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Last Time: Directed Acyclic Graphical (DAG) Models

@ DAG models use a factorization of the joint distribution,
d
p(xlv Z2,... ,.ZUd) = Hp($]|xpa(]))7
j=1

where pa(j) are the parents of node j.

@ This assumes a Markov property (generalizing Markov property in chains),
p(zjlerj—1) = p(a;lTeac)),

@ We visualize the assumptions made by the model as a graph:

ORI A
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Last Time: D-Separation

e We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are "blocked” because at least one of the following holds:
@ P includes a “chain” with an observed middle node (e.g., Markov chain):

O—@-0O

@ P includes a “fork” with an observed parent node (e.g., mixture of Bernoulli):

O—@-0

© P includes a “v-structure” or “collider” (e.g., probabilistic PCA):

O QO

where “child” and all its descendants are unobserved.
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Alarm Example

Earﬂxq\nml\'l m

o Case 1:

o Earthquake f Call.
o Earthquake L Call | Alarm.

o Case 2:

e Alarm [ Stuff Missing.
o Alarm L Stuff Missing | Burglary.
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Alarm Example

Eqrﬂq\nml\’! m

o Case 3:

o Earthquake L Burglary.

o Earthquake [/ Burglary | Alarm.

e "“Explaining away": knowing one parent can make the other less likely.

o Multiple Cases:

o Call £ Stuff Missing.

o Earthquake L Stuff Missing.

o Earthquake [ Stuff Missing | Call.
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Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given E) == A 1 B | E.

However, there might be extra conditional independences in the distribution:

o These would depend on specific choices of the p(z; | zpa(j))-
o Or some orderings may reveal different independences.

Instead of restricting to {1,2,...,j — 1}, consider general parent choices.
@ x5 could be a parent of x;.

As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).

(all DAGs have a “topological order” of variables where parents are before children)
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Non-Uniqueness of Graph and Equivalent Graphs

@ Note that some graphs imply same conditional independences:
o Equivalent graphs: same v-structures and other (undirected) edges are the same.
o Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

O—O—0 O—O—0
O—O0—0 O—O—0
O O O—O—0

O,
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Discussion of D-Separation

@ So the graph is not necessarily unique and is not the whole story.

@ But, we can already do a lot with d-separation:
e Implies every independence/conditional-independence we've used in 340/540.

@ Here we start blurring distinction between data/parameters/hyper-parameters...
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Tilde Notation as a DAG

@ When we write ‘ ‘
yz ~ N(waz’ 1)a

this can be interpretd as a DAG model:

%,

@ "The variables on the right of ~ are the parents of the variables on the left”.
o In this case, w only depends on X since we know .

o Note that we're now including both data and parameters in the graph.
e This allows us to see and reason about their relationships.
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1D Assumption as a DAG

On Day 2, our first independence assumption was the [ID assumption:

Training/test examples come independently from data-generating process D.

If we knew D, we wouldn't need to learn.

But D is unobserved, so knowing about some x* tells us about the others.

We'll use this understanding later to relax the IID assumption.
e Bonus: using this to ask “when does semi-supervised learning make sense?”
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Plate Notation

@ Graphical representation of the IID assumption:
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Tilde Notation as a DAG

o If the z* are IID then we can represent regression as

o From d-separation on this graph we have p(y | X,w) = [~ p(y* | 2%, w).

or

@ We often omit the data-generating distribution D.
e But if you want to learn then should remember that it's there.

@ Note that graph represents parameter tieing: that we use same w for all 7.
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Tilde Notation as a DAG
@ When we do MAP estimation under the assumptions
y'~ N(w'a' 1), wy ~N(0,1/)),

we can interpret it as the DAG model:

/)

N

(W)~ ()

@ Or introducing a second plate using:
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Other Models in DAG/Plate Notation

@ For naive Bayes we have

y' ~ Cat(d), z'|y'=c~ Cat(.).

SSE
e

@A
@
-

@ Or in plate notation as

@ Q<—@Q
(@
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Outline

© Learning and Inference in DAGs
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Parameter Learning in General DAG Models

@ The log-likelihood in DAG models is separable in the conditionals,

d
logp(x | ©) =log [ [ p(; | pags), )

J=1
d
Zlng Lj ‘ Lpa ])76 )

o If each p(x; | zpa(j)) has its own parameters ©;, we can fit them independently.
o We've done thls before: naive Bayes, Gaussian discriminant analysis, etc.

