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Last Time: Learning and Inference in DAGs

We discussed learning in DAG models,

log p(X |W ) =

n∑
i=1

d∑
j=1

log p(xij | xipa(j), w
j),

which becomes a supervised learning problem for each feature j.

“Tabular” parameterization is common but requires small number of parents.
Gaussian belief networks use least squares (defines a multivariate Gaussian).
Sigmoid belief networks use logistic regression.

For inference in DAGs (decoding, computing marginals, computing conditionals):

We can use ancestral sampling to compute Monte Carlo approximations.
We can apply message passing, but messages may be huge.

Only guarantee O(dk2) cost if each node has at most one parent (“tree” or “forest”).
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Conditional Sampling in DAGs
What about conditional sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, easy if we condition on the first variables in the order:

Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.
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DAG Structure Learning

Structure learning is the problem of choosing the graph.

Input is data X.
Output is a graph G.

The “easy” case is when we’re given the ordering of the variables.

So the parents of j must be chosen from {1, 2, . . . , j − 1}.

Given the ordering, structure learning reduces to feature selection:

Select features {x1, x2, . . . , xj−1} that best predict “label” xj .
We can use any feature selection method to solve these d problems.
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Example: Structure Learning in Rain Data Given Ordering
Structure learning in rain data using L1-regularized logistic regression.

For different λ values, assuming chronological ordering.
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DAG Structure Learning without an Ordering

Without an ordering, a common approach is “search and score”
Define a score for a particular graph structure (like BIC).
Search through the space of possible DAGs (greedily add/remove/reverse edges).

Another common approach is “constraint-based” methods:
Based on performing a sequence of conditional independence tests.
Prune edge between xi and xj if you find variables S making them independent,

xi ⊥ xj | xS .

Assumes “faithfulness” (all independences are reflected in graph).

Otherwise it’s weird (a duplicated feature would be disconnected from everything.)

Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
For symmetric scores, can be done by minimum spanning tree.
For asymetric scores, can be by minimum spanning arborescence.
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Structure Learning on USPS Digits
Optimal tree on USPS digits.

1,1

2,11,2

2,2

1,3

2,3

1,4

2,4

1,5

2,5

1,6

2,61,7

2,7

1,8

2,8

1,9

2,9

1,10

2,10

1,11

2,11 1,12

2,121,13

2,131,14

2,14

1,15

2,15 2,16

1,16

3,2 3,3 3,4 3,5

3,6

3,8 3,9 3,10 3,11

3,12

3,143,153,16

3,1

4,1 4,2 4,3 4,4

3,7 4,5

4,6

4,8 4,9 4,10

4,113,13

4,144,15

5,1 5,2 5,3

5,4

5,5

4,7

5,8 5,9

4,12

5,11

4,13

5,13

5,144,16

5,16

6,1 6,2 6,3

6,45,6

6,56,6

5,7

6,76,8 6,9

5,10

6,10 6,11

5,12

6,12 6,13

5,15

6,15

7,1 7,2 7,3

7,4

7,5 7,67,77,8 7,9 7,10 7,11 7,12

6,14

7,14

6,16

7,15

8,1 8,2 8,3

8,4

8,5 8,68,78,8 8,9 8,10 8,11

7,13

8,128,13

8,148,15

7,16

9,1 9,2 9,3

9,4

9,59,79,8 9,9 9,10

9,119,12

9,149,15

8,16

10,1 10,2 10,3

10,49,6

10,510,610,710,8 10,9

10,1010,11 9,13

10,12 10,1310,1410,15

9,16

10,16

11,1 11,2 11,3

11,4

11,511,6 11,711,8

11,911,10

11,11 11,12 11,1311,1411,1511,16

12,1 12,2 12,3

12,412,5 12,612,7 12,8

12,1212,1312,1412,1512,16

13,1

13,5

12,9

12,10

12,11

13,1213,1313,14

13,2 14,1

13,3

14,3

13,4

13,6

14,513,7

14,6

13,8

13,9

13,10

13,11

14,1314,14

13,15

14,15

13,16

14,2

15,2

15,3 14,4

15,4

15,5 14,7

15,6 15,7

14,8

14,9 15,8

14,10

14,11

14,12

15,1215,13 15,14 14,1615,15

15,1

16,1

16,2

16,3

16,4

16,5 16,6 16,7

16,8

15,9

15,1016,9

15,11 16,10

16,11

16,1216,13 16,14 15,16 16,15

16,16



Structure Learning Undirected Graphical Models

20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give relationship between words.
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Structure Learning on News Words
Optimal tree on newsgroups data:
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Directed vs. Undirected Models

In some applications we have a natural ordering of the xj .

