CPSC 540: Machine Learning

Approximate Inference

Mark Schmidt

University of British Columbia

Winter 2018
Last Lectures: Directed and Undirected Graphical Models

- We’ve discussed the most common classes of graphical models:
 - **DAG** models represent probability as ordered product of conditionals,
 \[
 p(x) = \prod_{j=1}^{d} p(x_j | x_{pa(j)}),
 \]
 and are also known as “Bayesian networks” and “belief networks”.
 - **UGMs** represent probability as product of non-negative potentials \(\phi_c \),
 \[
 p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c), \quad \text{with} \quad Z = \sum_x \prod_{c \in C} \phi_c(x_c),
 \]
 and are also known as “Markov random fields” and ”Markov networks”.
- We saw how to write Gaussians as UGMs, today we focus on discrete \(x_j \).
Discrete DAGs vs. Discrete UGMs

Common inference tasks in graphical models:
1. Compute $p(x)$ for an assignment to the variables x.
2. Generate a sample x from the distribution.
3. Compute univariate marginals $p(x_j)$.
4. Compute decoding $\text{argmax}_x p(x)$.
5. Compute univariate conditional $p(x_j | x_{j'})$.

With discrete x_i, all of the above are easy in tree-structured graphs.
- For DAGs, a tree-structured has at most one parent.
- For UGMs, a tree-structured graph has no cycles.

With discrete x_i, the above may be harder for general graphs:
- In DAGs the first two are easy, the others are NP-hard.
- In UGMs all of these are NP-hard.
Moralization: Converting DAGs to UGMs

- To address the NP-hard problems, **DAGs and UGMs use same techniques.**
- We’ll focus on UGMs, but we can convert DAGs to UGMs:

\[
p(x_1, x_2, \ldots, x_d) = \prod_{j=1}^{d} p(x_j | x_{pa(j)}) = \prod_{j=1}^{d} \phi_j(x_j, x_{pa(j)}) ,
\]

which is a UGM with \(Z = 1 \).
- Graphically: we drop directions and “marry” parents (**moralization**).

- May lose some conditional independences, but doesn’t change computational cost.
The **forward-backward** still works for chain-structured UGMs:
- We compute the forward messages M and the backwards messages V.
- With both M and V we can compute [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to **trees**:
- Pick an arbitrary node as the “**root**”, and order the nodes going away from the root.
 - Pass messages starting from the “**leaves**” going towards the root.
- “**Root**” is like the last node in a Markov chain.
 - Backtrack from root to leaves to do decoding/sampling.
 - Send messages from the root going to the leaves to compute all marginals.
Easy Cases: Chains, Trees and Forests

- In pairwise UGM, belief propagation “message” from parent p to child c is given by

$$M_{pc}(x_c) \propto \sum_{x_p} \phi_i(x_p)\phi_{pc}(x_p, x_c)M_{jp}(x_p)M_{kp}(x_p),$$

assuming that parent p has parents j and k.

- Univariate marginals are proportional to $\phi_i(x_i)$ times all “incoming” messages.

- The “forward” and “backward” Markov chain messages are a special case.

- Replace $\sum x_i$ with $\text{max}_i x_i$ for decoding.
 - “Sum-product” and “max-product” algorithms.
Exact Inference in UGMs

- Message passing is also favourable in some other graph structures.

- For example, computing Z in a simple 4-node cycle could be done using:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) M_{24}(x_2, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) M_{34}(x_3, x_4) = \sum_{x_4} M_4(x_4).$$

- Message-passing cost depends on graph structure and the order of the sums.
Exact Inference in UGMs