@ Sometimes you want to have tied parameters (©; = ©;/)

e Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
o Still easy, but need to fit p(z; | Zpa(j), ©5) and p(xj | Tpa(jy, ©;) together.
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Tabular Parameterization in DAG Models

o To specify distribution, we need to decide on the form of p(z; | zpa(j), ©;).

o For discrete data a default choice is the tabular parameterization:
P(@j | Zpa(j), ©) = O 3405
as we did for Markov chains (but now with multiple parents).
@ Intuitive: just need conditional probabilities of children given parents like
p("wet grass” = 1| “sprinkler” =1, “rain” = 0),

and MLE is just counting.
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Tabular Parameterization Example

SPRINKLER. RAIN
RAIN| T T F

F
SPRINKLER @

06 02 o0s
0ot 088

GRASS WET

T F
0.0 1.0
08 02
09 01
0.99 0.01

Learning and Inference in DAGs

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:
p(R=1)=0.2.
p(G=1|S=0,R=1)=0...

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).


https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

LIGHTS
Giatiary age ok FUEL PUMP FUEL LINE FUEL

0.0000 faut 98.464 I s ok
1.5353 rault 3.0708 (aull. TR fault

BATTERY

ok Mﬂy
0.0000 fault F°°' ‘“"'""
Erglnslurm
mr
FUEL GAUGE

Fllﬂl 0.0000 ok
Fuel Gauge 100.0000 RT3
snnkpl;p Enmne

ENGINE STARTS
0.0000 ok

faue

http://www.hugin.com/index.php/technology


http://www.hugin.com/index.php/technology
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Fitting DAGs using Supervised Learning

@ But tabular parameterization requires too many parameters:
o With binary states and k parents, need 2°*! parameters.

@ One solution is letting users specify a “parsimonious” parameterization:

o Typically have a linear number of parameters.
o For example, the “noisy-or” model: p(z; | Zpa(j)) =1 = [1cpa(s) k-

@ But if we have data, we can use supervised learning.

o Write fitting p(z; | Zpa(j)) as our usual p(y | x).
o We're predicting one column of X given the values of some other columns.
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Fitting DAGs using Supervised Learning

o Fitting DAGs using supervised learning:
o Forj=1:d:

Q Sety' =z and 2’ = l"i)a(j). )

@ Solve a supervised learning problem using {X, §}.

o Use the d regression/classification models as the density estimator.

@ We can use our usual tricks:

e Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
o With least squares it's called a Gaussian belief network.

o With logistic regression it's called a sigmoid belief networks.

e Don't need Markov assumptions to tractably fit these models.
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MNIST Digits with Tabular DAG Model

@ Recall our latest MNIST model using a tabular DAG:

0 15 20 25

5 10 15 20 25 5 10 15 20 25

@ This model is pretty bad because you only see 8 parents.
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MNIST Digits with Sigmoid Belief Network

@ Samples from sigmoid belief network:

(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
e Models long-range dependencies but has a linear assumption.
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Inference in Forest DAGs

@ If we try to generalize the CK equations to DAGs we obtain

plaj=s)= > p(x;=5pG) = Y P@;=5]|Tpag;)) P(Tpa())-

Tpa(y) Lpa(y)

given

which works if each node has at most one parent.
o Such graphs are called trees (connected), or forests (disconnected).
@ Also called “singly-connected”.

e Forests allow efficient message-passing methods as in Markov chains.
o In particular, decoding and univariate marginals/conditionals in O(dk?).
o Message passing applied to tree-structured graphs is called belief propagation.
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Inference in General DAGs

o If we try to generalize the CK equations to DAGs we obtain

plaj=s)= > plz;=5201) = > p@;=5|Tpi) P(Tpag)):

Zpa(j) Zpa(j)

given

@ What goes wrong if nodes have multiple parents?
o The expression p(zp,(;)) is a joint distribution depending on multiple variables.

