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Motivation: Controlling Complexity

@ For many of these tasks, we need very complicated models.
e We require multiple forms of regularization to prevent overfitting.

@ In 340 we saw two ways to reduce complexity of a model:

o Model averaging (ensemble methods).
o Regularization (linear models).

@ Bayesian methods combine both of these.
o Average over models, weighted by posterior (which includes regularizer).
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Current Hot Topics in Machine Learning

Bayesian learning includes:
@ Gaussian processes.
@ Approximate inference.
o Bayesian nonparametrics.
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Why Bayesian Learning?

@ Standard L2-regularized logistic regression steup:
e Given finite dataset containing IID samples.
o E.g., samples (z*,y") with z* € R? and ¢* € {~1,1}.
e Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

n
w e argﬂrjnin f;bgp(yi | 2%, w) + %Hw”2
o Predict labels of new example Z using single weights w,
7 = sgn(w’ ).
@ But data was random, so weight w is a random variables.

e This might put our trust in a w where posterior p(w | X, y) is tiny.

@ Bayesian approach: treat w as random and predict based on rules of probability.
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Problems with MAP Estimation

@ Does MAP make the right decision?

o Consider three hypothesese H = {“lands”, “crashes”, “explodes} with posteriors:

)

p(“lands” | D) = 0.4, p(“crashes” | D) = 0.3, p(“explodes” | D) = 0.3.

e The MAP estimate is “plane lands”, with posterior probability 0.4.
@ But probability of dying is 0.6.
o If we want to live, MAP estimate doesn’t give us what we should do.

@ Bayesian approach considers all models: says don't take plane.

@ Bayesian decision theory: accounts for costs of different errors.
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MAP vs. Bayes

e MAP (regularized optimization) approach maximizes over w:

w € argmaxp(w | X, y)
w
= argmaxp(y | X, w)p(w) (Bayes’ rule, w L X)
w
y € argmaxp(y | Z,w).
y

@ Bayesian approach predicts by integrating over possible w:

Py |7, X,y) = / p(y,w |z, X,y)dw marginalization rule
w

= / P | w, 2z, X, y)p(w | &, X,y)dw product rule
w

— [ 9l w.D)plw | X, y)dw 71Xy 5w
w

@ Considers all possible w, and weights prediction by posterior for w.
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Motivation for Bayesian Learning

@ Motivation for studying Bayesian learning:

@ Optimal decisions using rules of probability (and possibly error costs).
@ Gives estimates of variability/confidence.

o E.g., this gene has a 70% chance of being relevant.
© Elegant approaches for model selection and model averaging.
e E.g., optimize A or optimize grouping of w elements.
© Easy to relax IID assumption.
o E.g., hierarchical Bayesian models for data from different sources.

© Bayesian optimization: fastest rates for some non-convex problems.
@ Allows models with unknown/infinite number of parameters.

o E.g., number of clusters or number of states in hidden Markov model.

@ Why isn't everyone using this?
o Philosophical: Some people don't like “subjective” prior.
e Computational: Typically leads to nasty integration problems.
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Coin Flipping Example: MAP Approach

@ MAP vs. Bayesian for a simple coin flipping scenario:
@ Our likelihood is a Bernoulli,
p(H | 0)=90.
@ Our prior assumes that we are in one of two scenarios:

@ The coin has a 50% chance of being fair (6 = 0.5).
@ The coin has a 50% chance of being rigged (6 = 1).

@ Our data consists of three consecutive heads: ‘HHH'.

@ What is the probability that the next toss is a head?
o MAP estimate is § = 1, since p(§ =1 | HHH) > p(0 = 0.5 | HHH).
e So MAP says the probability is 1.

o But MAP overfits: we believed there was a 50% chance the coin is fair.
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Coin Flipping Example: Posterior Distribution

@ Bayesian method needs posterior probability over 6,

p(HHH | 9 = 1)p(6 = 1)
p(HHH)
p(HHH |0 =1)p(0 =1)

p(0=1|HHH) =

(Bayes rule)

Empirical Bayes

(marg. rule) = 5
(1)(0.5) 8

(1/8)(0.5) + (1)(0.5) 9

and similarly we have p(§ = 0.5 | HHH) = §.

@ So given the data, we should believe with probability % that coin is rigged.
o There is still a % probability that it is fair that MAP is ignoring.

