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Last Time: Markov Chains
@ We can use Markov chains for density estimation,
d
p(x) = plx1 p\xj | xj-1),
(z) (@) ol lz-0)

initial prob. 7=2 transition prob.

which model dependency between adjacent features.
o Different than fmixture models which focus on describe clusters in the data.

@ Homogeneous chains use same transition probability for all j (parameter tieing).
o Gives more data to estimate transitions, allows examples of different sizes.

@ Inhomogeneous chains allow different transitions at different times.

@ Given a Markov chain model, we overviewed common computational problems:
e Sampling, inference, decoding, conditioning, and stationary distribution.
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Fundamental Problem: Sampling from a Density

@ A fundamental problem in density estimation is sampling from the density.
o Generating examples x’ that are distributed according to a given density p(z).
o Basically, the “opposite” of density estimation.

@ We've been using pictures of samples to “tell us what the model has learned”.
o If the samples look like real data, then we have a good density model.

@ Samples can also be used in Monte Carlo estimation (today):
o Replace complicated p(x) with samples to solve hard problems at test time.
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Simplest Case: Sampling from a Bernoulli

@ Consider sampling from a Bernoulli, for example
p(r=1)=09, p(z=0)=0.1
@ Sampling methods assume we can sample uniformly over [0, 1].

o Usually, a "pseudo-random” number generator is good enough (like Julia’s rand).

@ How to use a uniform sample to sample from the Bernoulli above:

@ Generate a uniform sample u ~ 2/(0,1).
Q If u<0.9, set x = 1 (otherwise, set = = 0).

@ If uniform samples are “good enough”, then we have x = 1 with probability 0.9.
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Sampling from a Categorical Distribution

o Consider a more general categorical density like
plx=1)=04, plx=2)=0.1, plx=3)=0.2, plx=4)=0.3,

we can divide up the [0, 1] interval based on probability values:
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o If u ~U(0,1), 40% of the time it lands in 1 region, 10% of time in x5, and so on.
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Sampling from a Categorical Distribution

o Consider a more general categorical density like

plr=1)=04, plzx=2)=0.1, plx=3)=02, plx=4)=03.

@ To sample from this categorical density we can use (sampleDiscrete.jl):
© Generate u ~ U(0,1).
Q If u <04, output 1.
Q Ifu<04+0.1, output 2.
Q Ifu<04+0.1+0.2, output 3.
© Otherwise, output 4.
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Sampling from a Categorical Distribution

@ General case for sampling from categorical.
@ Generate u ~U(0,1).
Q If u <p(x <1), output 1.
Q If u <p(x <2), output 2.
Q If u <p(x < 3), output 3.
Q ...
e Thevalue p(z <c¢)=p(z=1)+p(xr =2)+--- + p(z = c) is the CDF.
o “Cumulative distribution function”.

@ Worst case cost with k possible states is O(k) by incrementally computing CDFs.

@ But to generate t samples only costs O(k + tlog k):

o One-time O(k) cost to store the CDF p(x < ¢) for each c.
o Per-sample O(log k) cost to do binary search for smallest ¢ with u < p(z < ¢).
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Inverse Transform Method (Exact 1D Sampling)

e We often use F'(c) = p(z < ¢) to denote the CDF.
o F(c) is between 0 and 1 a gives proportion of times x is below c.
e F can be used for discrete and continuous variables:
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https://en.wikipedia.org/wiki/Cumulative_distribution_function

@ The inverse CDF (or “quantile” function) F~! is its inverse:
e Given a number u between 0 and 1, returns ¢ such that p(z < ¢) = u.

@ Inverse transfrom method for exact sampling in 1D:
@ Sample u ~U(0,1).
@ Return F~1(u).

@ Video on pseudo-random numbers and inverse-transform sampling:
@ https://www.youtube.com/watch?v=C82JyCmtKWg


https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://www.youtube.com/watch?v=C82JyCmtKWg
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Sampling from a 1D Gaussian

@ Consider a Gaussian distribution,

z ~ N(p,0%).

e (5]

@ CDF has the form

N |

F(z) =plx <c) =
where “erf” is the CDF of N(0,1).

@ Inverse CDF has the form
F~Yu) = p+ ov2erf 1 (2u — 1).

@ To sample from a Gaussian:
© Generate u ~ U(0,1).
@ Return F~1(u).
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Sampling from a Product Distribution

@ Consider a product distribution,

p(z1,22,...,2q) = p(x1)p(z2) - - - p(xq)-

@ Because variables are independent, we can sample independently:

e Sample z; from p(z1).
e Sample x5 from p(z2).
o ...

o Sample x4 from p(zgq).

