# CPSC 540: Machine Learning Directed Acyclic Graphical Models

#### Mark Schmidt

University of British Columbia

Winter 2018

## Last Time: Viterbi Decoding and Message Passing

• Decoding in density models: finding x with highest joint probability:

$$\underset{x_1, x_2, \dots, x_d}{\operatorname{argmax}} p(x_1, x_2, \dots, x_d).$$

• For Markov chains, we find decoding by writing maximization as

$$\max_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4) = \max_{x_4} \max_{x_3} p(x_4 \mid x_3) \max_{x_2} p(x_3 \mid x_2) \max_{x_1} p(x_2 \mid x_1) \underbrace{p(x_1)}_{M_1(x_1)},$$

$$\underbrace{\underbrace{M_1(x_1)}_{M_2(x_2)}}_{M_3(x_3)}$$

• Viterbi decoding computes  $M_1(x_1)$  for all  $x_1$ ,  $M_2(x_2)$  for all  $x_2$ , and so on. The  $M_j(x_j)$  functions are called messages (summarize everything about past).

# Chapman-Kolmogorov Equations as Message Passing

• We can also view Chapman Kolmogorov equations as message passing:

$$\begin{split} \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1, x_2, x_3, x_4) &= \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} \sum_{x_3} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1} p(x_2 \mid x_1) M_1(x_1) \\ &= \sum_{x_4} \sum_{x_3} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) M_2(x_2) \\ &= \sum_{x_4} \sum_{x_3} p(x_4 \mid x_3) M_3(x_3) \\ &= \sum_{x_4} M_4(x_4), \end{split}$$

- Messages  $M_j(x_j)$  are the marginals of the Markov chain.
  - So we can view CK equations as Viterbi decoding with "max" replace by "sum".
  - Also known as "max-product" and "sum-product" algorithms.

# Message-Passing Algorithms

- We've discussed several algorithms with similar structure:
  - Viterbi decoding algorithm for decoding in discrete Markov chains.
  - CK equations for marginals in discrete Markov chains.
  - Gaussian updates for marginals in Gaussian Markov chains.
- These are all special cases of message-passing algorithms:
  - **O** Define  $M_j$  summarizing all relevant information about the past at time j.
  - **2** Use Markov property to write  $M_j$  recursively in terms of  $M_{j-1}$ .
  - Solve task by computing  $M_1$ ,  $M_2$ , ...,  $M_d$ .
- "Generalized distributive law" is a framework for describing when/why this works:
  - https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
- In some cases we'll also need backwards message  $V_j$  ("cost to go"):
  - $V_j$  summarizes all relevant information about the future at time j.

#### Conditionals via Backwards Messages

• Markov chain decoding using backwards messages  $V_j(x_j)$ :

$$\begin{split} \max_{x_1} \max_{x_2} \max_{x_3} \max_{x_4} p(x_1, x_2, x_3, x_4) &= \max_{x_1} \max_{x_2} \max_{x_3} \max_{x_4} p(x_4 \mid x_3) p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) \\ &= \max_{x_1} p(x_1) \max_{x_2} p(x_2 \mid x_1) \max_{x_3} p(x_3 \mid x_2) \max_{x_4} p(x_4 \mid x_3) \\ &= \max_{x_1} p(x_1) \max_{x_2} p(x_2 \mid x_1) \max_{x_3} p(x_3 \mid x_2) \max_{x_4} p(x_4 \mid x_3) \underbrace{V_4(x_4)}_{=1} \\ &= \max_{x_1} p(x_1) \max_{x_2} p(x_2 \mid x_1) \max_{x_3} p(x_3 \mid x_2) V_3(x_3) \\ &= \max_{x_1 = c} p(x_1) \max_{x_2} p(x_2 \mid x_1) V_2(x_2) \\ &= \max_{x_1} p(x_1) V_1(x_1). \end{split}$$

- Computing all  $M_j(x_j)$  and  $V_j(x_j)$  is called forward backward algorithm.
  - Important later to compute marginals in generalizations of Markov chains.
  - Can be used to efficiently compute conditionals (bonus).

