CPSC 540: Machine Learning Latent Graphical Models

Mark Schmidt

University of British Columbia

Winter 2018

Last Time: Learning Log-Linear UGMs

• We discussed log-linear parameterization of UGMs,

$$\phi_j(s) = \exp(w_{j,s}), \quad \phi_{jk}(s,s') = \exp(w_{j,k,s,s'}), \quad \phi_{jkl}(s,s',s'') = \exp(w_{j,k,l,s,s',s''}).$$

• The likelihood of an example x given parameter w is given by

$$p(x \mid w) = \frac{\exp\left(w^T F(x)\right)}{Z},$$

and the feature functions F(x) count the number of times we use each w_j .

• This leads to a convex NLL of the form

$$-\log p(x \mid w) = -w^T F(x) + \log(Z),$$

Log-Linear UGM Gradient

• Gradient in log-linear UGM with respect to parameter w_j is (bonus)

$$\nabla_{w_j} f(w) = -F_j(x) + \mathbb{E}[F_j(x)],$$

and observe that derivative of log(Z) is expected value of feature.

- Example of $\phi_{10,3} = \exp(w_{10,3})$ (potential that feature 10 is in state 3).
- \bullet Averaging over n examples, the gradient with no parameter tieing is given by

$$\nabla_{w_{10,3}}f(w) = -\underbrace{\frac{1}{n}\left[\sum_{i=1}^{n}I[x_{10}^{i}=3]\right]}_{\text{frequency in data}} + \underbrace{p(x_{10}=3)}_{\text{model "frequency"}}$$

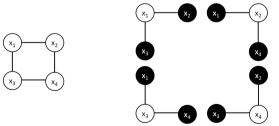
- So if $abla_{w_{10,3}} = 0$, probabilities match frequencies in training data.
- At MLE, you match the frequencies of all the potentials in the training data.
- But computing gradient requires inference (computing marginals like $p(x_{10} = 3)$).

Approximate Learning: Alternate Objectives

- One way to avoid code of inference is to change the objective:
 - Pseudo-likelihood (fast, convex, and crude):

$$p(x_1, x_2, \dots, x_d) \approx \prod_{j=1}^d p(x_j \mid x_{-j}),$$

which turns learning into d single-variable problems (similar to DAGs).



• Structured SVMs: generalization of SVMs that only requires decoding (later).

Approximate Learning: Approximate Marginals

- Alternately, we can use approximate inference to use NLL:
 - Monte Carlo approximation of $\mathbb{E}[F_j(x)]$ given current parameters w:

$$abla_{w_j} f(w) = -F_j(x) + \mathbb{E}[F_j(x)]$$

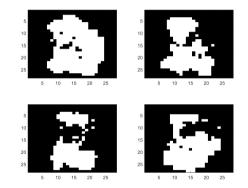
$$\approx -F_j(x) + \underbrace{\frac{1}{t} \sum_{i=1}^t F_j(x^i)}_{Matter Carls approx}.$$

Monte Carlo approx

- Simple method: generate lots of samples to approximate gradient given w, then update w (many samples per iteration).
- Younes algorithm: alternate between steps of Gibbs sampling and stochastic gradient, using 1 sample per iteration ("persistent contrastive divergence" in deep learning). (SG updates w, Gibbs updates x)
- Deterministic variational approximations of $\mathbb{E}[F_j(x)]$ can alternately be used (later).

Pairwise UGM on MNIST Digits

• Samples from a lattice-structured pairwise UGM:



- Training: 100k stochastic gradient w/ Gibbs sampling steps with $\alpha_t = 0.01$.
- Samples are iteration 100k of Gibbs sampling with fixed w.