@ Example: sampling from a multivariate Gaussian with diagonal covariance.
o Sample each variable independently based on y; and UJ2-.
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Digression: Sampling from a Multivariate Gaussian

@ In some cases we can sample from multivariate distributions by transformation.

@ Recall the affine property of multivariate Gaussian:
o If x ~ N(u,%), then Az +b ~ N(Au + b, AXAT).

@ To sample from a general multivariate Gaussian N (u, X):

© Sample z from a NV(0,I) (each z; coming independently from N (0, 1)).
@ Transform to a sample from the right Gaussian using the affine property:

Az +p~ N(p, AAT),

where we choose A so that AAT =¥ (e.g., by Cholesky factorization).
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Ancestral Sampling

@ Another way to sample non-product distibutions is using chain rule,

p(xlaJ:Zax?n cee ,fl?d) :p(xl)p($2 ‘ -Tl)p(fES | .’172,1171) o p(‘rd | Ld—1,Ld—25 -« - 7$1)a

which comes from repeated application of the product rule
(p(a,b) = p(a)p(b | a)).

@ The chain rule suggests the following sampling strategy:
Sample x; from p(xy).

Given x1, sample zo from p(z2 | z1).

Given z1 and x5, sample x3 from p(x3 | x2,x1).

Given x; through 41, sample x4 from p(zq | 24—1, Zd—2,...21).

@ This is called ancestral sampling.
o It's easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
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Ancestral Sampling Examples

@ For Markov chains the chain rule simplifies to

p(x1, 22,23, ..., xq) = p(x1)p(z2 | 21)p(zs | 2) -+ p(x4 | Ta—1),

@ So ancestral sampling simplifies too:
© Sample x; from initial probabilities p(z1).
@ Given x1, sample x5 from transition probabilities p(z2 | x1).
© Given xo, sample x3 from transition probabilities p(x3 | x2).

Q ...

@ Given z4_1, sample z4 from transition probabilities p(xg | 4—1).

@ For mixture models with cluster variables z we could write

p(z,z) = p(z)p(z | 2),

so we can first sample cluster z and then sample = given cluster z.
e You can just ignore the z values to get samples of x.
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Markov Chain Toy Example: CS Grad Career

@ “"Computer science grad career” Markov chain:
e Initial probabilities:

|[State Probability|[Description
Industry 0.60/[They work for a company or own their own company.
Grad School 0.30|[They are trying to get a Masters or PhD degree.
Video Games 0.10/[They mostly play video games.

e Transition probabilities:

From\to Video Games [Industry|Grad School|Video Games (with PhD)|[Industry (with PhD) [Academia|[Deceased
Video Games 0.08] 0.90 0.01 0 0 0 0.01
Industry 0.03| 095 0.01 0 0 0 0.01
Grad School 0.06] 0.06 0.75 0.05 0.05 0.02 0.01
Video Games (with PhD)| 0 0 0 0.30 0.60 0.09 0.01
Industry (with PhD) 0 0 0 0.02 0.95 0.02 0.01
Academia 0 0 0 0.01 0.01 0.97 0.01
Deceased 0 0 0 0 0 0 1
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@ Samples from “computer science grad career” Markov chain:

Graduate

60

30
Year after graduation

@ State 7 (“deceased”) is called an absorbing state (no probability of leaving).
@ Samples often give you an idea of what model knows (and what should be fixed).
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Outline

© Monte Carlo Approximation
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Marginal and Conditional Inference

Given density estimator, we often want to make probabilistic inferences:
o Marginals: what is the probability that z; = ¢?
e What is the probability we're in industry 10 years after graduation?

o Conditionals: what is the probability that z; = ¢ given x;; = ¢'?
e What is the probability of industry after 10 years, if we immediately go to grad school?

This is easy for simple independent models:
o We are directly modeling marginals p(x;).
e By independence, conditional are marginals: p(z; | zj) = p(x;).

This is also easy for mixtures of simple independent models.
e Do inference for each mixture.

For Markov chains, it's more complicated...
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Marginals in CS Grad Career

Monte Carlo Approximation

e All marginals p(z; = c) from “computer science grad career” Markov chain:

1 2 3 4 5 6

@ Each row j is a year and each column c is a state.
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Monte Carlo: Inference by Sampling

@ A basic Monte Carlo method for estimating probabilities of events:
@ Generate a large number of samples 2* from the model,

(I e R S )
=== O
— ===
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@ Compute frequency that the event happened in the samples,

p(ze = 1) =~ 3/4,
p(zs =0) =~ 0/4.