Directed Acyclic Graphical Models

**D**-Separation

## Outline

#### 1 Directed Acyclic Graphical Models

#### 2 D-Separation

## Higher-Order Markov Models

• Markov models use a density of the form

 $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)p(x_4 \mid x_3) \cdots p(x_d \mid x_{d-1}).$ 

- They support efficient computation but Markov assumption is strong.
- A more flexible model would be a second-order Markov model,

 $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1)p(x_4 \mid x_3, x_2) \cdots p(x_d \mid x_{d-1}, x_{d-2}),$ 

or even a higher-order models.

- General case is called directed acyclic graphical (DAG) models:
  - They allow dependence on any subset of previous features.

### **DAG Models**

• As in Markov chains, DAG models use the chain rule to write

 $p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_d \mid x_1, x_2, \dots, x_{d-1}).$ 

• We can alternately write this as:

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{1:j-1}).$$

- In Markov chains, we assumed  $x_j$  only depends on previous  $x_{j-1}$  given past.
- In DAGs,  $x_j$  can depend on any subset of the past  $x_1, x_2, \ldots, x_{j-1}$ .

## DAG Models

• To reduce number of parameters, in DAG models we use

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

where pa(j) are the "parents" of node j.

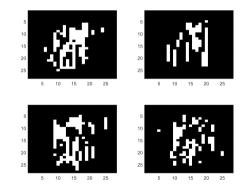
- For Markov chains the only "parent" of j is (j-1).
- If we have k parents we only need  $2^{k+1}$  parameters.
- This corresponds to a set of conditional independence assumptions,

$$p(x_j \mid x_{1:j-1}) = p(x_j \mid x_{pa(j)}),$$

that we're independent of previous non-parents given the parents.

# MNIST DIgits with Markov Chains

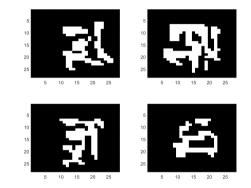
• Recall trying to model digits using an inhomogeneous Markov chain:



Only models dependence on pixel above, not on 2 pixels above nor across columns.

# MNIST Digits with DAG Model (Sparse Parents)

• Samples from a DAG model with 8 parents per feature:



Parents of (i, j) are 8 other pixels in the neighbourhood (i - 2 : i, j - 2 : j):  $\{(i-2, j-2), (i-1, j-2), (i, j-2), (i-2, j-1), (i-1, j-1), (i, j-1), (i-2, j), (i-1, j)\}.$ 

## From Probability Factorizations to Graphs

- DAG models are also known as "Bayesian networks" and "belief networks".
- "Graphical" name comes from visualizing features/parents as a graph:
  - We have a node for each variable *j*.
  - We place an edge into j from each of its parents.
- The DAG representation for a Markov chains is:

- Different than "state transition diagrams": edges are between variables (not states).
- This graph is not just a visualization tool:
  - Can be used to test arbitrary conditional independences ("d-separation").
  - Graph structure tells us whether message passing is efficient ("treewidth").

With product of independent we have

$$p(x) = \prod_{j=1}^{d} p(x_j),$$

so  $pa(j) = \emptyset$  and the graph is:

$$(X_1) \quad (X_2) \quad (X_3) \quad (X_4) \quad (X_5)$$

#### With Markov chain we have

$$p(x) = p(x_1) \prod_{j=2}^{d} p(x_j \mid x_{j-1}),$$

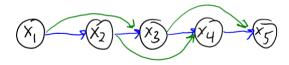
so  $pa(j) = \{j - 1\}$  and the graph is:

$$(X_1)$$
  $(X_2)$   $(X_3)$   $(X_4)$   $(X_5)$ 

With second-order Markov chain we have

$$p(x) = p(x_1)p(x_2 \mid x_1) \prod_{j=3}^d p(x_j \mid x_{j-1}, x_{j-2}),$$

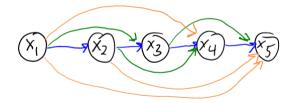
so  $\mathsf{pa}(j) = \{j-2, j-1\}$  and the graph is:



With general distribution we have

$$p(x) = \prod_{j=1}^{d} p(x_j \mid x_{1:j-1}).$$

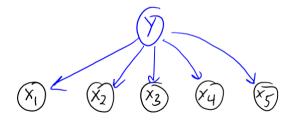
so  $pa(j) = \{1, 2, \dots, j-1\}$  and the graph is:



In naive Bayes we add an extra variable y and use

$$p(y,x) = p(y) \prod_{j=1}^{d} p(x_j \mid y),$$

which has  $pa(y) = \emptyset$  and  $pa(x_j) = y$  giving



Directed Acyclic Graphical Models

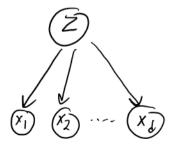
#### D-Separation

#### Graph Structure Examples

With mixture of independent models we have

$$p(z,x) = p(z) \prod_{j=1}^{d} p(x_j \mid z).$$

which has  $pa(z) = \emptyset$  and  $pa(x_j) = z$  giving same structured as naive Bayes:



• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_{b} p(x_b \mid x_{\mathsf{pa}(b)}),$$

and have the nodes be blocks (we assume full connectivity within the block).

• With mixture of Gaussian and full covariances we have

$$p(z, x) = p(z)p(x \mid z).$$

• The corresponding graph structure is:



- Gaussian generative classifiers (GDA) have the same structure.
  - But using class lable y instead of cluster z.

With probabilistic PCA we have

$$p(z, x) = p(x \mid z) \prod_{c=1}^{k} p(z_c).$$

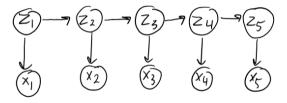
The corresponding graph structure is:



The data x comes from a set of independent parents (latent factors).

Sometimes it's easier to present a model using the graph.

Later in the course we'll see hidden Markov models which have this structure:



You should already be able to get an idea of what this model does:

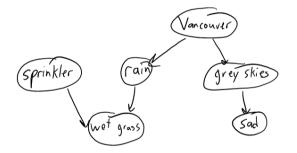
- We have hidden variables  $z_j$  that follow a Markov chain.
- Each feature  $x_j$  depends on corresponding hidden variable  $z_j$ .

Directed Acyclic Graphical Models

D-Separation

#### Graph Structure Examples

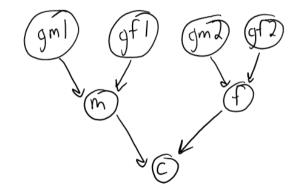
We can consider less-structured examples,



The corresponding factorization is:

 $p(S, V, R, W, G, D) = p(S)p(V)p(R \mid V)p(W \mid S, R)p(G \mid V)p(D \mid G).$ 

We can consider phylogeny (family trees):



Directed Acyclic Graphical Models

**D-Separation** 

## Outline



#### 2 D-Separation

# DAGs and Conditional Independence

• In DAGs we make the conditional independence assumption that

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{pa}(j)).$$

• But these conditional independence assumptions can imply other assumptions.

 $\bullet\,$  For example, in Markov chains we directly assume for all j that

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{j-1}),$$

but this also implies that

$$p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) = p(x_j \mid x_{j-2}),$$

and it implies that

$$p(x_j \mid x_{j+1}, x_{j+2}, \dots, x_d) = p(x_j \mid x_{j+1}).$$

Knowing which assumptions hold can help identify which operations are efficient.
 For example, decoding in generals DAGs is NP hard but it's easy in Markov chains.

• For example, decoding in generals DAGs is NP-hard but it's easy in Markov chains.

#### Review of Independence

- Let A and B are random variables taking values  $a \in \mathcal{A}$  and  $b \in \mathcal{B}$ .
- $\bullet$  We say that A and B are independent if we have

p(a,b) = p(a)p(b),

for all a and b.

• To denote independence of  $x_i$  and  $x_j$  we use the notation

 $x_i \perp x_j$ .

#### Review of Independence

 $\bullet\,$  For independent a and b we have

$$p(a \mid b) = \frac{p(a,b)}{p(b)} = \frac{p(a)p(b)}{p(b)} = p(a).$$

• This gives us a more intuitive definition: A and B are independent if

 $p(a \mid b) = p(a)$ 

for all a and  $b \neq 0$ .

• In words: knowing b tells us nothing about a (and vice versa).

• Useful fact:  $a \perp b$  iff p(a, b) = f(a)g(b) for some functions f and g.

