CPSC 540: Machine Learning Directed Acyclic Graphical Models

Mark Schmidt

University of British Columbia

Winter 2018

Last Time: Viterbi Decoding and Message Passing

• Decoding in density models: finding x with highest joint probability:

$$\underset{x_1, x_2, \dots, x_d}{\operatorname{argmax}} p(x_1, x_2, \dots, x_d).$$

• For Markov chains, we find decoding by writing maximization as

$$\max_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4) = \max_{x_4} \max_{x_3} p(x_4 \mid x_3) \max_{x_2} p(x_3 \mid x_2) \max_{x_1} p(x_2 \mid x_1) \underbrace{p(x_1)}_{M_1(x_1)},$$

$$\underbrace{\underbrace{M_1(x_1)}_{M_2(x_2)}}_{M_3(x_3)}$$

• Viterbi decoding computes $M_1(x_1)$ for all x_1 , $M_2(x_2)$ for all x_2 , and so on. The $M_j(x_j)$ functions are called messages (summarize everything about past).

Chapman-Kolmogorov Equations as Message Passing

• We can also view Chapman Kolmogorov equations as message passing:

$$\begin{split} \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1, x_2, x_3, x_4) &= \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} \sum_{x_3} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1} p(x_2 \mid x_1) M_1(x_1) \\ &= \sum_{x_4} \sum_{x_3} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) M_2(x_2) \\ &= \sum_{x_4} \sum_{x_3} p(x_4 \mid x_3) M_3(x_3) \\ &= \sum_{x_4} M_4(x_4), \end{split}$$

- Messages $M_j(x_j)$ are the marginals of the Markov chain.
 - So we can view CK equations as Viterbi decoding with "max" replace by "sum".
 - Also known as "max-product" and "sum-product" algorithms.

Message-Passing Algorithms

- We've discussed several algorithms with similar structure:
 - Viterbi decoding algorithm for decoding in discrete Markov chains.
 - CK equations for marginals in discrete Markov chains.
 - Gaussian updates for marginals in Gaussian Markov chains.
- These are all special cases of message-passing algorithms:
 - **O** Define M_j summarizing all relevant information about the past at time j.
 - **2** Use Markov property to write M_j recursively in terms of M_{j-1} .
 - Solve task by computing M_1 , M_2 , ..., M_d .
- "Generalized distributive law" is a framework for describing when/why this works:
 - https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
- In some cases we'll also need backwards message V_j ("cost to go"):
 - V_j summarizes all relevant information about the future at time j.

Conditionals via Backwards Messages

• Markov chain decoding using backwards messages $V_j(x_j)$:

$$\begin{split} \max_{x_1} \max_{x_2} \max_{x_3} \max_{x_4} p(x_1, x_2, x_3, x_4) &= \max_{x_1} \max_{x_2} \max_{x_3} \max_{x_4} p(x_4 \mid x_3) p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) \\ &= \max_{x_1} p(x_1) \max_{x_2} p(x_2 \mid x_1) \max_{x_3} p(x_3 \mid x_2) \max_{x_4} p(x_4 \mid x_3) \\ &= \max_{x_1} p(x_1) \max_{x_2} p(x_2 \mid x_1) \max_{x_3} p(x_3 \mid x_2) \max_{x_4} p(x_4 \mid x_3) \underbrace{V_4(x_4)}_{=1} \\ &= \max_{x_1} p(x_1) \max_{x_2} p(x_2 \mid x_1) \max_{x_3} p(x_3 \mid x_2) V_3(x_3) \\ &= \max_{x_1 = c} p(x_1) \max_{x_2} p(x_2 \mid x_1) V_2(x_2) \\ &= \max_{x_1} p(x_1) V_1(x_1). \end{split}$$

- Computing all $M_j(x_j)$ and $V_j(x_j)$ is called forward backward algorithm.
 - Important later to compute marginals in generalizations of Markov chains.
 - Can be used to efficiently compute conditionals (bonus).

Directed Acyclic Graphical Models

D-Separation

Outline

1 Directed Acyclic Graphical Models

2 D-Separation

Higher-Order Markov Models

• Markov models use a density of the form

 $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)p(x_4 \mid x_3) \cdots p(x_d \mid x_{d-1}).$

- They support efficient computation but Markov assumption is strong.
- A more flexible model would be a second-order Markov model,

 $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1)p(x_4 \mid x_3, x_2) \cdots p(x_d \mid x_{d-1}, x_{d-2}),$

or even a higher-order models.

