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Last Time: Learning Log-Linear UGMs

@ We discussed log-linear parameterization of UGMs,

?i(s) = exp(wjs), @jr(s,s’) =exp(wjrss), Pmi(s,s,s") = exp(w;piss s)-
@ The likelihood of an example = given parameter w is given by

exp (wTF(x))

plar | w) = SR

and the feature functions F'(x) count the number of times we use each wj.

@ This leads to a convex NLL of the form

—logp(z | w) = —w! F(z) +log(2),
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Log-Linear UGM Gradient

e Gradient in log-linear UGM with respect to parameter wj is (bonus)
Vu, f(w) = =Fj(z) + E[Fj(x)],

and observe that derivative of log(Z) is expected value of feature.
o Example of ¢1093 = exp(wip,3) (potential that feature 10 is in state 3).
@ Averaging over n examples, the gradient with no parameter tieing is given by

w103f :_[ZI

frequency in data

+ p(xm = 3)
———

model “frequency”

o So if Vy,,, =0, probabilities match frequencies in training data.
e At MLE, you match the frequencies of all the potentials in the training data.

@ But computing gradient requires inference (computing marginals like p(x19 = 3)).



Approximate Learning: Alternate Objectives

@ One way to avoid code of inference is to change the objective:
o Pseudo-likelihood (fast, convex, and crude):

d

p($17$27~ .. ,fl?d) ~ Hp(x] | ‘T*j)7
j=1

which turns learning into d single-variable problems (similar to DAGs).

o Structured SVMs: generalization of SVMs that only requires decoding (later).
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Approximate Learning: Approximate Marginals

@ Alternately, we can use approximate inference to use NLL:

o Monte Carlo approximation of E[F}(x)] given current parameters w:

Vi, f(w) = =F;(x) + E[F;(x)]

SE@)+ YR
=1

Monte Carlo approx

Q

@ Simple method: generate lots of samples to approximate gradient given w,
then update w (many samples per iteration).

@ Younes algorithm: alternate between steps of Gibbs sampling and stochastic gradient,
using 1 sample per iteration (“persistent contrastive divergence” in deep learning).
(SG updates w, Gibbs updates x)

o Deterministic variational approximations of E[F};(x)] can alternately be used (later).



Pairwise UGM on MNIST Digits

@ Samples from a lattice-structured pairwise UGM:

5 10 15 20 25 5 10 15 20 25

5 10 15 20 25 5 10 15 20 25

@ Training: 100k stochastic gradient w/ Gibbs sampling steps with a; = 0.01.
@ Samples are iteration 100k of Gibbs sampling with fixed w.
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Digression: Structure Learning in UGMs

@ Recall that in Ising UGMs, our edge potentials have the form

Gij(zi, x5) = exp(wijz;x;).

o If wet w;; =0, it sets ¢;;(x;, z;) =1 for all z; and z;.
e This is equivalent to removing the edge.

L1-regularization of w;; values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wj ; s o
e In this case we can use group L1-regularization for structure learning.
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Structure Learning on Rain Data
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Large A (and optimal tree):
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Structure Learning on USPS Digits

Structure learning of pairwise UGM with group-L1 on USPS digits:
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Structure Learning on News Words
Group-L1 on newsgroups data:




Hidden Markov Models Boltzmann Machines

Structure Learning on News Words

Group-L1 on newsgroups data:




Outline

@ Hidden Markov Models

© Boltzmann Machines



Hidden Markov Models Boltzmann Machines

Where we are where we're going...

@ Last n lectures: four topics related to density estimation:

@ Mixture models can model clusters in the data.

@ Latent-factor models consider interacting hidden factors in the data.

@ Graphical models can model direct dependencies between variables.

© Approximate inference is needed when probabilities are too complicated

@ Each has many applications, but they're limited/boring on their own.