Digression: Structure Learning in UGMs

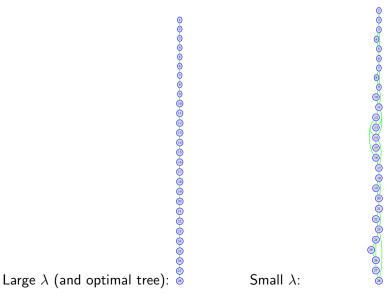
• Recall that in Ising UGMs, our edge potentials have the form

$$\phi_{ij}(x_i, x_j) = \exp(w_{ij} x_i x_j).$$

- If wet w_{ij} = 0, it sets φ_{ij}(x_i, x_j) = 1 for all x_i and x_j.
 This is equivalent to removing the edge.
- L1-regularization of w_{ij} values performs structure learning in UGM.
- For general log-linear, each edge has multiple parameters w_{i,j,s,s'}.
 In this case we can use group L1-regularization for structure learning.

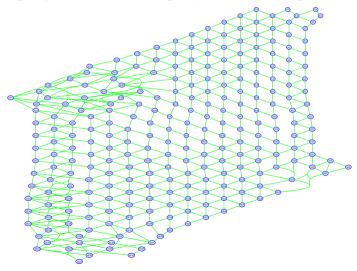
Boltzmann Machines

Structure Learning on Rain Data



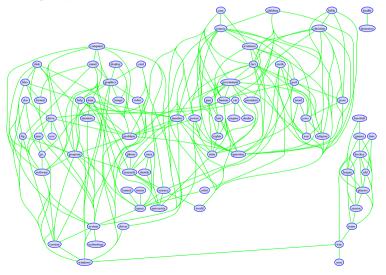
Structure Learning on USPS Digits

Structure learning of pairwise UGM with group-L1 on USPS digits:



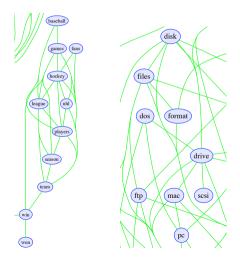
Structure Learning on News Words

Group-L1 on newsgroups data:



Structure Learning on News Words

Group-L1 on newsgroups data:



Outline

1 Hidden Markov Models

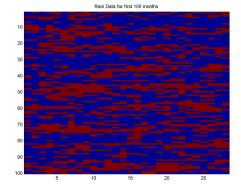
2 Boltzmann Machines

Where we are where we're going...

- Last n lectures: four topics related to density estimation:
 - Mixture models can model clusters in the data.
 - 2 Latent-factor models consider interacting hidden factors in the data.
 - Graphical models can model direct dependencies between variables.
 - Approximate inference is needed when probabilities are too complicated
- Each has many applications, but they're limited/boring on their own.
- But by combining them we get very powerful models.
 - Next time we'll start combining them with supervised learning tricks from 340.

Back to the Rain Data

• We previously considered the "Vancouver Rain" data:

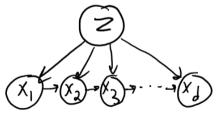


• We said that a homogeneous Markov chain is a good model:

• Captures direct dependency between adjcaent days.

Back to the Rain Data

- But doesn't it rain less in the summer?
- There are hidden clusters in the data not captured by the Markov chain.
 - But mixture of independent models are inefficient at representing direct dependency.
- Mixture of Markov chains could capture direct dependence and clusters.



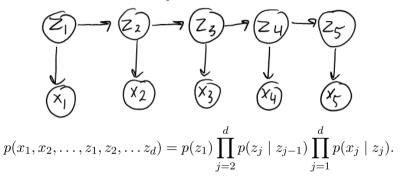
• Cluster z chooses which homogeneous Markov chain parameters to use.

- We could learn that we're more likely to have rain in winter.
- Graph has treewidth of 2: exact inference and EM will be cheap.

Back to the Rain Data

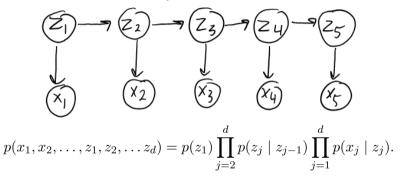
- The rain data is artificially divideded into months.
- Consider viewing rain data as one very long sequence (n = 1).
- This isn't an issue for homogeneous Markov chains due to parameter tieing.
- But a mixture doesn't make sense when n = 1.
- We want different parts of sequence to come from different clusters.
- One way to address this:
 - Let each day have it's own cluster.
 - Have a Markov dependency between cluster values of adjacent days.

