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Last Time: Directed Acyclic Graphical (DAG) Models

DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)),

where pa(j) are the parents of node j.

This assumes a Markov property (generalizing Markov property in chains),

p(xj |x1:j−1) = p(xj |xpa(j)),

We visualize the assumptions made by the model as a graph:
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Last Time: D-Separation

We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are “blocked” because at least one of the following holds:

1 P includes a “chain” with an observed middle node (e.g., Markov chain):

2 P includes a “fork” with an observed parent node (e.g., mixture of Bernoulli):

3 P includes a “v-structure” or “collider” (e.g., probabilistic PCA):

where “child” and all its descendants are unobserved.
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Alarm Example

Case 1:

Earthquake 6⊥ Call.
Earthquake ⊥ Call | Alarm.

Case 2:

Alarm 6⊥ Stuff Missing.
Alarm ⊥ Stuff Missing | Burglary.
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Alarm Example

Case 3:
Earthquake ⊥ Burglary.
Earthquake 6⊥ Burglary | Alarm.

“Explaining away”: knowing one parent can make the other less likely.

Multiple Cases:
Call 6⊥ Stuff Missing.
Earthquake ⊥ Stuff Missing.
Earthquake 6⊥ Stuff Missing | Call.
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Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given E)⇒ A ⊥ B | E.

However, there might be extra conditional independences in the distribution:

These would depend on specific choices of the p(xj | xpa(j)).
Or some orderings may reveal different independences.

Instead of restricting to {1, 2, . . . , j − 1}, consider general parent choices.

x2 could be a parent of x1.

As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).
(all DAGs have a “topological order” of variables where parents are before children)
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Non-Uniqueness of Graph and Equivalent Graphs

Note that some graphs imply same conditional independences:

Equivalent graphs: same v-structures and other (undirected) edges are the same.
Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):
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Discussion of D-Separation

So the graph is not necessarily unique and is not the whole story.

But, we can already do a lot with d-separation:

Implies every independence/conditional-independence we’ve used in 340/540.

Here we start blurring distinction between data/parameters/hyper-parameters...
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Tilde Notation as a DAG

When we write
yi ∼ N (wTxi, 1),

this can be interpretd as a DAG model:

“The variables on the right of ∼ are the parents of the variables on the left”.
In this case, w only depends on X since we know y.

Note that we’re now including both data and parameters in the graph.
This allows us to see and reason about their relationships.
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IID Assumption as a DAG

On Day 2, our first independence assumption was the IID assumption:

Training/test examples come independently from data-generating process D.

If we knew D, we wouldn’t need to learn.

But D is unobserved, so knowing about some xi tells us about the others.

We’ll use this understanding later to relax the IID assumption.

Bonus: using this to ask “when does semi-supervised learning make sense?”
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Plate Notation

Graphical representation of the IID assumption:

It’s common to represent repeated parts of graphs using plate notation:
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Tilde Notation as a DAG

If the xi are IID then we can represent regression as

or

From d-separation on this graph we have p(y | X,w) =
∏n

i=1 p(y
i | xi, w).

We often omit the data-generating distribution D.

But if you want to learn then should remember that it’s there.

Note that graph represents parameter tieing: that we use same w for all i.
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Tilde Notation as a DAG
When we do MAP estimation under the assumptions

yi ∼ N (wTxi, 1), wj ∼ N (0, 1/λ),

we can interpret it as the DAG model:

Or introducing a second plate using:
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Other Models in DAG/Plate Notation
For naive Bayes we have

yi ∼ Cat(θ), xi | yi = c ∼ Cat(θc).

Or in plate notation as
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Outline

1 D-Separate and Plate Notation

2 Learning and Inference in DAGs
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Parameter Learning in General DAG Models

The log-likelihood in DAG models is separable in the conditionals,

log p(x | Θ) = log

d∏
j=1

p(xj | xpa(j),Θj)

=
d∑

j=1

log p(xj | xpa(j),Θj)

If each p(xj | xpa(j)) has its own parameters Θj , we can fit them independently.

We’ve done this before: naive Bayes, Gaussian discriminant analysis, etc.

Sometimes you want to have tied parameters (Θj = Θj′)

Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
Still easy, but need to fit p(xj | xpa(j),Θj) and p(xj′ | xpa(j′),Θj) together.
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Tabular Parameterization in DAG Models

To specify distribution, we need to decide on the form of p(xj | xpa(j),Θj).

For discrete data a default choice is the tabular parameterization:

p(xj | xpa(j),Θj) = θxj ,xpa(j)
,

as we did for Markov chains (but now with multiple parents).

Intuitive: just need conditional probabilities of children given parents like

p(“wet grass” = 1 | “sprinkler” = 1, “rain” = 0),

and MLE is just counting.
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

p(R = 1) = 0.2.

p(G = 1 | S = 0, R = 1) = 0.8.

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

http://www.hugin.com/index.php/technology

http://www.hugin.com/index.php/technology
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Fitting DAGs using Supervised Learning

But tabular parameterization requires too many parameters:

With binary states and k parents, need 2k+1 parameters.

