

“Gradient can’t change arbitrarily fast”.

This is a fairly weak assumption: it’s true in almost all ML models.

Least squares, logistic regression, deep neural networks, etc.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Lipschitz Contuity of the Gradient

For C2 functions, Lipschitz continuity of the gradient is equivalent to

∇2f(w) � LI,

for all w.

“Eigenvalues of the Hessian are bounded above by L”.

For least squares, minimum L is the maximum eigenvalue of XTX.

This means vT∇2f(u)v ≤ vT (LI)v for any u and v, or that

vT∇2f(u)v ≤ L‖v‖2.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Descent Lemma

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w) + 1

2
(v − w)T∇2f(u)(v − w),

for any w and v (with u being some convex combination of w and v).

Lipschitz continuity implies the green term is at most L‖v − w‖2,

f(v) ≤ f(w) +∇f(w)T (v − w) + L

2
‖v − w‖2,

which is called the descent lemma.

The descent lemma also holds for C1 functions (bonus slide).

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Descent Lemma

The descent lemma gives us a convex quadratic upper bound on f :

f(x)

f(x) + ∇f(x)T(y-x)

f(y)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

This bound is minimized by a gradient descent step from w with αk = 1/L.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Gradient Descent decreases f for αk = 1/L

So let’s consider doing gradient descent with a step-size of αk = 1/L,

wk+1 = wk − 1

L
∇f(wk).

If we substitle wk+1 and wk into the descent lemma we get

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) +
L

2
‖wk+1 − wk‖2.

Now if we use that (wk+1 − wk) = − 1
L∇f(w

k) in gradient descent,

f(wk+1) ≤ f(wk)− 1

L
∇f(wk)T∇f(wk) +

L

2
‖ 1
L
∇f(wk)‖2

= f(wk)− 1

L
‖∇f(wk)‖2 + 1

2L
‖∇f(wk)‖2

= f(wk)− 1

2L
‖∇f(wk)‖2.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Implication of Lipschitz Continuity

We’ve derived a bound on guaranteed progress when using αk = 1/L.

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

f(x) Guaranteed
Progress

If gradient is non-zero, αk = 1/L is guaranteed to decrease objective.

Amount we decrease grows with the size of the gradient.

Same argument shows that any αk < 2/L will decrease f .

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Choosing the Step-Size in Practice

In practice, you should never use αk = 1/L.
L is usually expensive to compute, and this step-size is really small.

You only need a step-size this small in the worst case.

One practical option is to approximate L:

Start with a small guess for L̂ (like L̂ = 1).
Before you take your step, check if the progress bound is satisfied:

f(wk − (1/L̂)∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− 1

2L̂
‖∇f(wk)‖2.

Double L̂ if it’s not satisfied, and test the inequality again.

Worst case: eventually have L ≤ L̂ < 2L and you decrease f at every iteration.

Good case: L̂ << L and you are making way more progress than using 1/L.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Choosing the Step-Size in Practice

An approach that usually works better is a backtracking line-search:
Start each iteration with a large step-size α.

So even if we took small steps in the past, be optimistic that we’re not in worst case.

Decrease α until if Armijo condition is satisfied (this is what findMin.jl does),

f(wk − α∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− αγ‖∇f(wk)‖2 for γ ∈ (0, 1/2],

often we choose γ to be very small like γ = 10−4.

We would rather take a small decrease instead of trying many α values.

Good codes use clever tricks to initialize and decrease the α values.

Usually only try 1 value per iteration.

Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

Good reference on these tricks: Nocedal and Wright’s Numerical Optimization book.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Outline

1 Gradient Descent Progress Bound

2 Gradient Descent Convergence Rate

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Convergence Rate of Gradient Descent

In 340, we claimed that ∇f(wk) converges to zero as k goes to ∞.

For convex functions, this means it converges to a global optimum.
However, we may not have ∇f(wk) = 0 for any finite k.

Instead, we’re usually happy with ‖∇f(wk)‖ ≤ ε for some small ε.

Given an ε, how many iterations does it take for this to happen?

We’ll first answer this question only assuming that
1 Gradient ∇f is Lipschitz continuous (as before).
2 Step-size αk = 1/L (this is only to make things simpler).
3 Function f can’t go below a certain value f∗ (“bounded below”).

Most ML objectives f are bounded below (like the squared error being at least 0).

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Convergence Rate of Gradient Descent

Key ideas:
1 We start at some f(w0), and at each step we decrease f by at least 1

2L‖∇f(w
k)‖2.

2 But we can’t decrease f(wk) below f∗.
3 So ‖∇f(wk)‖2 must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

Since we want to bound ‖∇f(wk)‖, let’s rearrange as

‖∇f(wk)‖2 ≤ 2L(f(wk)− f(wk+1)).

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Convergence Rate of Gradient Descent

So for each iteration k, we have

‖∇f(wk)‖2 ≤ 2L[f(wk)− f(wk+1)].

Let’s sum up the squared norms of all the gradients up to iteration t,

t∑
k=1

‖∇f(wk)‖2 ≤ 2L

t∑
k=1

[f(wk)− f(wk+1)].

Now we use two tricks:
1 On the left, use that all ‖∇f(wk)‖ are at least as big as their minimum.
2 On the right, use that this is a telescoping sum:

t∑
k=1

[f(wk)− f(wk+1)] = f(w0)− f(w1) + f(w1)︸ ︷︷ ︸
0

− f(w2) + f(w2)︸ ︷︷ ︸
0

− . . . f(wt+1)

= f(w0)− f(wt+1).

