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Last Lectures: Directed and Undirected Graphical Models

We’ve discussed the most common classes of graphical models:
DAG models represent probability as ordered product of conditionals,

p(x) =

d∏
j=1

p(xj | xpa(j)),

and are also known as “Bayesian networks” and “belief networks”.

UGMs represent probability as product of non-negative potentials φc,

p(x) =
1

Z

∏
c∈C

φc(xc), with Z =
∑
x

∏
c∈C

φc(xc),

and are also known as “Markov random fields” and ”Markov networks”.

We saw how to write Gaussians as UGMs, today we focus on discrete xj .
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Discrete DAGs vs. Discrete UGMs

Common inference tasks in graphical models:
1 Compute p(x) for an assignment to the variables x.
2 Generate a sample x from the distribution.
3 Compute univariate marginals p(xj).
4 Compute decoding argmaxx p(x).
5 Compute univariate conditional p(xj |xj′).

With discrete xi, all of the above are easy in tree-structured graphs.

For DAGs, a tree-structured has at most one parent.
For UGMs, a tree-structured graph has no cycles.

With discrete xi, the above may be harder for general graphs:

In DAGs the first two are easy, the others are NP-hard.
In UGMs all of these are NP-hard.
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Moralization: Converting DAGs to UGMs

To address the NP-hard problems, DAGs and UGMs use same techniques.

We’ll focus on UGMs, but we can convert DAGs to UGMs:

p(x1, x2, . . . , xd)) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

φj(xj , xpa(j)),

which is a UGM with Z = 1.

Graphically: we drop directions and “marry” parents (moralization).

May lose some condtional independences, but doesn’t change computational cost.
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Easy Cases: Chains, Trees and Forests
The forward-backward still works for chain-structured UGMs:

We compute the forward messages M and the backwards messages V .
With both M and V we can compute [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to trees:
Pick an arbitrary node as the “root”, and order the nodes going away from the root.

Pass messages starting from the “leaves” going towards the root.

“Root” is like the last node in a Markov chain.
Backtrack from root to leaves to do decoding/sampling.
Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Easy Cases: Chains, Trees and Forests

In pairwise UGM, belief propagation “message” from parent p to child c is gven by

Mpc(xc) ∝
∑
xp

φi(xp)φpc(xp, xc)Mjp(xp)Mkp(xp),

assuming that parent p has parents j and k.

Univariate marginals are proportional to φi(xi) times all “incoming” messages.

The“forward” and “backward” Markov chain messages are a special case.

Replace
∑

xi
with maxxi for decoding.

“Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs

Message passing is also favourable in some other graph structures.

For example, computing Z in a simple 4-node cycle could be done using:

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)
∑
x1

φ12(x1, x2)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

φ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).

Message-passing cost depends on graph structure and the order of the sums.
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Exact Inference in UGMs
To see the effect of the order, consider chain-structured UGM with a stupid order:

Z =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

5∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

∑
x1

5∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

5∏
j=3

φ(xj , xj−1)
∑
x1

φ(x2, x1)︸ ︷︷ ︸
M2(x2)

=
∑
x5

∑
x3

∑
x2

φ(x3, x2)
∑
x4

φ(x4, x3)φ(x5, x4)M2(x2)︸ ︷︷ ︸
M235(x2,x3,x5)

.

So even though we have a chain, we have an M with k3 values instead of k.
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Variable Order and Treewidth
So cost of message passing depends on

1 Graph structure.
2 Variable order.

Cost of message passing is given by O(dkω+1).
Here, ω is the size of the largest message.
For trees, ω = 1 so we get our usual cost of O(dk2).

The minimum value of ω across orderings for a given graph is called treewidth.
In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.
An m1 by m2 lattice has ω = min{m1,m2}.

For 28 by 28 MNIST digits it would cost O(784 ∗ 229).
For some graphs ω = (d− 1) so there is no gain over brute-force enumeration.