• Hidden Markov models have each x_j depend on hidden Markov chain.



- We're going to learn clusters z_j and the hidden dynamics.
 - Hidden cluster z_j could be "summer" or "winter" (we're learning the clusters).
 - Transition probability $p(z_j \mid z_{j-1})$ is probability of staying in "summer".
 - Emission probability $p(x_j | z_j)$ is probability of "rain" during "summer".

• Hidden Markov models have each x_j depend on hidden Markov chain.

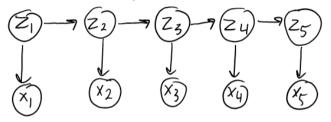


• Inference is easy in this model: it's a tree.

• Learning with EM is also easy due to chain-structured z_j dependence:

• Convert to UGM, conditioning on x_j gives a chain, run forward-backward.

• Hidden Markov models have each x_j depend on hidden Markov chain.



- Note that the x_j can be continuous even with discrete clusters z_j .
- If the z_j are continuous it's often called a state-space model.
 - If everything is Gaussian, it leads to Kalman filtering.
 - Keywords for non-Gaussian: unscented Kalman filter and particle filter.
- Variants of HMMs are probably the most-used time-series model...

Applications of HMMs and Kalman Filters

Applications [edit]

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are). Applications include:

- . Single Molecule Kinetic analysis^[16]
- . Cryptanalysis
- . Speech recognition
- . Speech synthesis
- . Part-of-speech tagging
- . Document Separation in scanning solutions
- . Machine translation
- . Partial discharge
- . Gene prediction
- . Alignment of bio-sequences
- . Time Series Analysis
- . Activity recognition
- . Protein folding^[17]
- . Metamorphic Virus Detection^[18]
- . DNA Motif Discovery^[19]

Applications [edit]

- . Attitude and Heading Reference Systems
- . Autopilot
- . Battery state of charge (SoC) estimation^{[39][40]}
- . Brain-computer interface
- . Chaotic signals
- Tracking and Vertex Fitting of charged particles in Particle Detectors^[41]
- . Tracking of objects in computer vision
- . Dynamic positioning

- Economics, in particular macroeconomics, time series analysis, and econometrics^[42]
- . Inertial guidance system
- . Orbit Determination
- . Power system state estimation
- . Radar tracker
- . Satellite navigation systems
- . Seismology^[43]
- . Sensorless control of AC motor variable-frequency
- drives

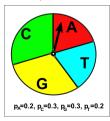
- . Simultaneous localization and mapping
- . Speech enhancement
- . Visual odometry
- . Weather forecasting
- . Navigation system
- . 3D modeling
- . Structural health monitoring
- . Human sensorimotor processing^[44]

Example: Modeling DNA Sequences

- A nice demo of independent vs. Markov vs. HMMs for DNA sequences:
 - http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

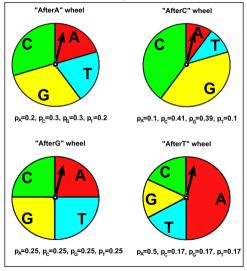
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

• Independent model for elements of sequence:



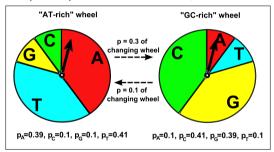
Example: Modeling DNA Sequences

• Markov model for elements of sequence (dependence on previous symbol):



Example: Modeling DNA Sequences

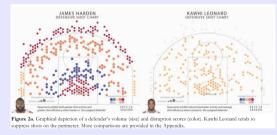
• Hidden Markov model (HMM) for elements of sequence:



- Can reflect that probabilities are different in different regions.
- You probably get a better model by consider hidden Markov and visible Markov.
 - Would have treewidth 2.

Who is Guarding Who?