@ But by combining them we get very powerful models.
o Next time we'll start combining them with supervised learning tricks from 340.
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Back to the Rain Data

@ We previously considered the “Vancouver Rain” data:

Rain Data for first 100 months

@ We said that a homogeneous Markov chain is a good model:
e Captures direct dependency between adjcaent days.



Hidden Markov Models Boltzmann Machines

Back to the Rain Data

But doesn’t it rain less in the summer?

There are hidden clusters in the data not captured by the Markov chain.
e But mixture of independent models are inefficient at representing direct dependency.

@ Mixture of Markov chains could capture direct dependence and clusters.

@:;\x |

@ Cluster z chooses which homogeneous Markov chain parameters to use.
e We could learn that we're more likely to have rain in winter.
e Graph has treewidth of 2: exact inference and EM will be cheap.
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Back to the Rain Data

@ The rain data is artificially divideded into months.

Consider viewing rain data as one very long sequence (n = 1).

This isn't an issue for homogeneous Markov chains due to parameter tieing.

@ But a mixture doesn’'t make sense when n = 1.

We want different parts of sequence to come from different clusters.

One way to address this:

o Let each day have it's own cluster.
e Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.
O~~~

1]
b © 66 b

d d
p(-Tl,.'EQ,...,Zl,ZQ,...Zd):p(zl)Hp(Zj ‘Z] 1 Hp Lj ’ZJ
j=2 j=1
@ We're going to learn clusters z; and the hidden dynamics.

o Hidden cluster z; could be “summer” or "winter" (we're learning the clusters).
e Transition probability p(z; | zj—1) is probability of staying in “summer"”.
o Emission probability p(x; | z;) is probability of “rain” during “summer”.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.

C%i)~——=7 Z2 -—~ﬁ'<%;;)~*? 2y “-9(:::>
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d
p(xlv'va"')Zl,ZQ)' "Zd) :p(21) Hp(Z] | ijl) Hp(‘r] ’ Z])
=2 =1

@ Inference is easy in this model: it's a tree.

@ Learning with EM is also easy due to chain-structured z; dependence:
o Convert to UGM, conditioning on x; gives a chain, run forward-backward.

Boltzmann Machines
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.

OG-0~
& @ ® & ©®
o Note that the z; can be continuous even with discrete clusters z;.

o If the z; are continuous it's often called a state-space model.
o If everything is Gaussian, it leads to Kalman filtering.
o Keywords for non-Gaussian: unscented Kalman filter and particle filter.

@ Variants of HMMs are probably the most-used time-series model...

Boltzmann Machines
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Applications of HMMs and Kalman Filters

Applications (ediy

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:
. Single Molecule Kinetic analysis!'6]
. Cryptanalysis
. Speech recognition
. Speech synthesis
. Pant-of-speech tagging
. Document Separation in scanning solutions
+ Machine translation
. Partial discharge
. Gene prediction
. Alignment of bio-sequences
. Time Series Analysis
. Activity recognition
. Protein folding!'?)
. Metamorphic Virus Detection['#!
. DNA Motif Discovery!!9]

Applications (edi

. Aftitude and Heading Reference Systems

. Autopilot

. Battery state of charge (SoG) estimation[291(4¢]

. Brain-computer interface

. Chaotic signals

. Tracking and Ventex Fitting of charged particles in
Particle Detectors!*1]

. Tracking of objects in computer vision

. Dynamic positioning

. Economics, in particular . time

series analysis, and econometrics!*?]