(HHH [6=0.5)p(0 =0.5) + p(HHH |6 = 1)p(6 = 1)
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Coin Flipping Example: Posterior Predictive

Posterior predictive gives probability of head given data and prior,

p(H|HHH) =p(H,0 =1 | HHH) + p(H,0 = 0.5 | HHH)
=p(H|0=1,HHH)p(0 =1| HHH)
+p(H|6=05HHH)p(0 =0.5| HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.

Notice that there was no optimization of the parameter 6:
o In Bayesian stats we condition on data and integrate over unknowns.

In Bayesian stats/ML: “all parameters are nuissance parameters”.

So the correct probability given our assumptions/data is 0.94, and not 1.

Empirical Bayes
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Coin Flipping Example: Discussion

Comments on coin flipping example:
@ Bayesian prediction uses that HHH could come from fair coin.

@ As we see more heads, posterior converges to 1.
o MLE/MAP/Bayes usually agree as data size increases.

If we ever see a tail, posterior of § = 1 becomes 0.

@ If the prior is correct, then Bayesian estimate is optimal:
e Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.
e This is where people get uncomfortable about “subjective” priors.

But MLE/MAP are also based on “subjective” assumptions.
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Bayesian Model Averaging

@ In 340 we saw that model averaging can improve performance.
e E.g., random forests average over random trees that overfit.

@ But should all models get equal weight?
e What if we find a random stump that fits the data perfectly?
@ Should this get the same weight as deep random trees that likely overfit?

e In science, research may be fraudulent or not based on evidence.
e E.g., should we vaccines cause autism or climate change denial models?

@ In these cases, naive averaging may do worse.
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Bayesian Model Averaging

@ Suppose we have a set of m probabilistic classifiers w;
o Previously our ensemble method gave all models equal weights,

R 1 1
p(y|$)—Ep(y|$7w1)+gp(yIw,wz)+-~-+gp(y|m,wm).

o Bayesian model averaging weights by posterior,

p(7 | &) =plw | X, y)p(@ | &, w1) + plws | X,y)(7 | 2, w2)+
e +p(wm | X,y)p(g] ’ i‘awm)'

@ So we should weight by probability that w; is the correct model.
o Equal weights assume all models are equally probable and fit data equally well.
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Bayesian Model Averaging

@ Weights are posterior, so proportional to likelihood times prior:

p(w; | X,y) o< p(y | X, w;) p(wy) .
—_————

likelihood prior

@ Likelihood gives more weight to models that predict 3 well.

@ Prior should gives less weight to models that are likely to overfit.

@ This is how rules of probability say we should weight models.

e It's annoying that it requires a “prior” belief over models.
e But as n — oo, all weight goes to “correct” model[s] w* as long as p(w*) > 0.
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Bayes for Density Estimation and Generative/Discriminative

@ We can use Bayesian approach to density estimation:
e With data D and parameters 6 we have:
@ Likelihood p(D | 6).

@ Prior p(6).
@ Posterior p(6 | D).

@ We can use Bayesian approach to supervised learning:
o Generative approach (naive Bayes, GDA) does density estimation of X and y:
@ Likelihood p(y, X | w).

@ Prior p(w).
© Posterior p(w | X, y).

o Discriminative approach (logistic regression, neural nets) just conditions on X:
@ Likelihood p(y | X, w).

@ Prior p(w).
@ Posterior p(w | X, y).
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7 Ingredients of Bayesian Inference

@ Likelihood p(y | X, w).
e Probability of seeing data given parameters.

@ Prior p(w | ).

o Belief that parameters are correct before we've seen data.

@ Posterior p(w | X, y, \).
e Probability that parameters are correct after we've seen data.
o We won't use the MAP “point estimate”, we want the whole distribution.

Q Predictive p(7 | Z,w).
e Probability of test label § given parameters w and test features Z.
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7 Ingredients of Bayesian Inference

@ Posterior predictive p(g | T, X, y, A).
o Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.

© Marginal likelihood p(y | X, \) (also called “evidence”).

o Probability of seeing data given hyper-parameters.
o We'll use this later for hypothesis testing and setting hyper-parameters.