In the “rain” data, the past affects the future.

In some applications we don’t have a natural order.

E.g., pixels in an image.

In these settings we often use undirected graphical models (UGMs).

Also known as Markov random fields (MRFs) and originally from statistical physics.
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Directed vs. Undirected Models

Undirected graphical models are based on undirected graphs:

They are a classic way to model dependencies in images:
Can capture dependencies between neighbours without imposing an ordering.
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Ising Models from Statistical Physics

The Ising model for binary xi is defined by

p(x1, x2, . . . , xd) ∝ exp

 d∑
i=1

xiwi +
∑

(i,j)∈E

xixjwij

 ,

where E is the set of edges in an undirected graph.

Called a log-linear model, because log p(x) is linear plus a constant.

Consider using xi ∈ {−1, 1}:
If wi > 0 it encourages xi = 1.
If wij > 0 it encourages neighbours i and j to have the same value.

E.g., neighbouring pixels in the image receive the same label (“attractive” model)

We’re modeling dependencies, but haven’t assumed an “ordering”.
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Undirected Graphical Models

Pairwise undirected graphical models (UGMs) assume p(x) has the form

p(x) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

The φj and φij functions are called potential functions:

They can be any non-negative function.
Ordering doesn’t matter: more natural for things like pixels of an image.

Ising model is a special case where

φi(xi) = exp(xiwi), φij(xi, xj) = exp(xixjwij).

Bonus slides generalize Ising to non-binary case.
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Label Propagation as a UGM

Consider modeling the probability of a vector of labels ȳ ∈ Rt using

p(ȳ1, ȳ2, . . . , ȳt) ∝ exp

− n∑
i=1

t∑
j=1

wij(y
i − ȳi)2 − 1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2

 .

Decoding in this model is equivalent to the label propagation problem.

This is a pairwise UGM:

φj(ȳ
j) = exp

(
−

n∑
i=1

wij(y
i − ȳj)2

)
, φij(ȳ

i, ȳj) = exp

(
−1

2
w̄ij(ȳ

i − ȳj)2

)
.
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Conditional Independence in Undirected Graphical Models

It’s easy to check conditional independence in UGMs:

A ⊥ B | C if C blocks all paths from any A to any B.

Example:

A 6⊥ C.
A 6⊥ C | B.
A ⊥ C | B,E.
A,B 6⊥ F | C
A,B ⊥ F | C,E.
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Multivariate Gaussian and Pairwise Graphical Models

Independence in multivariate Gaussian:

In Gaussians, marginal independence is determined by covariance:

xi ⊥ xj ⇔ Σij = 0.

But how can we determine conditional independence?

Multivarate Gaussian is a special case of a pairwise UGM.

So we can just use graph separation.

In particular, edges of the UGM are (i, j) values where Θi,j 6= 0.

We use the term Gaussian graphical model (GGM) in this context.

Or Gaussian Markov random field (GMRF).
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Digression: Gaussian Graphical Models

Multivariate Gaussian can be written as

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
∝ exp

−1

2
xTΣ−1x+ xT Σ−1µ︸ ︷︷ ︸

v

 ,

and writing it in summation notation we can see that it’s a pairwise UGM:

p(x) ∝ exp(

−1

2

d∑
i=1

d∑
j=1

xixjΣ
−1
ij +

d∑
i=1

xivi



=


d∏
i=1

d∏
j=1

exp

(
−1

2
xixjΣ

−1
ij

)
︸ ︷︷ ︸

φij(xi,xj)


 d∏
i=1

exp (xivi)︸ ︷︷ ︸
φi(xi)


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Independence in GGMs

So Gaussians are pairwise UGMs with φij(xi, xj) = exp
(
−1

2xixjΘij

)
,

Where Θij is element (i, j) of Σ−1.

Consider setting Θij = 0:

For all (xi, xj) we have φ(xi, xj) = 1, which is equivalent to not having edge (i, j).

So setting Θij = 0 is equivalent to removing φij(xi, xj) from the UGM.