. Inertial guidance system

. Orbit Determination

. Power system state estimation

. Radar tracker

. Satellite navigation systems

. Seismology!*¥)

. Sensorless control of AC motor variable-frequency

drives

. Simultaneous localization and mapping
. Speech enhancement

. Visual odometry

. Weather forecasting

. Navigation system

. 3D modeling

. Structural health monitoring

. Human sensorimotor processing!4]

Boltzmann Machines
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Example: Modeling DNA Sequences

@ A nice demo of independent vs. Markov vs. HMMs for DNA sequences:

@ http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://wuw.tes.com/lessons/WESE9RncBhieAQ/dna

@ Independent model for elements of sequence:

ps=0.2, pc=0.3, R;=°-3v pr=0.2



http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences

e Markov model for elements of sequence (dependence on previous symbol):

"AfterA" wheel "AfterC" wheel
Pa=0.2, p;=0.3, p;=0.3, p;=0.2 Pa=0.1, p=0.41, p=0.39, p,=0.1
“AfterG" wheel "AfterT" wheel

® D

Ps=0.25, p=0.25, p=0.25, p=0.25 0.5, p=0.17, p=0.17, p,=0.17
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Example: Modeling DNA Sequences

e Hidden Markov model (HMM) for elements of sequence:

"AT-rich" wheel "GC-rich" wheel

p=0.3 of
changing wheel

<—-———
p=0.1of
changing wheel

P:=0.39, p=0.1, p 0.1, p,=0.41 p:=0.1, p=0.41, p.=0.39, p.=0.1

@ Can reflect that probabilities are different in different regions.

@ You probably get a better model by consider hidden Markov and visible Markov.
e Would have treewidth 2.
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Who is Guarding Who?

@ There is a lot of data on offense of NBA basketball players.
o Every point and assist is recorded, more scoring gives more wins and $$9$.

@ But how do we measure defense?
o We need to know who each player is guarding.

JAMES HARDEN KAWHI LEONARD
DEFENSIVE SHOT CHART

er’s volume

Figure

suppress shots on the perimeter. More comparisons

. Graphical depiction of a def sruption scores (color). Kawhi Leonard tends to

the Appendis.

http://www.lukebornn.com/papers/franks_ssac_2015.pdf

@ HMMs can be used to model who is guarding who over time.
e https://www.youtube.com/watch?v=JvNkZdZJBt4


http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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“THE REVOLUTION WILL NOT BE
SUPERVISED” PROMISES
FACEBOOK'’S YANN LECUN IN
KICKOFF Al SEMINAR

MARCH ETH, 2018

press RooM M Facebook Twitter & Print

http:

//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar


http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar

Deep Density Estimation

In 340 we discussed deep learning methods for supervised learning.

Does it make sense to talk about deep unsupervised learning?

Standard argument:
e Human learning seems to be mostly unsupervised.
e Supervision gives limited feedback: bits in a class label vs. an image.
e Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).

Boltzmann Machines
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Cool Pictures Motviation for Deep Learning

@ First layer of z; trained on 10 by 10 image patches:

L] HIENS ANV

@ Visualization of second and third layers trained on specific objects:

cars elephants chairs faces, cars, airplanes, motorbikes
Tl '“'-)_ ]
,.k': S\@Q

ﬁ, II" @! ¥ ﬂ;

- -
y =% -

http://www.cs.toronto.edu/~rgrosse/icml109-cdbn.pdf
@ Many classes use these partcular images to motivate deep neural networks.
e But they're not from a neural network: they're from a deep belief network.


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Mixture of Independent Models

@ Recall the mixture of independent models:
d
p(z) =Y pz=c) [[plz; | z=0).
c=1 j=1

@ Given z, each variable x; comes from some “nice” distribution.

@ This is enough to model any distribution.

o Just need to know cluster of example = and distribution of z; given z.

Boltzmann Machines

e But not an efficient representation: number of cluster might need to be huge.
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Latent DAG Model

@ Consider the following model with binary z; and zs:

@ Have we gained anything?

e We have 4 clusters based on two hidden variables.
o Each cluster shares a parent/part with 2 of the other clusters.
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Latent DAG Model

@ Consider the following model:

o Now we have 16 clusters, in general we'll have 2* with k hidden binary nodes.
e This discrete latent-factors give combinatorial number of mixtures.
@ You can think of each z. as a “part” that can be included or not.

o We'll assume p(x; | 21, 22, 23, 24) is a linear model (Gaussian, logistic, etc.).
o Distributed representation where = is made of parts z.
e With d visible ; and k hidden z;, we only have dk parameters.