- General case is called directed acyclic graphical (DAG) models:
 - They allow dependence on any subset of previous features.

DAG Models

• As in Markov chains, DAG models use the chain rule to write

 $p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_d \mid x_1, x_2, \dots, x_{d-1}).$

• We can alternately write this as:

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{1:j-1}).$$

- In Markov chains, we assumed x_j only depends on previous x_{j-1} given past.
- In DAGs, x_j can depend on any subset of the past $x_1, x_2, \ldots, x_{j-1}$.

DAG Models

• To reduce number of parameters, in DAG models we use

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

where pa(j) are the "parents" of node j.

- For Markov chains the only "parent" of j is (j-1).
- If we have k parents we only need 2^{k+1} parameters.
- This corresponds to a set of conditional independence assumptions,

$$p(x_j \mid x_{1:j-1}) = p(x_j \mid x_{pa(j)}),$$

that we're independent of previous non-parents given the parents.

MNIST DIgits with Markov Chains

• Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.

MNIST Digits with DAG Model (Sparse Parents)

• Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood (i - 2 : i, j - 2 : j): $\{(i-2, j-2), (i-1, j-2), (i, j-2), (i-2, j-1), (i-1, j-1), (i, j-1), (i-2, j), (i-1, j)\}.$

From Probability Factorizations to Graphs

- DAG models are also known as "Bayesian networks" and "belief networks".
- "Graphical" name comes from visualizing features/parents as a graph:
 - We have a node for each variable *j*.
 - We place an edge into j from each of its parents.
- The DAG representation for a Markov chains is:

- Different than "state transition diagrams": edges are between variables (not states).
- This graph is not just a visualization tool:
 - Can be used to test arbitrary conditional independences ("d-separation").
 - Graph structure tells us whether message passing is efficient ("treewidth").

With product of independent we have

$$p(x) = \prod_{j=1}^{d} p(x_j),$$

so $pa(j) = \emptyset$ and the graph is:

$$(X_1) \quad (X_2) \quad (X_3) \quad (X_4) \quad (X_5)$$

With Markov chain we have

$$p(x) = p(x_1) \prod_{j=2}^{d} p(x_j \mid x_{j-1}),$$

so $pa(j) = \{j - 1\}$ and the graph is:

$$(X_1)$$
 (X_2) (X_3) (X_4) (X_5)

With second-order Markov chain we have

$$p(x) = p(x_1)p(x_2 \mid x_1) \prod_{j=3}^d p(x_j \mid x_{j-1}, x_{j-2}),$$

so $\mathsf{pa}(j) = \{j-2, j-1\}$ and the graph is:

With general distribution we have

$$p(x) = \prod_{j=1}^{d} p(x_j \mid x_{1:j-1}).$$

so $pa(j) = \{1, 2, \dots, j-1\}$ and the graph is:

In naive Bayes we add an extra variable y and use

$$p(y,x) = p(y) \prod_{j=1}^{d} p(x_j \mid y),$$

which has $pa(y) = \emptyset$ and $pa(x_j) = y$ giving

Directed Acyclic Graphical Models

D-Separation

Graph Structure Examples

With mixture of independent models we have

$$p(z,x) = p(z) \prod_{j=1}^{d} p(x_j \mid z).$$

which has $pa(z) = \emptyset$ and $pa(x_j) = z$ giving same structured as naive Bayes:

• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_{b} p(x_b \mid x_{\mathsf{pa}(b)}),$$

and have the nodes be blocks (we assume full connectivity within the block).

• With mixture of Gaussian and full covariances we have

$$p(z, x) = p(z)p(x \mid z).$$

• The corresponding graph structure is:

- Gaussian generative classifiers (GDA) have the same structure.
 - But using class lable y instead of cluster z.

With probabilistic PCA we have

$$p(z, x) = p(x \mid z) \prod_{c=1}^{k} p(z_c).$$

The corresponding graph structure is:

The data x comes from a set of independent parents (latent factors).

Sometimes it's easier to present a model using the graph.

Later in the course we'll see hidden Markov models which have this structure:

You should already be able to get an idea of what this model does:

- We have hidden variables z_j that follow a Markov chain.
- Each feature x_j depends on corresponding hidden variable z_j .