Junction trees generalize belief propagation to general graphs (require ordering).
Computing ω and the optimal ordering is NP-hard.

But various heuristic ordering methods exist.
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Variable Order and Treewidth
Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost with the right ordering is O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).

Many graphs have high treewidth so we need approximate inference.
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Outline

1 Exact Inference in UGMs

2 ICM and Gibbs Sampling
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Iterated Conditional Mode (ICM)
The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration k, choose a variable jk.
Optimize xjk with the other variables held fixed.

So ICM is coordinate optimization.

Iterations correspond to finding mode of conditional p(xj | xk−j),

xk+1
j ← max

c
p(xj = c | xk−j),

where xk−j means “xki for all i except xkj ”.

3 main issues:
1 How can we do this if evaluating p(x) is NP-hard?
2 Is coordinate optimization efficient for this problem?
3 Does it find the global optimum?
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ICM Issue 1: Intractable Objective

How can you optimize p(x) if evaluating it is NP-hard?

Let’s define the unnormalized probability p̃ as

p̃(x) =
∏
c∈C

φc(xc).

So the probability is given by

p(x) =
p̃(x)

Z
.

Note that evaluating Z is hard but evaluating p̃(x) is easy.

And for decoding we only need unnormalized probabilities,

argmax
x

p(x) ≡ argmax
x

p̃(x)

Z
≡ argmax

x
p̃(x),

so we can decoded based on p̃ without knowing Z.
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ICM Issue 2: Efficiency
Is coordinate optimization efficient for this problem?

Consider a pairwise UGM,

p(x) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

or

log p(x) =

d∑
j=1

log φj(xj) +
∑

(i,j)∈E

log φij(xi, xj) + constant.

which is a special case of

f(x) =

d∑
j=1

fj(xj) +
∑

(i,j)∈E

fij(xi, xj),

which is one of the problem where coordinate optimization is n-times faster.
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Digression: Local Markov Property and Markov Blanket

In UGMs, conditional independence is determined by reachability.

A ⊥ B | C if all paths from A to B are blocked by C.

This implies a local Markov property,

p(xj | x1:d) = p(xj | xnei(j)),

that we’re independent of all non-neighbours given neighbours in the graph.

We say that the neighbours of xj are its “Markov blnkaet”.
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Digression: Local Markov Property and Markov Blanket

Markov blanket is the set nodes that make you independent of all other nodes.

In UGMs the Markov blanket is the neighbours.

Graphically, ICM is efficient because update only depends on Markov blanket.

And even if graph is fully-connected, update only depends on edges to neighours.
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Pseudo-Code for ICM

Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

For node i with 2 neighbours j and k, ICM update would be:
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk)︸ ︷︷ ︸

edges in Markov blanket

for all xi.

2 Set xi to the largest value of Mi(xi).
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ICM in Action
Consider using a UGM for binary image denoising:

We have

Unary potentials φj for each position.
Pairwise potentials φij for neighbours on grid.
Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).
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ICM Issue 3: Non-Convexity

Does it find the global optimum?

Decoding is usually non-convex, so doesn’t find global optimum.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Global optimization methods:

Simulated annealing, genetic algorithms, ant colony optimization, etc.
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Coordinate Sampling

What about approximate sampling?

In DAGs, ancestral sampling conditions on sampled values of parents,

xj ∼ p(xj | xpa(j)).

In ICM, we approximately decode a UGM by iteratively maximizing an xjt ,

xj ← max
xj

p(xj | x−j).

We can approximately sample from a UGM by iteratively sampling an xjt ,

xj ∼ p(xj | x−j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

Gibbs sampling starts with some x and then repeats:
1 Choose a variable j uniformly at random.
2 Update xj by sampling it from its conditional,

xj ∼ p(xj | x−j).

Analogy: sampling version of coordinate optimization:

Transformed d-dimensional sampling into 1-dimensional sampling.

Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling

For discrete xj the conditionals needed for Gibbs sampling have a simple form,

p(xj = c | x−j) =
p(xj = c, x−j)

p(x−j)
=

p(xj = c, x−j)∑
xj=c′ p(xj = c′, x−j)

=
p̃(xj = c, x−j)∑

xj=c′ p̃(xj = c′, x−j)
,

where we use unnormalized p̃ since Z is the same in numerator/denominator.
Note that this expression is easy to evaluate: just summing values of 1 variable xj .

And in UGMs it further simplifies to only depend on the Markov blanket,

p(xj | x−j) = p(xj | xMB(j)).

For node i with 2 neighbours j and k, Gibbs sampling step would be:
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk)︸ ︷︷ ︸

edges in Markov blanket

for all xi.

2 Sample xi proportional to Mi(xi).
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Gibbs Sampling in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Sample variable j: x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Sample variable j: x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Sample variable j: x3 =
[
3 2 1 1

]
.

. . .

Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling in Action: UGMs

Back to image denoising...

(show videos)



Exact Inference in UGMs ICM and Gibbs Sampling

Gibbs Sampling in Action: UGMs
Gibbs samples after every 100d iterations:
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:
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Gibbs Sampling in Action: Multivariate Gaussian
Gibbs sampling works for general distributions.

E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain

Why would Gibbs sampling work?

Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.
If we pick a random j, we have the same transition distribution at each time.
If we cycle through the j, we consider dth sample as coming from Markov chain.

Previously we discussed stationary distribution of Markov chain:

π(s) =
∑
s′

q(xt = s | xt−1 = s′)π(s′),

with transition probabilities q.

A sufficient condition for Gibbs sampling to converge to stationary:

p(xj | x−j) > 0 for all j,

although weaker conditions exist.
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Markov Chain Monte Carlo (MCMC)

Stationary distribution π of Gibbs sampling is the target distribution:

π(x) = p(x),

so for large k a sample xk will be distributed according to p(x).

So we can use it as a Markov Chain Monte Carlo (MCMC) method:

Design a Markov chain that has π(x) = p(x).
Use these samples within a Monte Carlo estimator,

E[g(x)] ≈ 1

n

n∑
t=1

g(xi).

Law of large numbers can be generalized to show this converges as n→∞.

But convergence rate is slower since we’re generating dependent samples.
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Markov Chain Monte Carlo

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Summary

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Markov blanket is set of nodes that make xj independent of all others.

Message passing can be used for inference in UGMs.
Belief propagation for trees.
Cost might be exponential for unfavourable graphs/ordering.

Iterated conditional mode is coordinate descent for decoding UGMs.
Fast but doesn’t obtain global optimum in general.

Gibbs sampling is coordinate-wise sampling.
Special case of Markov chain Monte Carlo method.

Next time: reproducing the Spaceballs beaming experiment.
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Conditional Independence and Local Markov Property

In UGMs, conditional independence is determined by reachability.

A ⊥ B | C if all paths from A to B are blocked by C.

The independence assumptions in DAGs were defined by

p(xj | x1:j−1) = p(xj | xpa(j)),

that we’re independent of previous non-parents given parents.

In UGMs there is no order and we instead have a local Markov property,

p(xj | x1:d) = p(xj | xnei(j)),

that we’re independent of all non-neighbours given neighbours in the graph.
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Markov Blanket
Markov blanket is the set nodes that make you independent of all other nodes.

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs is all parents, children, and co-parents:



Exact Inference in UGMs ICM and Gibbs Sampling

Decomposable Graphical Models

Probabilities whose conditonal independences that can be represented as DAGs
and UGMs are called decomposable.

Includes chains, trees, and fully-connected graphs.

These models allow some efficient operations in UGMs by writing them as DAGs:

Computing p(x).
Ancestral sampling.
Fitting parameters independently.
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