@ Cost C(7 | 9).

e The penalty you pay for predicting § when it was really was 3.
e Leads to Bayesian decision theory: predict to minimize expected cost.
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Review: Decision Theory

o Consider a scenario where different predictions have different costs:
True “spam”  True “not spam”

Predict / True
Predict “spam” 0 100
10 0

Predict “not spam”

@ In 340 we discussed predictin § given w by minimizing expected cost:

E[Cost(y = “spam”)] = p(y = “spam” | z,w)C(y = “spam
+ p(g = “not spam” | &

o Consider a case where p(y = "spam” | Z,%w) > p(g = “not spam” | Z, W)
o We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

@ Bayesian decision theory:
o Instead of using a MAP estimate w, we should use posterior predictive,

E[Cost(j = “spam”)] = p(g = “spam” | Z, X,y)C(§ = “spam” | § = “spam”)

(0
+ p(g = “not spam” | Z, X, y)C(§ = “spam” | § = “not spam”).

e Minimizing this expected cost is the optimal action.

@ Note that there is a lot going on here:
o Expected cost depends on cost and posterior predictive.
o Posterior predictive depends on predictive and posterior
e Posterior depends on likelihood and prior.



Outline

@ Bayesian Learning

© Empirical Bayes
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Bayesian Linear Regression

We know that L2-regularized linear regression,
1 A
argmin — || Xw —y||* + = 2
rgmin & 1 Xw =y + 5wl
corresponds to MAP estimation in the model
Y~ Nzt o?), wj~ N0,
@ By some tedious Gaussian identities, the posterior has the form

1 /1 ! 1 !
w| X,y~N (2 <2XTX + >\I> X"y, <2XTX + AI) ) .
g g g

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose A and choose basis.
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Learning the Prior from Data?

@ Can we use the training data to set the hyper-parameters?

@ In theory: No!

e It would not be a “prior".
e It's no longer the right thing to do.

@ In practice: Yes!
o Approach 1: split into training/validation set or use cross-validation as before.

o Approach 2: optimize the marginal likelihood (“evidence”):

ply | X,A) = / p(y | X, w)p(w | N\)dw.

w

e Also called type Il maximum likelihood or evidence maximization or empirical Bayes.
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Digression: Marginal Likelihood in Gaussian-Gaussian Model

Suppose we have a Gaussian likelihood and Gaussian prior,

Y~ Nzt o?), wj~N(O,A).

The joint probability of 3* and wj is given by

1 2 A 2
Pl | X0 xexp (5o Xu =yl = ul?).

The marginal likelihood integrates the joint over the nuissance parameter w,

ply | X,\) = / ply,w | X, \)dw

Solving the Gaussian integral gives a marginal likelihood of

T—1 1
ply | X, A) o |C|7Y2 exp (_yCQy> , C=0"T+ XXXT.
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Type Il Maximum Likelihood for Basis Parameter

o Consider polynomial basis, and treat degree M as a hyper-parameter:

M=0 M=1 M=2 M=3
40 40 4 40/
. p’ Model Evidence
20 20 20 20/ Y
|=——1 .
o = R o 0 o
<0
200 5 10 200 5 10_200 5 10'20 g
g,

S -

0 5 10 o 5 10 o 5 10 0 5 10

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

e Marginal likelihood (evidence) is highest for M = 2.
e "“Bayesian Occam'’s Razor": prefers simpler models that fit data well.
o p(y | X, A) is small for M =7, since 7-degree polynomials can fit many datasets.
e It's actually non-monotonic in M: it prefers M =0 and M =2 over M = 1.
o Model selection criteria like BIC are approximations to marginal likelihood as n — oco.


http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Type Il Maximum Likelihood for Basis Parameter

@ Why is the marginal likelihood high for degree 2 but not degree 77
e Marginal likelihood for degree 2:

p<y|X,A>=AOA1[02p<y|X,w>p<w|A)dw

e Marginal likelihood for degree 7:

p(y|X’/\)/wo/wl/w/wg/w‘l/w:;/wﬁ/mp(y|X’w)p(w|A)dw'

o Higher-degree integrates over high-dimensional volume:
@ A non-trivial proportion of degree 2 functions fit the data really well.

@ There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.
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Bayes Factors for Bayesian Hypothesis Testing
@ Suppose we want to compare hypotheses:
o E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.
@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

e No need for null hypothesis, “power" of test, p-values, and so on.
e As usual can only tell you which model is likely, not whether any are correct.
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American Statistical Assocation:

e “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren't Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don't solve problems with p-values and multiple testing.
e But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

Summary

Bayesian statistics:

o Condition on the data, integrate (rather than maximize) over posterior.
e "All parameters are nuissance parameters”.

Marginal likelihood is probability seeing data given hyper-parameters.
Empirical Bayes optimizes marginal likelihood to set hyper-parameters.

Next time: putting a prior on the prior and relaxing 11D

Empirical Bayes
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