- There is a lot of data on offense of NBA basketball players.
 - Every point and assist is recorded, more scoring gives more wins and \$\$\$.
- But how do we measure defense?
 - We need to know who each player is guarding.



http://www.lukebornn.com/papers/franks_ssac_2015.pdf

- HMMs can be used to model who is guarding who over time.
 - https://www.youtube.com/watch?v=JvNkZdZJBt4

Outline

"THE REVOLUTION WILL NOT BE SUPERVISED" PROMISES FACEBOOK'S YANN LECUN IN KICKOFF AI SEMINAR

POSTED MARCH 6TH, 2018

« PRESS ROOM 📑 Facebook 🕒 Twitter 🚔 Print

http:

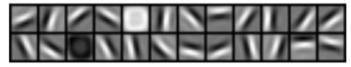
//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar

Deep Density Estimation

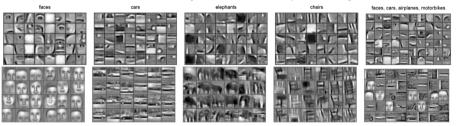
- In 340 we discussed deep learning methods for supervised learning.
- Does it make sense to talk about deep unsupervised learning?
- Standard argument:
 - Human learning seems to be mostly unsupervised.
 - Supervision gives limited feedback: bits in a class label vs. an image.
 - Could we learn unsupervised models with much less data?
- Deep belief networks started modern deep learning movement (2006).

Cool Pictures Motviation for Deep Learning

• First layer of z_i trained on 10 by 10 image patches:



• Visualization of second and third layers trained on specific objects:



http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

- Many classes use these partcular images to motivate deep neural networks.
 - But they're not from a neural network: they're from a deep belief network.

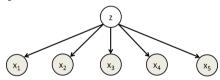
Boltzmann Machines

Mixture of Independent Models

• Recall the mixture of independent models:

$$p(x) = \sum_{c=1}^{k} p(z=c) \prod_{j=1}^{d} p(x_j \mid z=c).$$

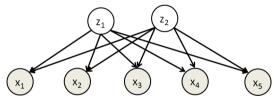
• Given z, each variable x_j comes from some "nice" distribution.



- This is enough to model *any* distribution.
 - Just need to know cluster of example x and distribution of x_j given z.
 - But not an efficient representation: number of cluster might need to be huge.

Latent DAG Model

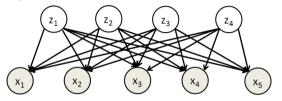
• Consider the following model with binary z_1 and z_2 :



- Have we gained anything?
 - We have 4 clusters based on two hidden variables.
 - Each cluster shares a parent/part with 2 of the other clusters.

Latent DAG Model

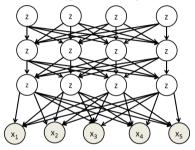
• Consider the following model:



- Now we have 16 clusters, in general we'll have 2^k with k hidden binary nodes.
 - This discrete latent-factors give combinatorial number of mixtures.
 - You can think of each z_c as a "part" that can be included or not.
 - We'll assume $p(x_j \mid z_1, z_2, z_3, z_4)$ is a linear model (Gaussian, logistic, etc.).
 - Distributed representation where x is made of parts z.
 - With d visible x_j and k hidden z_j , we only have dk parameters.

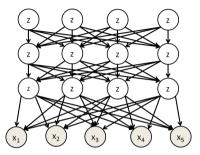
Deep Belief Networks

• Deep belief networks add more binary hidden layers:



- Data is at the bottom.
- First hidden layer could be "basic ingredients".
- Second hidden layer could be general "parts".
- Third hidden layer could be "abstract concept".

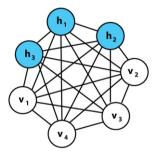
Deep Belief Networks



- If we were conditioning on *top* layer:
 - Sampling would be easy.
- But we're conditioning on the *bottom* layer:
 - Everything is hard.
 - There is combinatorial "explaining away".
- Common training method:
 - Greedy "layerwise" training as a restricted Boltzmann machine.

Boltzmann Machines

• Boltzmann machines are UGMs with binary latent variables:

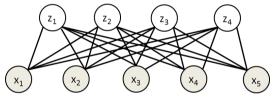


https://en.wikipedia.org/wiki/Boltzmann_machine

- Yet another latent-variable model for density estimation.
 - Hidden variables again give a combinatorial latent representation.
- Hard to do anything in this model, even if you know all the z.