#### Example: Independence in Product Models

• Let's show independence of pairs  $x_i$  and  $x_j$  in product of independent models:

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d).$$

• From marginalization rule we have

$$p(x_i, x_j) = \sum_{x_{-ij}} p(x_1, x_2, \dots, x_d),$$

where  $x_{-ij}$  is "over all variables except i and j".

• Using the definition of p(x) above we get

$$p(x_i, x_j) = \sum_{x_{-ij}} p(x_1) p(x_2) \cdots p(x_d) = p(x_i) p(x_j) \underbrace{\sum_{x_{-ij}} \prod_{j' \neq i, j' \neq j} p(x_{j'})}_{=1} = p(x_i) p(x_j).$$

because the sum is over a joint probability distribution.

## Example: Independence in Product of Bernoullis Model

• In a product of Bernoullis probabilities model we have

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d),$$

which we showed implies

$$p(x_i, x_j) = p(x_i)p(x_j),$$

so we have  $x_i \perp x_j$  for all *i* and *j*.

- In mixture of Bernoullis  $x_i$  is not independent of  $x_j$  ( $x_i \not\perp x_j$ ):
  - Knowing  $x_j$  tells you something about  $x_i$ .
  - But similar notation-heavy steps give the conditional independence that

$$p(x_i, x_j \mid z) = p(x_i \mid z)p(x_j \mid z),$$

"variables  $x_i$  and  $x_j$  are conditionally independent given the cluster z".

# Conditional Independence

• We say that A is conditionally independent of B given C if

```
p(a, b \mid c) = p(a \mid c)p(b \mid c),
```

for all a, b, and  $c \neq 0$ .

• Equivalently, we have

$$p(a \mid b, c) = p(a \mid c).$$

- "If you know C, then also knowing B would tell you nothing about A"'.
  - In mixture of Bernoullis, given cluster there is no dependence between variables.
- We often write this as

#### $A \perp B \mid C.$

- Most models have some sort of conditional independence.
  - They were used to simplify calculations in the EM notes.
  - They determine whether message passing is efficient.

# D-Separation: From Graphs to Conditional Independence

- All conditional independences implied by a DAG can be read from the graph.
- In particular: variables A and B are conditionally independent given C if:
  - "D-separation blocks all undirected paths in the graph from any variable in A to any variable in B.
- In the special of product of independent models our graph is:

$$(\tilde{X}_1)$$
  $(\tilde{X}_2)$   $(\tilde{X}_3)$   $(\tilde{X}_4)$   $(\tilde{X}_7)$ 

- Here there are no paths to block, which implies the variables are independent.
- Checking paths in a graph tends to be faster than tedious calculations.
  We can start connecting properties of graphs to comptuational complexity.

### D-Separation as Genetic Inheritance

- The rules of d-separation are intuitive in a simple model of gene inheritance:
  - Each person has single number, which we'll call a "gene".
  - If you have no parents, your gene is a random number.
  - If you have parents, your gene is a sum of your parents plus noise.
- For example, think of something like this:

 $\mathcal{N}(0,1)$  $\sim N(x_1 + x_2, 1)$ 

Graph corresponds to the factorization p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2).
Are x1 and x2 independent here?

## D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other:
  - Knowing your parent's "gene" gives you information about your gene.
  - Knowing your friend's gene tells doesn't say anything about your gene.
- Genes of people can be conditionally independent given a third person:
  - Knowing your grandparent's gene tells you something about your gene.
  - But grandparent's gene isn't useful if you know parent's gene.

# D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

• No path: x and y are not related (independent),

We have  $x \perp y$ : there are no paths to be blocked.

• Direct link: x is the parent of y,



We have  $x \not\perp y$ : knowing x tells you about y (direct paths aren't blockable).

#### D-Separation

# D-Separation Case 0 (No Paths and Direct Links)

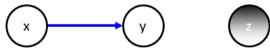
Neither case changes if we have a third independent person z:

• No path: If x and y are independent,



We have  $x \perp y$ : adding z doesn't make a path.

• Direct link: x is the parent of y,



We have  $x \not\perp y \mid z$ : adding z doesn't block path.

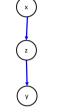
• We use **black or shaded** nodes to denote values we condition on (in this case z).