Directed Acyclic Graphical Models

D-Separation

Graph Structure Examples

We can consider less-structured examples,

The corresponding factorization is:

 $p(S, V, R, W, G, D) = p(S)p(V)p(R \mid V)p(W \mid S, R)p(G \mid V)p(D \mid G).$

We can consider phylogeny (family trees):

Directed Acyclic Graphical Models

D-Separation

Outline

2 D-Separation

DAGs and Conditional Independence

• In DAGs we make the conditional independence assumption that

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{pa}(j)).$$

• But these conditional independence assumptions can imply other assumptions.

 $\bullet\,$ For example, in Markov chains we directly assume for all j that

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{j-1}),$$

but this also implies that

$$p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) = p(x_j \mid x_{j-2}),$$

and it implies that

$$p(x_j \mid x_{j+1}, x_{j+2}, \dots, x_d) = p(x_j \mid x_{j+1}).$$

Knowing which assumptions hold can help identify which operations are efficient.
 For example, decoding in generals DAGs is NP hard but it's easy in Markov chains.

• For example, decoding in generals DAGs is NP-hard but it's easy in Markov chains.

Review of Independence

- Let A and B are random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
- \bullet We say that A and B are independent if we have

p(a,b) = p(a)p(b),

for all a and b.

• To denote independence of x_i and x_j we use the notation

 $x_i \perp x_j$.

Review of Independence

 $\bullet\,$ For independent a and b we have

$$p(a \mid b) = \frac{p(a,b)}{p(b)} = \frac{p(a)p(b)}{p(b)} = p(a).$$

• This gives us a more intuitive definition: A and B are independent if

 $p(a \mid b) = p(a)$

for all a and $b \neq 0$.

• In words: knowing b tells us nothing about a (and vice versa).

• Useful fact: $a \perp b$ iff p(a, b) = f(a)g(b) for some functions f and g.

Example: Independence in Product Models

• Let's show independence of pairs x_i and x_j in product of independent models:

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d).$$

• From marginalization rule we have

$$p(x_i, x_j) = \sum_{x_{-ij}} p(x_1, x_2, \dots, x_d),$$

where x_{-ij} is "over all variables except i and j".

• Using the definition of p(x) above we get

$$p(x_i, x_j) = \sum_{x_{-ij}} p(x_1) p(x_2) \cdots p(x_d) = p(x_i) p(x_j) \underbrace{\sum_{x_{-ij}} \prod_{j' \neq i, j' \neq j} p(x_{j'})}_{=1} = p(x_i) p(x_j).$$

because the sum is over a joint probability distribution.

Example: Independence in Product of Bernoullis Model

• In a product of Bernoullis probabilities model we have

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d),$$

which we showed implies

$$p(x_i, x_j) = p(x_i)p(x_j),$$

so we have $x_i \perp x_j$ for all *i* and *j*.

- In mixture of Bernoullis x_i is not independent of x_j ($x_i \not\perp x_j$):
 - Knowing x_j tells you something about x_i .
 - But similar notation-heavy steps give the conditional independence that

$$p(x_i, x_j \mid z) = p(x_i \mid z)p(x_j \mid z),$$

"variables x_i and x_j are conditionally independent given the cluster z".

Conditional Independence

• We say that A is conditionally independent of B given C if

```
p(a, b \mid c) = p(a \mid c)p(b \mid c),
```

for all a, b, and $c \neq 0$.

• Equivalently, we have

$$p(a \mid b, c) = p(a \mid c).$$

- "If you know C, then also knowing B would tell you nothing about A"'.
 - In mixture of Bernoullis, given cluster there is no dependence between variables.
- We often write this as

$A \perp B \mid C.$

- Most models have some sort of conditional independence.
 - They were used to simplify calculations in the EM notes.
 - They determine whether message passing is efficient.

D-Separation: From Graphs to Conditional Independence

- All conditional independences implied by a DAG can be read from the graph.
- In particular: variables A and B are conditionally independent given C if:
 - "D-separation blocks all undirected paths in the graph from any variable in A to any variable in B.
- In the special of product of independent models our graph is:

$$(\tilde{X}_1)$$
 (\tilde{X}_2) (\tilde{X}_3) (\tilde{X}_4) (\tilde{X}_7)

- Here there are no paths to block, which implies the variables are independent.
- Checking paths in a graph tends to be faster than tedious calculations.
 We can start connecting properties of graphs to comptuational complexity.

