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Last Lectures: Directed and Undirected Graphical Models

@ We've discussed the most common classes of graphical models:
o DAG models represent probability as ordered product of conditionals,

d

p(@) =[] p(x; | 2pai)),

j=1

and are also known as “Bayesian networks” and “belief networks”.

o UGMs represent probability as product of non-negative potentials ¢.,

plz) = % [ ¢c@e), with Z=>"T] ¢c(ze),

ceC r ceC

and are also known as “Markov random fields” and " Markov networks" .

@ We saw how to write Gaussians as UGMs, today we focus on discrete x;.
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Discrete DAGs vs. Discrete UGMs

@ Common inference tasks in graphical models:
@ Compute p(z) for an assignment to the variables z.
@ Generate a sample x from the distribution.
© Compute univariate marginals p(z;).
@ Compute decoding argmax,, p(z).
© Compute univariate conditional p(z;|z;/).

e With discrete x;, all of the above are easy in tree-structured graphs.

o For DAGs, a tree-structured has at most one parent.
o For UGMs, a tree-structured graph has no cycles.

o With discrete x;, the above may be harder for general graphs:

o In DAGs the first two are easy, the others are NP-hard.
o In UGMs all of these are NP-hard.
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Moralization: Converting DAGs to UGMs

@ To address the NP-hard problems, DAGs and UGMs use same techniques.
o We'll focus on UGMs, but we can convert DAGs to UGMs:

d d
p(l’l,l'g, s 7xd)) = Hp(lewpa(j)) = H ¢j<$j, xpa(j)):
j=1 j=1

which is a UGM with Z = 1.
° Graphlcally we drop directions and “marry” parents (moralization).

\@\f Yy G

@ May lose some condtional independences, but doesn't change computational cost.
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Easy Cases: Chains, Trees and Forests

@ The forward-backward still works for chain-structured UGMs:
e We compute the forward messages M and the backwards messages V.
o With both M and V' we can compute [conditionally] decode/marginalize/sample.

@ Belief propagation generalizes this to trees:
e Pick an arbitrary node as the “root”, and order the nodes going away from the root.
@ Pass messages starting from the “leaves” going towards the root.
o “Root"” is like the last node in a Markov chain.
e Backtrack from root to leaves to do decoding/sampling.
@ Send messages from the root going to the leaves to compute all marginals.
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https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-


https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Easy Cases: Chains, Trees and Forests

In pairwise UGM, belief propagation “message” from parent p to child ¢ is gven by

Mpe(zc) o Z Gi(Tp) Ppe(Tp, Te) Mijp(zp) Mip(p),

Tp

assuming that parent p has parents j and k.

e Univariate marginals are proportional to ¢;(x;) times all “incoming” messages.

The“forward” and “backward” Markov chain messages are a special case.

Replace >, with max,, for decoding.
e “Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs

@ Message passing is also favourable in some other graph structures.

@ For example, computing Z in a simple 4-node cycle could be done using:

Z = Z Z Z Z P12(21, 22)P23(22, £3) P34 (23, T4) P14(T1, T4)

T4 T3 T2 X1

= ZZ¢34 T3, T4 2@3 T2, %3 Z¢12 r1,72)P14(T1, 4)

T4 T3
= § E ¢34(z3, 24) E to23(z2, 23 ]\124(172,964)
T4 X3
= E E ¢34(3, 24) M34 x3,x4) E My(zy).
T4 T3

@ Message-passing cost depends on graph structure and the order of the sums.
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Exact Inference in UGMs

@ To see the effect of the order, consider chain-structured UGM with a stupid order:

2=y Y Y [T o)

rs T4 X3 Tz T1 j=2

DN

Trs T3 T2 T4 T1 j=2

—ZZZZHme% 1 Z¢ T2, 1)

Tr5 T3 T2 T4 J=3
\—/—’
M (z2)

= ZZZ¢ T3, T2 ZO T4,T3 (/5 Ts, I‘_l)Mg(.Z‘g)

s T3 T2

Moagzs (v2,73,75)

@ So even though we have a chain, we have an M with k3 values instead of k.
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Variable Order and Treewidth

@ So cost of message passing depends on
© Graph structure.
@ Variable order.

o Cost of message passing is given by O(dk“T1).
e Here, w is the size of the largest message.
o For trees, w = 1 so we get our usual cost of O(dk?).

@ The minimum value of w across orderings for a given graph is called treewidth.
o In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.
o An my by mg lattice has w = min{m,, ms}.
o For 28 by 28 MNIST digits it would cost O(784 * 2%9).

o For some graphs w = (d — 1) so there is no gain over brute-force enumeration.

