Structure Learning

CPSC 540: Machine Learning
Undirected Graphical Models

Mark Schmidt

University of British Columbia

Winter 2018

Undirected Graphical Models



Structure Learning Undirected Graphical Models

Last Time: Learning and Inference in DAGs

@ We discussed learning in DAG models,

logp(X | W) = Zzlogp pali) 7);

=1 j=1

which becomes a supervised learning problem for each feature j.

e "Tabular" parameterization is common but requires small number of parents.
o Gaussian belief networks use least squares (defines a multivariate Gaussian).
e Sigmoid belief networks use logistic regression.

@ For inference in DAGs (decoding, computing marginals, computing conditionals):

e We can use ancestral sampling to compute Monte Carlo approximations.
o We can apply message passing, but messages may be huge.

o Only guarantee O(dk?) cost if each node has at most one parent (“tree” or “forest”).
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Conditional Sampling in DAGs

@ What about conditional sampling in DAGs?
e Could be easy or hard depending on what we condition on.

@ For example, easy if we condition on the first variables in the order:
e Just fix these and run ancestral sampling.
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@ Hard to condition on the last variables in the order:
e Conditioning on descendent makes ancestors dependent.
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DAG Structure Learning

@ Structure learning is the problem of choosing the graph.

e Input is data X.
e Output is a graph G.

@ The “easy” case is when we're given the ordering of the variables.
e So the parents of j must be chosen from {1,2,...,5 — 1}.

@ Given the ordering, structure learning reduces to feature selection:

o Select features {1, 2,...,2;_1} that best predict “label” x;.
e We can use any feature selection method to solve these d problems.
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Example: Structure Learning in Rain Data Given Ordering

@ Structure learning in rain data using L1-regularized logistic regression.
e For different A values, assuming chronological ordering.
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DAG Structure Learning without an Ordering

@ Without an ordering, a common approach is “search and score”

o Define a score for a particular graph structure (like BIC).
e Search through the space of possible DAGs (greedily add/remove/reverse edges).

@ Another common approach is “constraint-based” methods:
e Based on performing a sequence of conditional independence tests.

o Prune edge between x; and z; if you find variables S making them independent,
Z; 1 Z 5 | Is.

o Assumes “faithfulness” (all independences are reflected in graph).
@ Otherwise it's weird (a duplicated feature would be disconnected from everything.)

@ Structure learning is NP-hard in general, but finding the optimal tree is poly-time:

e For symmetric scores, can be done by minimum spanning tree.
e For asymetric scores, can be by minimum spanning arborescence.
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Structure Learning
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Structure Learning on USPS Digits

Optimal tree on USPS digits.
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20 Newsgroups Data

o Data containing presence of 100 words from newsgroups posts:

car | drive | files | hockey | mac | league | pc
0 0 1 0 1 0 1
0 0 0 1 0 1 0
1 1 0 0 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 0 1

@ Structure learning should give relationship between words.
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Structure Learning on News Words
Optimal tree on newsgroups data:
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Outline

© Undirected Graphical Models
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Directed vs. Undirected Models

@ In some applications we have a natural ordering of the x;.
e In the “rain” data, the past affects the future.

@ In some applications we don't have a natural order.
e E.g., pixels in an image.

@ In these settings we often use undirected graphical models (UGMs).
o Also known as Markov random fields (MRFs) and originally from statistical physics.
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Directed vs. Undirected Models

@ Undirected graphical models are based on undirected graphs:
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@ They are a classic way to model dependencies in images:
e Can capture dependencies between neighbours without imposing an ordering.
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Ising Models from Statistical Physics

@ The Ising model for binary x; is defined by

p(x1, T, ..., xq) X €Xp E Tiw; + E rizjwi; |,
(i,5)€E

where E is the set of edges in an undirected graph.
o Called a log-linear model, because log p(x) is linear plus a constant.

e Consider using z; € {—1,1}:
e If w; > 0 it encourages z; = 1.
o If w;; > 0 it encourages neighbours 7 and j to have the same value.

e E.g., neighbouring pixels in the image receive the same label ( “attractive” model)

@ We're modeling dependencies, but haven't assumed an “ordering”.
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Undirected Graphical Models

Pairwise undirected graphical models (UGMs) assume p(x) has the form

d
pla) o | T #5(x) 1T (i zy)
j=1

(i,5)EE

The ¢; and ¢;; functions are called potential functions:

e They can be any non-negative function.
e Ordering doesn’'t matter: more natural for things like pixels of an image.

Ising model is a special case where

di(xi) = exp(ziw;),  dij(xi, x5) = exp(zizjwi).

Bonus slides generalize Ising to non-binary case.
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Label Propagation as a UGM

@ Consider modeling the probability of a vector of labels 3 € R! using

t t
Py, 5%, 7" o< exp —Zzwwy -7 ;;g (@ —7)

=1 j=1

@ Decoding in this model is equivalent to the label propagation problem.

@ This is a pairwise UGM:

o 1 o
i (7) _eXP< wa v — ) ) 0y, Y) = exp <—2wij(§z—§])2>-
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Conditional Independence in Undirected Graphical Models

o It's easy to check conditional independence in UGMs:
e A1 B|C if C blocks all paths from any A to any B.

o Example:
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Multivariate Gaussian and Pairwise Graphical Models

@ Independence in multivariate Gaussian:
o In Gaussians, marginal independence is determined by covariance:

e But how can we determine conditional independence?