D-Separation as Genetic Inheritance

- The rules of d-separation are intuitive in a simple model of gene inheritance:
 - Each person has single number, which we'll call a "gene".
 - If you have no parents, your gene is a random number.
 - If you have parents, your gene is a sum of your parents plus noise.
- For example, think of something like this:

 $\mathcal{N}(0,1)$ $\sim N(x_1 + x_2, 1)$

Graph corresponds to the factorization p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2).
Are x1 and x2 independent here?

D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other:
 - Knowing your parent's "gene" gives you information about your gene.
 - Knowing your friend's gene tells doesn't say anything about your gene.
- Genes of people can be conditionally independent given a third person:
 - Knowing your grandparent's gene tells you something about your gene.
 - But grandparent's gene isn't useful if you know parent's gene.

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

• No path: x and y are not related (independent),

We have $x \perp y$: there are no paths to be blocked.

• Direct link: x is the parent of y,

We have $x \not\perp y$: knowing x tells you about y (direct paths aren't blockable).

D-Separation

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

• No path: If x and y are independent,

We have $x \perp y$: adding z doesn't make a path.

• Direct link: x is the parent of y,

We have $x \not\perp y \mid z$: adding z doesn't block path.

• We use **black or shaded** nodes to denote values we condition on (in this case z).

Directed Acyclic Graphical Models

D-Separation

D-Separation Case 1: Chain

- Case 1: x is the grandparent of y.
 - If z is the mother we have:

We have $x \not\perp y$: knowing x would give information about y because of z

• But if z is observed:

In this case $x \perp y \mid z:$ knowing $z \ \mbox{``breaks''}$ dependence between x and y.

D-Separation Case 1: Chain

- Consider weird case where parents z_1 and z_2 share parent x:
 - If z_1 and z_2 are observed we have:

We have $x \perp y \mid z_1, z_2$: knowing both parents breaks dependency.

• But if only z_1 is observed:

We have $x \not\perp y \mid z_1$: dependence still "flows" through z_2 .

D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
 - If z is a common unobserved parent:

We have $x \not\perp y$: knowing x would give information about y.

• But if z is observed:

In this case $x \perp y \mid z$: knowing z "breaks" dependence between x and y.

D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

We have $x \perp y \mid z_1, z_2$: knowing z_1 and z_2 breaks dependence between x and y. • But if we only observe z_2 :

Then we have $x \not\perp y \mid z_2$: dependence still "flows" through z_1 .

D-Separation Case 3: Common Child

- Case 3: x and y share a child z:
 - If we observe z then we have:

We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y. • But if z is not observed:

We have $x \perp y$: if you don't observe z then x and y are independent. • Different from Case 1 and Case 2: not observing the child blocks path.

D-Separation Case 3: Common Child

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 .

• But if z_2 is observed:

We have $x \not\perp y \mid z_2$: grandchild creates dependence even with unobserved parent.

• Case 3 needs to consider descendants of child.

Summary

- Message-passing allow efficient calculations with Markov chains.
- DAG models factorize joint distribution into product of conditionals.
 - Assume conditionals depend on small number "parents".
 - Joint distribution of models we've discussed can be written as DAG models.
- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.
- D-separation allows us to test conditional independences based on graph.
- Next time: the IID assumption as a graphical model?

Computing Conditional Conditional Probabilities

- Previously: Monte Carlo for approximating conditional probabilities
- For Gaussian/discrete Markov chains, we can do better than rejection sampling.
 - We can generate exact samples from conditional distribution (bonus slide).
 - Rejection sampling is not needed, relies on "backwards sampling" in time.
 - **2** We can find conditional decoding $\max_{x \mid x_{i'}=c} p(x)$:
 - Run Viterbi decoding with $M_{j'}(c) = 1$ and $M_{j'}(c') = 0$ for $c \neq c'$.
 - **③** We can find univariate conditionals, $p(x_j | x_{j'})$.
- Example of computing $p(x_1 = c \mid x_3 = 1)$ in a length-4 discrete Markov chain:

$$p(x_1 = c \mid x_3 = 1) \propto p(x_1 = c, x_3 = 1)$$

= $\sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4),$

where the normalizing constant is the marginal $p(x_3 = 1)$.

• This is a sum over k^{d-2} possible assignments to other variables.