@ Consider the non-tree graph:
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Inference in General DAGs

@ We can compute p(x4) in this non-tree using:

p(zq) = Z Z Zp(wl, T2, X3, T4)

r3 T2 T

= ZZZ})(]@ | l’Q,l’g)p(Q?g | 1‘1)}7(562 | ml)p(xl)

r3 T2 T1

= ZZP(M | 29, 3) ZP(»TS | z1)p(z2 [ 21)p(21)

3 X2 1

Moz (x2,23)

e Dependencies between {x1,z2, 23} mean our message depends on two variables.

p(za) = ZZP(M | 2, 23) Moz (w2, z3)
= Msy(x3,24),

z3
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Inference in General DAGs
e With 2-variable messages, our cost increases to O(dk?).

o If we add the edge x1— > x4, then the cost is O(dk?).

(the same cost as enumerating all possible assignments)

@ Unfortunately, cost is not as simple as counting number of parents.

e Even if each node has 2 parents, we may need huge messages.
e Decoding is NP-hard and computing marginals is #P-hard in general.

o We'll see later that maximum message size is “treewidth” of a particular graph.

@ On the other hand, ancestral sampling is easy:
e We can obtain Monte Carlo estimates of solutions to these NP-hard problems.
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Summary

Plate Notation lets us compactly draw graphs with repeated patterns.
e There are fancier versions of plate notation called “probabilistic programming”.

Parameter learning in DAGs:

o Can fit each p(x; | xpa(;)) independently.
e Tabular parameterization, or treat as supervised learning.

Inference in DAGs:

e Ancestral sampling and Monte Carlo methods work as before.
o Message-passing message sizes depend on graph structure.

Next time: trying to discover the graph structure from data.
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Other Models in DAG/Plate Notation

@ In a full Gaussian model for a single x we have
'~ N, ).

@ @
/

2t~ Cat(), 2| 2" =c~ N(pe, Ze).

7
@) Gt

@ For mixture of Gaussians we have



Tabular Parameterization Example

SPRINKLER. RAIN
RAIN| T T F

F
SPRINKLER @

06 02 o0s

098

GRASS WET
SPRINKLER RAIN| T F

0.0 1.0
08 02
09 01
0.99 0.01

-
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https://en.wikipedia.org/wiki/Bayesian_network
Can calculate any probabilities using marginalization /product- ruIe/Bayes rule, for example:

p(G=1|R=1)=p(G=1,S=0|R=1)+p(G=1,S=1|R=1) (a|c Zpab|c)>

=p(G=1|S=0,R=1)p(S=0|R=1)+p(G=1|S=1,R=1)p(S=1|R=1)

= 0.8(0.99) + 0.99(0.01) = 0.81.


https://en.wikipedia.org/wiki/Bayesian_network
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Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
o No!

Consider choosing unlabeled features Z uniformly at random.
e Unlabeled examples collected in this way will not help.
e By construction, distribution of Z* says nothing about 7*.

Example where SSL is not possible:
e Try to detect food allergy by trying random combinations of food:
@ The actual random process isn't important, as long as it isn't affected by labels.
@ You can sample an infinite number of Z* values, but they says nothing about labels.
Example where SSL is possible:
e Trying to classify images as “cat” vs. “dog.:
o Unlabeled data would need to be images of cats or dogs (not random images).
o Unlabeled data contains information about what images of cats and dogs look like.
o For example, there could be clusters or manifolds in the unlabeled images.
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Does Semi-Supervised Learning Make Sense?

@ Let's assume our semi-supervised Iearning model is represented by this DAG:

/é\,
L

®
\/@

@ Assume we observe {X,y, X} and are interested in test labels ¢:
e There is a dependency between y and y because of path through w.
o Parameter w is tied between training and test distributions.
e There is a dependency between X and ¢ because of path through w (given y).
@ But note that there is also a second path through D and X. _
e There is a dependency between X and y because of path through D and X.
@ Unlabeled data helps because it tells us about data-generating distribution D.
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Does Semi-Supervised Learning Make Sense?

o Now consider generating X independent of D:

og\“
2

@ Assume we observe {X,y, X} and are interested in test labels 7:

o Knowing X and y are useful for the same reasons as before.
e But knowing X is not useful:

e Without knowing 7, X is d-separated from 7 (no dependence).
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Beware of the “Causal’ DAG

@ It can helpful to use the language of causality when reasoning about DAGs.
e You'll find that they give the correct causal interpretation based on our intuition.

@ However, keep in mind that the arrows are not necessarily causal.
e "A causes B" has the same graph as “B causes A".

@ There is work on causal DAGs which add semantics to deal with “interventions”.

e But these require extra assumptions: fitting a DAG to observational data doesn't
imply anything about causality.
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