#### Directed Acyclic Graphical Models

**D-Separation** 

#### D-Separation Case 1: Chain

- Case 1: x is the grandparent of y.
  - If z is the mother we have:



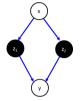
We have  $x \not\perp y$ : knowing x would give information about y because of z

• But if z is observed:

In this case  $x \perp y \mid z:$  knowing  $z \ \mbox{``breaks''}$  dependence between x and y.

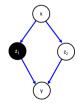
#### D-Separation Case 1: Chain

- Consider weird case where parents  $z_1$  and  $z_2$  share parent x:
  - If  $z_1$  and  $z_2$  are observed we have:



We have  $x \perp y \mid z_1, z_2$ : knowing both parents breaks dependency.

• But if only  $z_1$  is observed:



We have  $x \not\perp y \mid z_1$ : dependence still "flows" through  $z_2$ .

### **D-Separation Case 2: Common Parent**

- Case 2: x and y are sibilings.
  - If z is a common unobserved parent:

We have  $x \not\perp y$ : knowing x would give information about y.

• But if z is observed:



In this case  $x \perp y \mid z$ : knowing z "breaks" dependence between x and y.

## D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
  - If  $z_1$  and  $z_2$  are common observed parents:



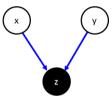
We have  $x \perp y \mid z_1, z_2$ : knowing  $z_1$  and  $z_2$  breaks dependence between x and y. • But if we only observe  $z_2$ :



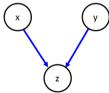
Then we have  $x \not\perp y \mid z_2$ : dependence still "flows" through  $z_1$ .

## D-Separation Case 3: Common Child

- Case 3: x and y share a child z:
  - If we observe z then we have:



We have  $x \not\perp y \mid z$ : if we know z, then knowing x gives us information about y. • But if z is not observed:



We have  $x \perp y$ : if you don't observe z then x and y are independent. • Different from Case 1 and Case 2: not observing the child blocks path.

### D-Separation Case 3: Common Child

- Case 3: x and y share a child  $z_1$ :
  - If there exists an unobserved grandchild  $z_2$ :

We have  $x \perp y$ : the path is still blocked by not knowing  $z_1$  or  $z_2$ .

• But if  $z_2$  is observed:



We have  $x \not\perp y \mid z_2$ : grandchild creates dependence even with unobserved parent.

• Case 3 needs to consider descendants of child.

## Summary

- Message-passing allow efficient calculations with Markov chains.
- DAG models factorize joint distribution into product of conditionals.
  - Assume conditionals depend on small number "parents".
  - Joint distribution of models we've discussed can be written as DAG models.
- Conditional independence of A and B given C:
  - Knowing B tells us nothing about A if we already know C.
- D-separation allows us to test conditional independences based on graph.
- Next time: the IID assumption as a graphical model?

## Computing Conditional Conditional Probabilities

- Previously: Monte Carlo for approximating conditional probabilities
- For Gaussian/discrete Markov chains, we can do better than rejection sampling.
  - We can generate exact samples from conditional distribution (bonus slide).
    - Rejection sampling is not needed, relies on "backwards sampling" in time.
  - **2** We can find conditional decoding  $\max_{x \mid x_{i'}=c} p(x)$ :
    - Run Viterbi decoding with  $M_{j'}(c) = 1$  and  $M_{j'}(c') = 0$  for  $c \neq c'$ .
  - **③** We can find univariate conditionals,  $p(x_j | x_{j'})$ .
- Example of computing  $p(x_1 = c \mid x_3 = 1)$  in a length-4 discrete Markov chain:

$$p(x_1 = c \mid x_3 = 1) \propto p(x_1 = c, x_3 = 1)$$
  
=  $\sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4),$ 

where the normalizing constant is the marginal  $p(x_3 = 1)$ .

• This is a sum over  $k^{d-2}$  possible assignments to other variables.