Distributing Sum across Product

• Fortunately, the Markov property makes the sums simplify as before:

$$\begin{split} \sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4) &= \sum_{x_4} \sum_{x_3=1} \sum_{x_2} \sum_{x_1=c} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} \sum_{x_3=1} \sum_{x_2} p(x_4 \mid x_3) p(x_3 \mid x_2) \sum_{x_1=c} p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} \sum_{x_3=1} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1=c} p(x_2 \mid x_1) M_1(x_1) \\ &= \sum_{x_4} \sum_{x_3=1} p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) M_2(x_2) \\ &= \sum_{x_4} \sum_{x_3=1} p(x_4 \mid x_3) M_3(x_3) \\ &= \sum_{x_4} M_4(x_4), \end{split}$$

where $M_j(x_j)$ now sums over paths ending in x_j instead of maximizing. • And we set $M_1(c') = 0$ if $c' \neq c$ and $M_3(c') = 0$ for $c' \neq 1$.

Conditionals via Backwards Messages

• Performing our conditional calculation using backwards messages.

$$\begin{split} \sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4) &= \sum_{x_1 = c} \sum_{x_2} \sum_{x_3 = 1} \sum_{x_4} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3 = 1} p(x_3 \mid x_2) \sum_{x_4} p(x_4 \mid x_3) \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3 = 1} p(x_3 \mid x_2) \sum_{x_4} p(x_4 \mid x_3) \underbrace{V_4(x_4)}_{=1} \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3 = 1} p(x_3 \mid x_2) V_3(x_3) \\ &= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 \mid x_1) V_2(x_2) \\ &= \sum_{x_1 = c} p(x_1) V_1(x_1). \end{split}$$

Forward-Backward Algorithm

• Generic forward and backward messages for discrete marginals have the form

$$M_j(x_j) = \sum_{x_{j-1}} p(x_j \mid x_{j-1}) M_{j-1}(x_{j-1}), \quad V_j(x_j) = \sum_{x_{j+1}} p(x_{j+1} \mid x_j) V_{j+1}(x_{j+1}).$$

- We can compute $p(x_j = c \mid x_{j'} = c')$ using only forward messages:
 - Set $M_j(c) = 1$ and $M_{j'}(c') = 1$.
- Why we would need backward messages?

Forward-Backward Algorithm

- We can compute $p(x_j = c \mid x_{j'} = c')$ for all j in $O(dk^2)$ with both messages.
- First compute all message normally with $M_{j'}(c') = 1$ and $V_{j'}(c') = 1$.

(Other $M_{j'}$ and $V_{j'}$ are set to 0)

- We then have that
 - $M_j(x_j)$ sums up all the paths that end in state x_j (with $x_{j'} = c'$).
 - $V_j(x_j)$ sums up all the paths that start in state x_j (with $x_{j'} = c'$).
 - We can combine these values to get

$$p(x_j \mid x_{j'}) \propto M_j(x_j) V_j(x_j),$$

• Computing all M_j and V_j is called the forward-backward algorithm.

Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

- If we're only conditioning on first j states, $x_{1:j}$, just fix these values and start ancestral sampling from time (j + 1).
- 2 If we have the marginals $p(x_j)$, we can get the "backwards" transition probabilities using Bayes rule,

$$p(x_j \mid x_{j+1}) = \frac{p(x_{j+1} \mid x_j)p(x_j)}{p(x_{j+1})},$$

which lets us run ancestral sampling in reverse: sample x_d from $p(x_d)$, then x_{d-1} from $p(x_{d-1} \mid x_d)$, and so on.

• If we're only conditioning on last j states $x_{d-j:d}$, run CK equations to get marginals and then start ancestral sampling "backwards" starting from (d-j-1) to sample the earlier states.

Conditional Samples from Gaussian/Discrete Markov Chain

- If we're conditioning on contiguous states in the middle, $x_{j:j'}$, run ancestral sampling forward starting from position (j'+1) and backwards starting from position (j-1).
- If you condition on non-contiguous positions j and j' with j < j', need to do (i) forward sampling starting from (j' + 1), (ii) backward sampling starting from (j 1), and (iii) CK equations on the sequence (j : j') to get marginals conditioned on value of j then backwards sampling back to j starting from (j' 1).

The above are all special cases of conditioning in an undirected graphical model (UGM), followed by applying the "forward-filter backward-sampling" algorithm on each of the resulting chain-structured UGMs.