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Convergence Rate of Gradient Descent

With these substitutions we have

t∑
k=1

min
j∈{1,...,t}

{
‖∇f(wj)‖2

}
︸ ︷︷ ︸

no dependence on k

≤ 2L[f(w0)− f(wt+1)].

Now using that f(wt+1) ≥ f∗ we get

t min
k∈{1,...,t}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗],

and finally that

min
k∈{1,...,t}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
= O(1/t),

so if we run for t iterations, we’ll find at least one k︸ ︷︷ ︸
the minimum

with ‖∇f(wk)‖2 = O(1/t).

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Convergence Rate of Gradient Descent

Our “error on iteration t” bound:

min
k∈{1,...,t}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
.

We want to know when the norm is below ε, which is guaranteed if:

2L[f(w0)− f∗]
t

≤ ε.

Solving for t gives that this is guaranteed for every t where

t ≥ 2L[f(w0)− f∗]
ε

,

so gradient descent requires t = O(1/ε) iterations to achieve ‖∇f(wk)‖2 ≤ ε.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Summary

Gradient descent can be suitable for solving high-dimensional problems.

Guaranteed progress bound if gradient is Lipschitz, based on norm of gradient.

Practical step size strategies based on the progress bound.

Error on iteration t of O(1/t) for functions that are bounded below.

Implies that we need t = O(1/ε) iterations to have ‖∇f(xk)‖ ≤ ε.

Next time: didn’t I say that regularization makes gradient descent go faster?

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Checking Derivative Code

Gradient descent codes require you to write objective/gradient code.

This tends to be error-prone, although automatic differentiation codes are helping.

Make sure to check your derivative code:

Numerical approximation to partial derivative:

∇if(x) ≈
f(x+ δei)− f(x)

δ

For large-scale problems you can check a random direction d:

∇f(x)T d ≈ f(x+ δd)− f(x)
δ

If the left side coming from your code is very different from the right side,
there is likely a bug.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Multivariate Chain Rule

If g : Rd 7→ Rn and f : Rn 7→ R, then h(x) = f(g(x)) has gradient

∇h(x) = ∇g(x)T∇f(g(x)),

where ∇g(x) is the Jacobian (since g is multi-output).

If g is an affine map x 7→ Ax+ b so that h(x) = f(Ax+ b) then we obtain

∇h(x) = AT∇f(Ax+ b).

Further, for the Hessian we have

∇2h(x) = AT∇2f(Ax+ b)A.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Convexity of Logistic Regression

Logistic regression Hessian is

∇2f(w) = XTDX.

where D is a diagonal matrix with dii = h(yiw
Txi)h(−yiwTxi).

Since the sigmoid function is non-negative, we can compute D
1
2 , and

vTXTDXv = vTXTD
1
2D

1
2Xv = (D

1
2Xv)T (D

1
2Xv) = ‖XD

1
2 v‖2 ≥ 0,

so XTDX is positive semidefinite and logistic regression is convex.

It becomes strictly convex if you add L2-regularization, making solution unique.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Lipschitz Continuity of Logistic Regression Gradient

Logistic regression Hessian is

∇2f(w) =

n∑
i=1

h(yiw
Txi)h(−yiwTxi)︸ ︷︷ ︸

dii

xi(xi)T

� 0.25

n∑
i=1

xi(xi)T

= 0.25XTX.

In the second line we use that h(α) ∈ (0, 1) and h(−α) = 1− α.

This means that dii ≤ 0.25.

So for logistic regression, we can take L = 1
4 max{eig(XTX)}.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Why the gradient descent iteration?

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w) + 1

2
(v − w)T∇2f(u)(v − w),

for any w and v (with u being some convex combination of w and v).

If w and v are very close to each other, then we have

f(v) = f(w) +∇f(w)T (v − w) +O(‖v − w‖2),

and the last term becomes negligible.

Ignoring the last term, for a fixed ‖v − w‖ I can minimize f(v) by choosing
(v − w) ∝ −∇f(w).

So if we’re moving a small amount the optimal choice is gradient descent.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Descent Lemma for C1 Functions

Let ∇f be L-Lipschitz continuous, and define g(α) = f(x+ αz) for a scalar α.

f(y) = f(x) +

∫ 1

0
∇f(x+ α(y − x))T (y − x)dα (fund. thm. calc.)

(± const.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
(∇f(x+ α(y − x))−∇f(x))T (y − x)dα

(CS ineq.) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
‖∇f(x+ α(y − x))−∇f(x)‖‖y − x‖dα

(Lipschitz) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
L‖x+ α(y − x)− x‖‖y − x‖dα

(homog.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
Lα‖y − x‖2dα

(

∫ 1

0
α =

1

2
) = f(x) +∇f(x)T (y − x) + L

2
‖y − x‖2.

Gradient Descent Progress Bound Gradient Descent Convergence Rate

Equivalent Conditions to Lipschitz Continuity of Gradient

We said that Lipschitz continuity of the gradient

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖,

is equivalent for C2 functions to having

∇2f(w) � LI.

There are a lot of other equivalent definitions, see here:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

http://xingyuzhou.org/blog/notes/Lipschitz-gradient

	Gradient Descent Progress Bound
	Gradient Descent Convergence Rate