@ Multivarate Gaussian is a special case of a pairwise UGM.
e So we can just use graph separation.

@ In particular, edges of the UGM are (i, j) values where ©; ; # 0.

@ We use the term Gaussian graphical model (GGM) in this context.
o Or Gaussian Markov random field (GMRF).
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Digression: Gaussian Graphical Models

@ Multivariate Gaussian can be written as

1 1
px)ocexp | —=(x—p) 'S Nz —p) ) xexp | —z2"S e+ 2T 27 |,
2 2 S—~—

v

and writing it in summation notation we can see that it's a pairwise UGM:

p(a) o< exp( —fZZx:cJZ —l—Zva

i=1 j=1

d d
H H exp (;xiiji_jl) H exp (x;v;)

i=1j=1 D orier)
dij(zi,xj)
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Independence in GGMs

So Gaussians are pairwise UGMs with ¢;;(z;, ;) = exp (—32;2,;0;;),
o Where ©;; is element (i, j) of £71.

o Consider setting ©;; = 0:
o For all (z;,z;) we have ¢(z;,z;) = 1, which is equivalent to not having edge (3, j).

So setting ©;; = 0 is equivalent to removing ¢;;(x;, ;) from the UGM.

Gaussian conditional independence is determined by precision matrix sparsity.

e Diagonal © gives disconnected graph: all variables are independent.
e Full © gives fully-connected graph: there are no independences.
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Independence in GGMs

o Consider a Gaussian with the following covariance matrix:

0.0494  —0.0444 —0.0312 0.0034 —0.0010
—0.0444  0.1083 0.0761  —0.0083  0.0025
¥ =|-0.0312 0.0761 0.1872  —0.0204  0.0062
0.0034  —0.0083 —0.0204 0.0528  —0.0159
—0.0010  0.0025 0.0062 —0.0159  0.2636

@ Y;; # 0 so all variables are dependent: 1 [ x2, 1 £ x5, and so on.
e This would show up in graph: you would be able to reach any x; from any z;.
@ The inverse is given by a tri-diagonal matrix:

32.0897 13.1740 0 0 0
13.1740 18.3444 —5.2602 0 0
sl = 0 —5.2602 7.7173  2.1597 0
0 0 2.1597  20.1232  1.1670
0 0 0 1.1670  3.8644

@ So conditional independence is described by a Markov chain:

p(xy | 22,23, 24, 5) = p(x1 | 22).
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Graphical Lasso

e Conditional independence in GGMs is described by sparsity in ©.
o Setting a ©;; to 0 removes an edge from the graph.

@ Recall fitting multivariate Gaussian with L1-regularization,

argmin Tr(S©) — log |©| + A||O||1,
©>0

which is called the graphical Lasso because it encourages a sparse graph.

@ Graphical Lasso is a convex approach to structure learning for GGMs.

e Exam p|es https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models.


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Higher-Order Undirected Graphical Models

@ In UGMs, we can also define potentials on higher-order interactions.
o A three-variable generalization of Ising potentials is:

Gijr (i, 75, Th) = WijpTiTjTh.

o If wijr >0 and z; € {0,1}, encourages you to set all three to 1.
o If w;jr >0 and z; € {—1,1}, encourages odd number of positives.

@ In the general case, a UGM just assumes p(x) factorizes over subsets ¢,

p(l’l,l'Q, ceey ‘,Ed) 08 H ch(l'c),

ceC

from among a collection of subsets of C.

@ In this case, graph has edge (4, j) if 7 and j are together in at least one c.
e Conditional independences are still given by graph separation.
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Tractability of UGMs
e Without using x, we write UGM probability as
1
ple) = [ delee),
ceC
where Z is the constant that makes the probabilites sum up to 1.
7 = ZZZH%(‘%) or Z :/ / / Hgbc(xc)da;dda:d,l...dazl =1.
T1 T2 x4 ceC z1 J T2 Td ceC

@ Whether you can compute Z depends on the choice of the ¢.:
o Gaussian case: O(d?) in general, but O(d) for forests (no loops).
e Continuous non-Gaussian: usually requires numerical integration.
o Discrete case: #P-hard in general, but O(dk?) for forests (no loops).
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Summary

@ Structure learning is the problem of learning the graph structure.
e Hard in general, but easy for trees and L1-regularization gives fast heuristic.

@ Undirected graphical models factorize probability into non-negative potentials.

e Gaussians are a special case.
o Log-linear models (like Ising) are a common choice.
e Simple conditional independence properties.

@ Next time: our first visit to the wild world of approximate inference.
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General Pairwise UGM

e For general discrete z; a generalization of Ising models is

p($1, L2y ...,T ) = eXp § Wy + E Wi jxiz; |

(i,)€E

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all z).

@ Interpretation of weights for this UGM:
o If w; 1 > w; 2 then we prefer z; =1 to z; = 2.
o If Wi, 5.1,1 > W;,5,2,2 then we prefer (1‘1 = 1,.1‘]' = 1) to (.Tz = 2,$j = 2)

@ As before, we can use parameter tieing:

o We could use the same w; ,, for all positions 3.
o Ising model corresponds to a particular parameter tieing of the w; j z, «;-
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Factor Graphs

e Factor graphs are a way to visualize UGMs that distinguishes different orders.
e Use circles for variables, squares to represent dependencies.

e Factor graph if p(x1, z2,x3) o ¢12(x1, x2)d13(x1, T2, T3) P23 (w2, x3):
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e Factor graph if p(z1, z2,23) X ¢193
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