Restricted Boltzmann Machine

- By restricting graph structure, some things get easier:
 - Restricted Boltzmann machines (RBMs): edges only between the x_j and z_c .



- Bipartite structure allows block Gibbs sampling given one type of variable:
 Conditional UGM is disconnected.
- Given visible x, we can sample each z_c independently.
- Given hidden z, we can sample each x_j independently.

Restricted Boltzmann Machines

• The RBM graph structure leads to a joint distribution of the form

$$p(x,z) \propto \frac{1}{Z} \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{c=1}^{k} \phi_c(z_c) \right) \left(\prod_{j=1}^{d} \prod_{c=1}^{k} \phi_{jc}(x_j, z_c) \right).$$

• RBMs usually use a log-linear parameterization like

$$p(x,z) \propto \exp\left(\sum_{j=1}^{d} x_j w_j + \sum_{c=1}^{k} z_c v_c + \sum_{j=1}^{d} \sum_{c=1}^{k} x_j w_{jc} z_c\right),$$

for parameters w_j , v_c , and w_{jc} .

Learning UGMs with Hidden Variables

• With hidden ("nuissance") variables z the observed likelihood has the form

$$p(x) = \sum_{z} p(x, z) = \sum_{z} \frac{\tilde{p}(x, z)}{Z}$$
$$= \frac{1}{Z} \sum_{z} \tilde{p}(x, z) = \frac{Z(x)}{Z},$$

where Z(x) is the partition function of the conditional UGM given x.

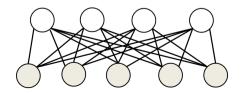
• This gives an observed NLL of the form

$$-\log p(x) = -\log(Z(x)) + \log Z.$$

- The second term is convex but the first term is non-convex.
 - In RBMs, Z(x) is cheap due to independence of z given x.
 - For other problems we'll need to approximate Z(x) and Z.

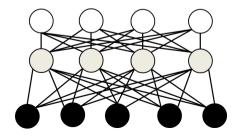
Greedy Layerwise Training of Stacked RBMs

• Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)



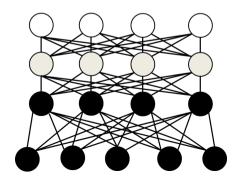
Greedy Layerwise Training of Stacked RBMs

- Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
- Step 2:
 - Fix first hidden layer values.
 - Train an RBM.



Greedy Layerwise Training of Stacked RBMs

- Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
- Step 2:
 - Fix first hidden layer values.
 - Train an RBM.
- Step 3:
 - Fix second hidden layer values.
 - Train an RBM.



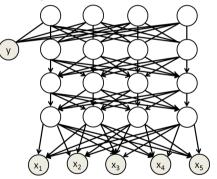
Deep Belief Networks

- Keep top as an RBM.
- For the other layers, use DAG parameters that implement block sampling.
 - Can sample by running block Gibbs on top layer for a while, then ancestral sampling.



Deep Belief Networks

• Can add a class label to last layer.



Can use "fine-tuning" as a feedforward neural network to refine weights.
https://www.youtube.com/watch?v=KuPaiOogiHk

Summary

• Approximate UGM learning:

- Change objective function: pseudolikelihood and structured SVMs.
- Approximate marginals: Monte Carlo or variational methods.
- Structure learning in UGMs with [group] L1-regularization.
- Hidden Markov models model time-series with latent factors.
 - Tons of applications, typically more realistic than Markov models.
- Boltzmann machines are UGMs with binary hidden variables.
 - Restricted Boltzmann machines only allow connections between hidden/visible.
- Deep belief networks and Boltzmann machines have layers of hidden variables.
- Next time: we'll use these tools for supervised learning.

Log-Linear UGM Gradient

• We showed that NLL with log-linear parameterization is

$$f(w) = -w^T F(x) + \log Z(w).$$

• The gradient with respect to parameter w_j has a simple form

$$\nabla_{w_j} f(w) = -F_j(x) + \sum_x \frac{\exp(w^T F(x))}{Z(w)} F_j(x)$$
$$= -F_j(x) + \sum_x p(x) F_j(x)$$
$$= -F_j(x) + \mathbb{E}[F_j(x)].$$