To see the effect of the order, consider chain-structured UGM with a stupid order:

\[
Z = \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \prod_{j=2}^{5} \phi(x_j, x_{j-1})
\]

\[
= \sum_{x_5} \sum_{x_3} \sum_{x_2} \sum_{x_4} \sum_{x_1} \prod_{j=2}^{5} \phi(x_j, x_{j-1})
\]

\[
= \sum_{x_5} \sum_{x_3} \sum_{x_2} \sum_{x_4} \prod_{j=3}^{5} \phi(x_j, x_{j-1}) \sum_{x_1} \phi(x_2, x_1) \underbrace{M_2(x_2)}_{M_2(x_2)}
\]

\[
= \sum_{x_5} \sum_{x_3} \sum_{x_2} \phi(x_3, x_2) \sum_{x_4} \phi(x_4, x_3) \phi(x_5, x_4) M_2(x_2) \underbrace{M_{235}(x_2, x_3, x_5)}_{M_{235}(x_2, x_3, x_5)}
\]

So even though we have a chain, we have an M with k^3 values instead of k.

So cost of message passing depends on
1. Graph structure.
2. Variable order.

Cost of message passing is given by $O(dk^{\omega+1})$.
- Here, ω is the size of the largest message.
- For trees, $\omega = 1$ so we get our usual cost of $O(dk^2)$.

The minimum value of ω across orderings for a given graph is called treewidth.
- In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.
- An m_1 by m_2 lattice has $\omega = \min\{m_1, m_2\}$.
 - For 28 by 28 MNIST digits it would cost $O(784 \times 2^{29})$.
 - For some graphs $\omega = (d - 1)$ so there is no gain over brute-force enumeration.

Junction trees generalize belief propagation to general graphs (require ordering).
Computing ω and the optimal ordering is NP-hard.
- But various heuristic ordering methods exist.
Variable Order and Treewidth

- Trees have $\omega = 1$, so with the right order inference costs $O(dk^2)$.

- A big loop has $\omega = 2$, so cost with the right ordering is $O(dk^3)$.

- The below grid-like structure has $\omega = 3$, so cost is $O(dk^4)$.

- Many graphs have high treewidth so we need approximate inference.
Outline

1. Exact Inference in UGMs
2. ICM and Gibbs Sampling
Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

- On each iteration k, choose a variable j_k.
- Optimize x_{j_k} with the other variables held fixed.

So ICM is coordinate optimization.

Iterations correspond to finding mode of conditional $p(x_j \mid x_{-j}^k)$,

$$x_{j}^{k+1} \leftarrow \max_c p(x_j = c \mid x_{-j}^k),$$

where x_{-j}^k means “x_i^k for all i except x_j^k”.

3 main issues:

1. How can we do this if evaluating $p(x)$ is NP-hard?
2. Is coordinate optimization efficient for this problem?
3. Does it find the global optimum?
ICM Issue 1: Intractable Objective

- How can you optimize $p(x)$ if evaluating it is NP-hard?

- Let’s define the unnormalized probability \tilde{p} as

$$\tilde{p}(x) = \prod_{c \in C} \phi_c(x_c).$$

- So the probability is given by

$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

- Note that evaluating Z is hard but evaluating $\tilde{p}(x)$ is easy.

- And for decoding we only need unnormalized probabilities,

$$\arg\max_x p(x) \equiv \arg\max_x \frac{\tilde{p}(x)}{Z} \equiv \arg\max_x \tilde{p}(x),$$

so we can decoded based on \tilde{p} without knowing Z.
ICM Issue 2: Efficiency

- Is coordinate optimization efficient for this problem?

- Consider a pairwise UGM,

\[
p(x) \propto \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{(i,j) \in E} \phi_{ij}(x_i, x_j) \right).
\]

or

\[
\log p(x) = \sum_{j=1}^{d} \log \phi_j(x_j) + \sum_{(i,j) \in E} \log \phi_{ij}(x_i, x_j) + \text{constant}.
\]

which is a special case of

\[
f(x) = \sum_{j=1}^{d} f_j(x_j) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j),
\]

which is one of the problem where coordinate optimization is \(n\)-times faster.
In UGMs, conditional independence is determined by reachability.
- $A \perp B \mid C$ if all paths from A to B are blocked by C.

This implies a local Markov property,

$$p(x_j \mid x_{1:d}) = p(x_j \mid x_{\text{nei}(j)})$$

that we’re independent of all non-neighbours given neighbours in the graph.