Boltzmann Machines

Deep Belief Networks

@ Deep belief networks add more binary hidden layers:

Data is at the bottom.

First hidden layer could be “basic ingredients”.
Second hidden layer could be general “parts”.
Third hidden layer could be “abstract concept”.
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Deep Belief Networks

@ If we were conditioning on top layer:
e Sampling would be easy.
@ But we're conditioning on the bottom layer:
e Everything is hard.
o There is combinatorial “explaining away" .
@ Common training method:
o Greedy "layerwise” training as a restricted Boltzmann machine.
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Boltzmann Machines

@ Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine
@ Yet another latent-variable model for density estimation.
e Hidden variables again give a combinatorial latent representation.

@ Hard to do anything in this model, even if you know all the z.


https://en.wikipedia.org/wiki/Boltzmann_machine 

Restricted Boltzmann Machine

By restricting graph structure, some things get easier:

o Restricted Boltzmann machines (RBMs): edges only between the z; and z..

Bipartite structure allows block Gibbs sampling given one type of variable:

o Conditional UGM is disconnected.

Given visible x, we can sample each z. independently.

Given hidden z, we can sample each x; independently.

Boltzmann Machines
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Restricted Boltzmann Machines
@ The RBM graph structure leads to a joint distribution of the form

@ RBMs usually use a log-linear parameterization like

d k d k
p(z, z) o exp E T wj + E ZeUe + Z Z Tjwjcze |
j=1 =1

=1 c=1

for parameters w;, v., and wjc.
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Learning UGMs with Hidden Variables

e With hidden (“nuissance”) variables z the observed likelihood has the form

o) = Y pla, ) = 3 10

1 . _ Z(x)
_Z;p(xvz) 7

where Z(z) is the partition function of the conditional UGM given z.

@ This gives an observed NLL of the form

—logp(z) = —log(Z(z)) + log Z.

@ The second term is convex but the first term is non-convex.

e In RBMs, Z(x) is cheap due to independence of z given x.
o For other problems we'll need to approximate Z(z) and Z.
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Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
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Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
o Step 2:

e Fix first hidden layer values.
e Train an RBM.
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Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
@ Step 2:

e Fix first hidden layer values.

e Train an RBM.
@ Step 3:

e Fix second hidden layer values.

e Train an RBM.
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Deep Belief Networks

@ Keep top as an RBM.
@ For the other layers, use DAG parameters that implement block sampling.
e Can sample by running block Gibbs on top layer for a while, then ancestral sampling.

PAz SNV 24|00 AQBES=
LNV S A || < O =E |
LR =
REBET=N
Ccmb D@ ]

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 
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Deep Belief Networks

@ Can add a class label to last layer.

o Can use “fine-tuning” as a feedforward neural network to refine weights.
e https://www.youtube.com/watch?v=KuPaiOogiHk


https://www.youtube.com/watch?v=KuPai0ogiHk
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Summary

Approximate UGM learning:
© Change objective function: pseudolikelihood and structured SVMs.
@ Approximate marginals: Monte Carlo or variational methods.

Structure learning in UGMs with [group] L1-regularization.

Hidden Markov models model time-series with latent factors.
e Tons of applications, typically more realistic than Markov models.

Boltzmann machines are UGMs with binary hidden variables.
o Restricted Boltzmann machines only allow connections between hidden/visible.

Deep belief networks and Boltzmann machines have layers of hidden variables.

Next time: we'll use these tools for supervised learning.



Log-Linear UGM Gradient

@ We showed that NLL with log-linear parameterization is
f(w) = —wl F(z) + log Z(w).

@ The gradient with respect to parameter w; has a simple form

ex 'UJT X
Vs f(w) = ~Fy(o) + 3 2D

= —Fj(z) + ) _p(2)Fj(a)

= —Fj(z) + E[F;(2)].

Boltzmann Machines
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