### Distributing Sum across Product

• Fortunately, the Markov property makes the sums simplify as before:

$$\begin{split} \sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4) &= \sum_{x_4} \sum_{x_3=1} \sum_{x_2} \sum_{x_1=c} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} \sum_{x_3=1} \sum_{x_2} p(x_4 \mid x_3) p(x_3 \mid x_2) \sum_{x_1=c} p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} \sum_{x_3=1} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1=c} p(x_2 \mid x_1) M_1(x_1) \\ &= \sum_{x_4} \sum_{x_3=1} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) M_2(x_2) \\ &= \sum_{x_4} \sum_{x_3=1} p(x_4 \mid x_3) M_3(x_3) \\ &= \sum_{x_4} M_4(x_4), \end{split}$$

where  $M_j(x_j)$  now sums over paths ending in  $x_j$  instead of maximizing. • And we set  $M_1(c') = 0$  if  $c' \neq c$  and  $M_3(c') = 0$  for  $c' \neq 1$ .

#### Conditionals via Backwards Messages

• Performing our conditional calculation using backwards messages.

$$\begin{split} \sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4) &= \sum_{x_1 = c} \sum_{x_2} \sum_{x_3 = 1} \sum_{x_4} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3 = 1} p(x_3 \mid x_2) \sum_{x_4} p(x_4 \mid x_3) \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3 = 1} p(x_3 \mid x_2) \sum_{x_4} p(x_4 \mid x_3) \underbrace{V_4(x_4)}_{=1} \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3 = 1} p(x_3 \mid x_2) V_3(x_3) \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) V_2(x_2) \\ &= \sum_{x_1 = c} p(x_1) V_1(x_1). \end{split}$$

#### Forward-Backward Algorithm

• Generic forward and backward messages for discrete marginals have the form

$$M_j(x_j) = \sum_{x_{j-1}} p(x_j \mid x_{j-1}) M_{j-1}(x_{j-1}), \quad V_j(x_j) = \sum_{x_{j+1}} p(x_{j+1} \mid x_j) V_{j+1}(x_{j+1}).$$

- We can compute  $p(x_j = c \mid x_{j'} = c')$  using only forward messages:
  - Set  $M_j(c) = 1$  and  $M_{j'}(c') = 1$ .
- Why we would need backward messages?

## Forward-Backward Algorithm

- We can compute  $p(x_j = c \mid x_{j'} = c')$  for all j in  $O(dk^2)$  with both messages.
- First compute all message normally with  $M_{j'}(c') = 1$  and  $V_{j'}(c') = 1$ .

(Other  $M_{j'}$  and  $V_{j'}$  are set to 0)

- We then have that
  - $M_j(x_j)$  sums up all the paths that end in state  $x_j$  (with  $x_{j'} = c'$ ).
  - $V_j(x_j)$  sums up all the paths that start in state  $x_j$  (with  $x_{j'} = c'$ ).
  - We can combine these values to get

$$p(x_j \mid x_{j'}) \propto M_j(x_j) V_j(x_j),$$

• Computing all  $M_j$  and  $V_j$  is called the forward-backward algorithm.

# Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

- If we're only conditioning on first j states,  $x_{1:j}$ , just fix these values and start ancestral sampling from time (j + 1).
- 2 If we have the marginals  $p(x_j)$ , we can get the "backwards" transition probabilities using Bayes rule,

$$p(x_j \mid x_{j+1}) = \frac{p(x_{j+1} \mid x_j)p(x_j)}{p(x_{j+1})},$$

which lets us run ancestral sampling in reverse: sample  $x_d$  from  $p(x_d)$ , then  $x_{d-1}$  from  $p(x_{d-1} \mid x_d)$ , and so on.

• If we're only conditioning on last j states  $x_{d-j:d}$ , run CK equations to get marginals and then start ancestral sampling "backwards" starting from (d-j-1) to sample the earlier states.

# Conditional Samples from Gaussian/Discrete Markov Chain

- If we're conditioning on contiguous states in the middle,  $x_{j:j'}$ , run ancestral sampling forward starting from position (j'+1) and backwards starting from position (j-1).
- If you condition on non-contiguous positions j and j' with j < j', need to do (i) forward sampling starting from (j' + 1), (ii) backward sampling starting from (j 1), and (iii) CK equations on the sequence (j : j') to get marginals conditioned on value of j then backwards sampling back to j starting from (j' 1).

The above are all special cases of conditioning in an undirected graphical model (UGM), followed by applying the "forward-filter backward-sampling" algorithm on each of the resulting chain-structured UGMs.