Gaussian conditional independence is determined by precision matrix sparsity.

Diagonal Θ gives disconnected graph: all variables are independent.
Full Θ gives fully-connected graph: there are no independences.
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Independence in GGMs
Consider a Gaussian with the following covariance matrix:

Σ =


0.0494 −0.0444 −0.0312 0.0034 −0.0010
−0.0444 0.1083 0.0761 −0.0083 0.0025
−0.0312 0.0761 0.1872 −0.0204 0.0062
0.0034 −0.0083 −0.0204 0.0528 −0.0159
−0.0010 0.0025 0.0062 −0.0159 0.2636


Σij 6= 0 so all variables are dependent: x1 6⊥ x2, x1 6⊥ x5, and so on.

This would show up in graph: you would be able to reach any xi from any xj .

The inverse is given by a tri-diagonal matrix:

Σ−1 =


32.0897 13.1740 0 0 0
13.1740 18.3444 −5.2602 0 0

0 −5.2602 7.7173 2.1597 0
0 0 2.1597 20.1232 1.1670
0 0 0 1.1670 3.8644


So conditional independence is described by a Markov chain:

p(x1 | x2, x3, x4, x5) = p(x1 | x2).
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Graphical Lasso

Conditional independence in GGMs is described by sparsity in Θ.

Setting a Θij to 0 removes an edge from the graph.

Recall fitting multivariate Gaussian with L1-regularization,

argmin
Θ�0

Tr(SΘ)− log |Θ|+ λ‖Θ‖1,

which is called the graphical Lasso because it encourages a sparse graph.

Graphical Lasso is a convex approach to structure learning for GGMs.

Examples https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models.

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Higher-Order Undirected Graphical Models

In UGMs, we can also define potentials on higher-order interactions.
A three-variable generalization of Ising potentials is:

φijk(xi, xj , xk) = wijkxixjxk.

If wijk > 0 and xj ∈ {0, 1}, encourages you to set all three to 1.
If wijk > 0 and xj ∈ {−1, 1}, encourages odd number of positives.

In the general case, a UGM just assumes p(x) factorizes over subsets c,

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

from among a collection of subsets of C.

In this case, graph has edge (i, j) if i and j are together in at least one c.
Conditional independences are still given by graph separation.
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Tractability of UGMs

Without using ∝, we write UGM probability as

p(x) =
1

Z

∏
c∈C

φc(xc),

where Z is the constant that makes the probabilites sum up to 1.

Z =
∑
x1

∑
x2

· · ·
∑
xd

∏
c∈C

φc(xc) or Z =

∫
x1

∫
x2

· · ·
∫
xd

∏
c∈C

φc(xc)dxddxd−1 . . . dx1 = 1.

Whether you can compute Z depends on the choice of the φc:

Gaussian case: O(d3) in general, but O(d) for forests (no loops).
Continuous non-Gaussian: usually requires numerical integration.
Discrete case: #P-hard in general, but O(dk2) for forests (no loops).
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Summary

Structure learning is the problem of learning the graph structure.

Hard in general, but easy for trees and L1-regularization gives fast heuristic.

Undirected graphical models factorize probability into non-negative potentials.

Gaussians are a special case.
Log-linear models (like Ising) are a common choice.
Simple conditional independence properties.

Next time: our first visit to the wild world of approximate inference.
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General Pairwise UGM

For general discrete xi a generalization of Ising models is

p(x1, x2, . . . , xd) =
1

Z
exp

 d∑
i=1

wi,xi +
∑

(i,j)∈E

wi,j,xi,xj

 ,

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all x).

Interpretation of weights for this UGM:

If wi,1 > wi,2 then we prefer xi = 1 to xi = 2.
If wi,j,1,1 > wi,j,2,2 then we prefer (xi = 1, xj = 1) to (xi = 2, xj = 2).

As before, we can use parameter tieing:

We could use the same wi,xi
for all positions i.

Ising model corresponds to a particular parameter tieing of the wi,j,xi,xj
.
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Factor Graphs
Factor graphs are a way to visualize UGMs that distinguishes different orders.

Use circles for variables, squares to represent dependencies.

Factor graph if p(x1, x2, x3) ∝ φ12(x1, x2)φ13(x1, x2, x3)φ23(x2, x3):

Factor graph if p(x1, x2, x3) ∝ φ123(x1, x2, x3):
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