We say that the neighbours of x_j are its “Markov blanket”.
Digression: Local Markov Property and Markov Blanket

- **Markov blanket** is the set nodes that make you independent of all other nodes.

- In UGMs the Markov blanket is the neighbours.

- Graphically, **ICM is efficient because update only depends on Markov blanket**.
 - And even if graph is fully-connected, update only depends on edges to neighbours.
Consider a pairwise UGM:

$$p(x_1, x_2, \ldots, x_d) \propto \left(\prod_{i=1}^{d} \phi_i(x_i) \right) \left(\prod_{(i,j) \in E} \phi_{ij}(x_i, x_j) \right),$$

For node i with 2 neighbours j and k, ICM update would be:

1. Compute $M_i(x_i) = \phi_i(x_i) \phi_{ij}(x_i, x_j) \phi_{ik}(x_i, x_k)$ for all x_i.
2. Set x_i to the largest value of $M_i(x_i)$.

edges in Markov blanket
ICM in Action

Consider using a UGM for binary image denoising:

- Unary potentials ϕ_j for each position.
- Pairwise potentials ϕ_{ij} for neighbours on grid.
- Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).
ICM Issue 3: Non-Convexity

- Does it find the global optimum?

- Decoding is usually non-convex, so **doesn’t find global optimum**.

- There exist many **globalization** methods that can improve its performance:
 - Restarting with random initializations.
 - **Global optimization** methods:
 - Simulated annealing, genetic algorithms, ant colony optimization, etc.
Coordinate Sampling

- What about approximate sampling?

- In DAGs, ancestral sampling conditions on sampled values of parents,

 \[x_j \sim p(x_j \mid x_{\text{pa}(j)}) . \]

- In ICM, we approximately decode a UGM by iteratively maximizing an \(x_{jt} \),

 \[x_j \leftarrow \max_{x_j} p(x_j \mid x_{-j}) . \]

- We can approximately sample from a UGM by iteratively sampling an \(x_{jt} \),

 \[x_j \sim p(x_j \mid x_{-j}) , \]

 and this coordinate-wise sampling algorithm is called Gibbs sampling.
Gibbs Sampling

- **Gibbs sampling** starts with some x and then repeats:
 1. Choose a variable j uniformly at random.
 2. Update x_j by sampling it from its conditional,

$$x_j \sim p(x_j | x_{-j}).$$

- Analogy: **sampling version of coordinate optimization:**
 - Transformed d-dimensional sampling into 1-dimensional sampling.

- Gibbs sampling is probably the **most common multi-dimensional sampler**.
Gibbs Sampling

- For discrete x_j the conditionals needed for Gibbs sampling have a simple form,

$$
p(x_j = c \mid x_{-j}) = \frac{p(x_j = c, x_{-j})}{p(x_{-j})} = \frac{p(x_j = c, x_{-j})}{\sum_{x_j = c'} p(x_j = c', x_{-j})} = \frac{\tilde{p}(x_j = c, x_{-j})}{\sum_{x_j = c'} \tilde{p}(x_j = c', x_{-j})},
$$

where we use unnormalized \tilde{p} since Z is the same in numerator/denominator.

- Note that this expression is easy to evaluate: just summing values of 1 variable x_j.

- And in UGMs it further simplifies to only depend on the Markov blanket,

$$
p(x_j \mid x_{-j}) = p(x_j \mid x_{MB(j)}).
$$

- For node i with 2 neighbours j and k, Gibbs sampling step would be:
 1. Compute $M_i(x_i) = \phi_i(x_i) \phi_{ij}(x_i, x_j) \phi_{ik}(x_i, x_k)$ for all x_i.
 2. Sample x_i proportional to $M_i(x_i)$.