@ Junction trees generalize belief propagation to general graphs (require ordering).
@ Computing w and the optimal ordering is NP-hard.
e But various heuristic ordering methods exist.
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Variable Order and Treewidth

Trees have w = 1, so with the right order inference costs O(dk?).
O“—?;—gwo

A big loop has w = 2, so cost with the right ordering is O(dk?).
{j ‘ob
@ The below grid-like structure has w = 3 so cost is O(dk?).

Many graphs have high treewidth so we need approximate inference.
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Iterated Conditional Mode (ICM)

@ The iterated conditional mode (ICM) algorithm for approximate decoding:
e On each iteration k, choose a variable jj.
o Optimize z, with the other variables held fixed.

@ So ICM is coordinate optimization.

e lterations correspond to finding mode of conditional p(x; | :p’jj)

k+1 — maxp( =c] x]ij),

k

where % ke

; means ‘:pk for all i except

@ 3 main issues:
@ How can we do this if evaluating p(z) is NP-hard?
@ Is coordinate optimization efficient for this problem?
@ Does it find the global optimum?
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ICM Issue 1: Intractable Objective

How can you optimize p(z) if evaluating it is NP-hard?

@ Let's define the unnormalized probability p as

plx) = H Pe(zc)-

ceC

So the probability is given by
_ ()

Note that evaluating Z is hard but evaluating p(x) is easy.

And for decoding we only need unnormalized probabilities,

p(x)
Z

argmax p(x) = argmax = argmaxp(z),
x x x

so we can decoded based on p without knowing Z.
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ICM lIssue 2: Efficiency

@ Is coordinate optimization efficient for this problem?

@ Consider a pairwise UGM,

d
pla) o | J] @5(x) 1T (@i z;)
Jj=1 (i,j)eE
or
d
logp(z) = Z log ¢ (z;) + Z log ¢;; (i, ;) + constant.
J=1 (i,j)€E

which is a special case of

d
F@)=> " filx)+ Y fijwi,zy),
Jj=1 (i,j)EE

which is one of the problem where coordinate optimization is n-times faster.
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Digression: Local Markov Property and Markov Blanket

@ In UGMs, conditional independence is determined by reachability.
e A1 B|C if all paths from A to B are blocked by C.

@ This implies a local Markov property,
p(.%'j ‘ xl:d) = p(l'j | wnei(j))’

that we're independent of all non-neighbours given neighbours in the graph.

@ We say that the neighbours of z; are its “Markov binkaet”.
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Digression: Local Markov Property and Markov Blanket

@ Markov blanket is the set nodes that make you independent of all other nodes.

S

o In UGMs the Markov blanket is the neighbours.

o Graphically, ICM is efficient because update only depends on Markov blanket.
e And even if graph is fully-connected, update only depends on edges to neighours.
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Pseudo-Code for ICM

o Consider a pairwise UGM:

d
p(x1,x2,...,Tq) X (H 451(%)) H bij(zi, zj) |,
=1

(i,J)eE
@ For node ¢ with 2 neighbours j and k, ICM update would be:
© Compute M;(x;) = ¢i(wi) dij(wi, x5)Pir (x4, 1) for all ;.

edges in Markov blanket
@ Set z; to the largest value of M;(z;).
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ICM in Action

Consider using a UGM for binary image denoising:

We have
@ Unary potentials ¢; for each position.
e Pairwise potentials ¢;; for neighbours on grid.
e Parameters are trained as CRF (later).
Goal is to produce a noise-free binary image (show video).
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ICM Issue 3: Non-Convexity

@ Does it find the global optimum?

@ Decoding is usually non-convex, so doesn't find global optimum.

@ There exist many globalization methods that can improve its performance:

e Restarting with random initializations.
o Global optimization methods:

o Simulated annealing, genetic algorithms, ant colony optimization, etc.
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Coordinate Sampling

@ What about approximate sampling?

@ In DAGs, ancestral sampling conditions on sampled values of parents,
zj ~ p(z; | xpa(j))'
@ In ICM, we approximately decode a UGM by iteratively maximizing an x;,,
Tj %?Xp(xj | z_j).
@ We can approximately sample from a UGM by iteratively sampling an z;,,
zj o~ plaj | 2—j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

@ Gibbs sampling starts with some = and then repeats:

@ Choose a variable j uniformly at random.
© Update x; by sampling it from its conditional,

zj ~ plaj | xj).
@ Analogy: sampling version of coordinate optimization:

o Transformed d-dimensional sampling into 1-dimensional sampling.

@ Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling
@ For discrete z; the conditionals needed for Gibbs sampling have a simple form,

plxj=cx_j)  plr;=cz_j) Py =czy)

plzj=clz_;) = = = ~
’ ’ p(z—;) Dowme P =dixg) 3, _ap(ry=c x )

where we use unnormalized p since Z is the same in numerator/denominator.
o Note that this expression is easy to evaluate: just summing values of 1 variable ;.

@ And in UGMs it further simplifies to only depend on the Markov blanket,

p(l“j \ ZU—j) = P(ij | JJMB(j))-
@ For node ¢ with 2 neighbours j and k, Gibbs sampling step would be:
(1) Compute Ml(fEl) = ¢i($i) (bij(l'iawj)d)ik(mi;mk) for all z;.

edges in Markov blanket
@ Sample x; proportional to M;(z;).
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Gibbs Sampling in Action

@ Start with some initial value: 20 = [2 2 3 1]
@ Select random j like j = 3.

o Sample variable j: 2! = [2 2 1 1].

@ Select random j like j = 1.

e Sample variable j: 2% = [3 2 1 1].
@ Select random j like j = 2.

e Sample variable j: 23 = [3 2 1 1].
°

°

Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling in Action: UGMs

Back to image denoising...

(show videos)



Gibbs samples after every 100d iterations:

Gibbs Sampling in Action: UGMs

Samples from Gibbs sampler

5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

ICM and Gibbs Sampling
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:

Gibbs Estimates of Marginals of Noisy X Gibbs Decoding of Noisy X

20

25-

30- ! 30F
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Gibbs Sampling in Action: Multivariate Gaussian

@ Gibbs sampling works for general distributions.
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

4
2 .
0
XN "
2t
Samples
_4" i : o 15t 50 Samples
o w[=0)
-6 L
-4 2 o 2 4 g

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

e Video: https://www.youtube.com/watch?v=AEwY6QXWoUg


https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain
@ Why would Gibbs sampling work?
@ Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

e If we pick a random j, we have the same transition distribution at each time.
o If we cycle through the j, we consider dth sample as coming from Markov chain.

@ Previously we discussed stationary distribution of Markov chain:

w(s) = Y qlat = s |2t~ = )m(s),

s/

with transition probabilities g.

@ A sufficient condition for Gibbs sampling to converge to stationary:
p(xj | z—;) >0 forall j,

although weaker conditions exist.
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Markov Chain Monte Carlo (MCMC)

@ Stationary distribution 7 of Gibbs sampling is the target distribution:

so for large k a sample 2" will be distributed according to p(x).

@ So we can use it as a Markov Chain Monte Carlo (MCMC) method:

o Design a Markov chain that has 7(z) = p(z).
o Use these samples within a Monte Carlo estimator,

Elg()] ~ - 3 gla).

@ Law of large numbers can be generalized to show this converges as n — co.
e But convergence rate is slower since we're generating dependent samples.



ICM and Gibbs Sampling

Markov Chain Monte Carlo

From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.

o.06 T



http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

Summary

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Markov blanket is set of nodes that make x; independent of all others.

Message passing can be used for inference in UGMs.

o Belief propagation for trees.
o Cost might be exponential for unfavourable graphs/ordering.

Iterated conditional mode is coordinate descent for decoding UGMs.
e Fast but doesn't obtain global optimum in general.

Gibbs sampling is coordinate-wise sampling.
e Special case of Markov chain Monte Carlo method.

Next time: reproducing the Spaceballs beaming experiment.

ICM and Gibbs Sampling
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Conditional Independence and Local Markov Property

o In UGMs, conditional independence is determined by reachability.
e A1 B|C if all paths from A to B are blocked by C.

@ The independence assumptions in DAGs were defined by
P(xj \ 961;3'—1) = p(%’ | xpa(j))a
that we're independent of previous non-parents given parents.
@ In UGMs there is no order and we instead have a local Markov property,
p(zj | T1.9) = p(Z5 | Tneis))5

that we're independent of all non-neighbours given neighbours in the graph.
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Markov Blanket

@ Markov blanket is the set nodes that make you independent of all other nodes.

N

o In UGMs the Markov blanket is the neighbours.
@ Markov blanket in DAGs is all parents, children, and co-parents:

@"“O

VA
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Decomposable Graphical Models

@ Probabilities whose conditonal independences that can be represented as DAGs
and UGMs are called decomposable.

e Includes chains, trees, and fully-connected graphs.

@ These models allow some efficient operations in UGMs by writing them as DAGs:
o Computing p(x).
e Ancestral sampling.
e Fitting parameters independently.
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