One solution is letting users specify a “parsimonious” parameterization:

Typically have a linear number of parameters.
For example, the “noisy-or” model: p(xj | xpa(j)) = 1−

∏
k∈pa(j) qk.

But if we have data, we can use supervised learning.

Write fitting p(xj | xpa(j)) as our usual p(y | x).
We’re predicting one column of X given the values of some other columns.
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Fitting DAGs using Supervised Learning

Fitting DAGs using supervised learning:
For j = 1 : d:

1 Set ȳi = xi
j and x̄i = xi

pa(j).
2 Solve a supervised learning problem using {X̄, ȳ}.

Use the d regression/classification models as the density estimator.

We can use our usual tricks:

Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
With least squares it’s called a Gaussian belief network.
With logistic regression it’s called a sigmoid belief networks.
Don’t need Markov assumptions to tractably fit these models.
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MNIST Digits with Tabular DAG Model

Recall our latest MNIST model using a tabular DAG:

This model is pretty bad because you only see 8 parents.
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MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
Models long-range dependencies but has a linear assumption.
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Inference in Forest DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

which works if each node has at most one parent.
Such graphs are called trees (connected), or forests (disconnected).

Also called “singly-connected”.

Forests allow efficient message-passing methods as in Markov chains.
In particular, decoding and univariate marginals/conditionals in O(dk2).
Message passing applied to tree-structured graphs is called belief propagation.
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Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution depending on multiple variables.

Consider the non-tree graph:
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Inference in General DAGs
We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4 | x2, x3)p(x3 | x1)p(x2 | x1)p(x1)

=
∑
x3

∑
x2

p(x4 | x2, x3)
∑
x1

p(x3 | x1)p(x2 | x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4 | x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),
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Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1− > x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and computing marginals is #P-hard in general.

We’ll see later that maximum message size is “treewidth” of a particular graph.

On the other hand, ancestral sampling is easy:

We can obtain Monte Carlo estimates of solutions to these NP-hard problems.
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Summary

Plate Notation lets us compactly draw graphs with repeated patterns.

There are fancier versions of plate notation called “probabilistic programming”.

Parameter learning in DAGs:

Can fit each p(xj | xpa(j)) independently.
Tabular parameterization, or treat as supervised learning.

Inference in DAGs:

Ancestral sampling and Monte Carlo methods work as before.
Message-passing message sizes depend on graph structure.

Next time: trying to discover the graph structure from data.
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Other Models in DAG/Plate Notation
In a full Gaussian model for a single x we have

xi ∼ N (µ,Σ).

For mixture of Gaussians we have

zi ∼ Cat(θ), xi | zi = c ∼ N (µc,Σc).
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

p(G = 1 | R = 1) = p(G = 1, S = 0 | R = 1) + p(G = 1, S = 1 | R = 1)

(
p(a | c) =

∑
b

p(a, b | c)
)

= p(G = 1 | S = 0, R = 1)p(S = 0 | R = 1) + p(G = 1 | S = 1, R = 1)p(S = 1 | R = 1)

= 0.8(0.99) + 0.99(0.01) = 0.81.

https://en.wikipedia.org/wiki/Bayesian_network
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Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
No!

Consider choosing unlabeled features x̄i uniformly at random.
Unlabeled examples collected in this way will not help.
By construction, distribution of x̄i says nothing about ȳi.

Example where SSL is not possible:
Try to detect food allergy by trying random combinations of food:

The actual random process isn’t important, as long as it isn’t affected by labels.
You can sample an infinite number of x̄i values, but they says nothing about labels.

Example where SSL is possible:
Trying to classify images as “cat” vs. “dog.:

Unlabeled data would need to be images of cats or dogs (not random images).
Unlabeled data contains information about what images of cats and dogs look like.
For example, there could be clusters or manifolds in the unlabeled images.
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Does Semi-Supervised Learning Make Sense?
Let’s assume our semi-supervised learning model is represented by this DAG:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:
There is a dependency between y and ỹ because of path through w.

Parameter w is tied between training and test distributions.
There is a dependency between X and ỹ because of path through w (given y).

But note that there is also a second path through D and X̃.
There is a dependency between X̄ and ỹ because of path through D and X̃.

Unlabeled data helps because it tells us about data-generating distribution D.
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Does Semi-Supervised Learning Make Sense?

Now consider generating X̄ independent of D:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:

Knowing X and y are useful for the same reasons as before.
But knowing X̄ is not useful:

Without knowing ȳ, X̄ is d-separated from ỹ (no dependence).
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Beware of the “Causal” DAG

It can helpful to use the language of causality when reasoning about DAGs.

You’ll find that they give the correct causal interpretation based on our intuition.

However, keep in mind that the arrows are not necessarily causal.

“A causes B” has the same graph as “B causes A”.

There is work on causal DAGs which add semantics to deal with “interventions”.

But these require extra assumptions: fitting a DAG to observational data doesn’t
imply anything about causality.
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