Note that this expression is easy to evaluate: just summing values of 1 variable x_j.
Gibbs Sampling in Action

- Start with some initial value: \(x^0 = [2 \ 2 \ 3 \ 1] \).
- Select random \(j \) like \(j = 3 \).
- Sample variable \(j \): \(x^1 = [2 \ 2 \ 1 \ 1] \).
- Select random \(j \) like \(j = 1 \).
- Sample variable \(j \): \(x^2 = [3 \ 2 \ 1 \ 1] \).
- Select random \(j \) like \(j = 2 \).
- Sample variable \(j \): \(x^3 = [3 \ 2 \ 1 \ 1] \).
- ...
- Use the samples to form a Monte Carlo estimator.
Gibbs Sampling in Action: UGMs

Back to image denoising...

(show videos)
Gibbs Sampling in Action: UGMs

Gibbs samples after every 100d iterations:

Samples from Gibbs sampler
Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:
Gibbs Sampling in Action: Multivariate Gaussian

- Gibbs sampling works for general distributions.
- E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

Video: https://www.youtube.com/watch?v=AEwY6QXWoUg
Gibbs Sampling as a Markov Chain

- Why would Gibbs sampling work?

- Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.
 - If we pick a random \(j \), we have the same transition distribution at each time.
 - If we cycle through the \(j \), we consider \(d \)th sample as coming from Markov chain.

- Previously we discussed **stationary distribution** of Markov chain:
 \[
 \pi(s) = \sum_{s'} q(x_t = s \mid x_{t-1} = s')\pi(s'),
 \]
 with transition probabilities \(q \).

- A sufficient condition for Gibbs sampling to converge to stationary:
 \[
 p(x_j \mid x_{-j}) > 0 \quad \text{for all} \ j,
 \]
 although weaker conditions exist.
Markov Chain Monte Carlo (MCMC)

- Stationary distribution π of Gibbs sampling is the target distribution:

$$\pi(x) = p(x),$$

so for large k a sample x^k will be distributed according to $p(x)$.

- So we can use it as a Markov Chain Monte Carlo (MCMC) method:
 - Design a Markov chain that has $\pi(x) = p(x)$.
 - Use these samples within a Monte Carlo estimator,

$$\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{t=1}^{n} g(x^i).$$

- Law of large numbers can be generalized to show this converges as $n \to \infty$.
 - But convergence rate is slower since we’re generating dependent samples.
Markov Chain Monte Carlo

From top left to bottom right: histograms of 1000 independent Markov chains with a normal distribution as target distribution.

Summary

- **Moralization of DAGs** to do decoding/inference/sampling as a UGM.
- **Markov blanket** is set of nodes that make x_j independent of all others.

- **Message passing** can be used for inference in UGMs.
 - Belief propagation for trees.
 - Cost might be exponential for unfavourable graphs/ordering.

- **Iterated conditional mode** is coordinate descent for decoding UGMs.
 - Fast but doesn’t obtain global optimum in general.

- **Gibbs sampling** is coordinate-wise sampling.
 - Special case of Markov chain Monte Carlo method.

- Next time: reproducing the Spaceballs beaming experiment.
Conditional Independence and Local Markov Property

- In UGMs, conditional independence is determined by reachability.
 - $A \perp B \mid C$ if all paths from A to B are blocked by C.

- The independence assumptions in DAGs were defined by
 $$p(x_j \mid x_{1:j-1}) = p(x_j \mid x_{pa(j)}),$$
 that we’re independent of previous non-parents given parents.

- In UGMs there is no order and we instead have a local Markov property,
 $$p(x_j \mid x_{1:d}) = p(x_j \mid x_{nei(j)}),$$
 that we’re independent of all non-neighbours given neighbours in the graph.
Markov Blanket

- **Markov blanket** is the set nodes that make you independent of all other nodes.

- In UGMs the Markov blanket is the neighbours.

- Markov blanket in DAGs is all parents, children, and co-parents:
Decomposable Graphical Models

- Probabilities whose conditional independences that can be represented as DAGs and UGMs are called **decomposable**.
 - Includes chains, trees, and fully-connected graphs.

- These models allow some efficient operations in UGMs by writing them as DAGs:
 - Computing $p(x)$.
 - Ancestral sampling.
 - Fitting parameters independently.