@ Monte Carlo methods are second most important class of ML algorithms.
o Originally developed to build better atomic bombs :(
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Monte Carlo Method for Rolling Di

@ Probability of event:

o (number of samples where event happend)/(number of samples)

]r'—‘:—; Foox X v
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Monte Carlo Method for Inequalities

@ Monte Carlo estimate of probability that variable is above threshold:
e Compute fraction of examples where sample is above threshold.

v MW s



Introduction to Sampling Monte Carlo Approximation

Monte Carlo Method for Mean

@ A Monte Carlo approximation of the mean:
e Approximate the mean by average of samples.

@ Visual demo of Monte Carlo approximation of mean and vairance:
@ http://students.brown.edu/seeing-theory/basic-probability/index.html


http://students.brown.edu/seeing-theory/basic-probability/index.html
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Monte Carlo for Markov Chains

@ Our samples from the CS grad student Markov chain:

Graduate

30 40
YYear after graduation

@ We can estimate probabilities by looking at frequencies in samples.

@ This works for continuous states too.
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Monte Carlo Methods

@ Monte Carlo methods approximate expectations of random functions,

Elg(x)] = 3 g(e)p(x) or Elg(z)] = /€X9<x>p<x>dx.

reX
N——— g
. continuous x
discrete =

Computing mean is the special case of g(x) = z.

Computing probability of any event A is also a special case:
o Set g(z) = Z[“A happened in sample z%"].

e To approximate expectation, generate n samples ' from p(z) and use:

Elg(n)] ~ — > g(a).
i=1
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Unbiasedness of Monte Carlo Methods

o Let u = E[g(x)] be the value we want to approximate.
@ The Monte Carlo estimate is an unbiased approximation of u,

E % Zg(ml)] = %IE Zg(m’)] (linearity of E)
i=1 i=1

1 & .
== ZE[Q@EZ)] (linearity of E)
n i=1
1 « .
== p (' is 11D with mean 1)
n
=1

@ The law of large numbers says that:

o Unbiased approximators “converge” (probabilistically) to expectation as n — oo.
e So the more samples you get, the closer to the true value you expect to get.
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Rate of Convergence of Monte Carlo Methods

@ Let f be the squared error in a 1D Monte Carlo approximation,

n 2
flah 22 2™ = <;Zg(a;’)—,u> .
i=1

e Rate of convergence of f in terms of n is sublinear O(1/n),

2
I~ I~
E|l- Zg(m’) — i = Var | — Zg(wl) (unbiased and def'n of variance)
"= L)
1 N
= — Var [Z g(w’):| (Var(az) = a?Var(z))
n
i=1
1 & ;
= L3 Varlg(a?) (IID)
=
1 & 2 ;
=— o2=2. (2% is 11D with var o2)
n2 4 n

e Similar O(1/n) argument holds in higher-dimensions.
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Monte Carlo Methods for Markov Chain Inference

@ Monte Carlo methods allow approximating expectations in Markov chains:
o Marginal p(xz; = c) is the number of chains that were in state c at time j.
o Average value at time j, E[x;], is approximated by average of z; in the samples.
e p(x; < 10) is approximate by frequency of z; being less than 10.

o p(x; <10,z;41 > 10) is approximated by number of chains where both happen.
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Monte Carlo for Conditional Probabilities

@ We often want to compute conditional probabilities in Markov chains.

o We can ask “what lead to x19 = 47" with queries like p(z1 | 10 = 4).
o We can ask “where does x19 = 4 lead?” with queries like p(xq | 10 = 4).

@ Monte Carlo approach to estimating p(x; | zj):

© Generate a large number of samples from the Markov chain, 2t ~ p(x1,z2,...,24).
@ Use Monte Carlo estimates of p(z; = ¢,z; = ¢’) and p(zj = ¢’) to give

p(gjj =c Ty = c/) N Z?:l I[l‘; = C, l‘;/ = CI]
plap=c) Tl Il =¢]

frequency of first event in samples consistent with second event.

plaj=clazy=d)=

@ This is a special case of rejection sampling (we'll see general case later).
o Unfortunately, if 2;; = ¢’ is rare then most samples are “rejected” (ignored).



Summary

Inverse Transform generates samples from simple 1D distributions.
e When we can easily invert the CDF.

Ancestral sampling generates samples from multivariate distributions.
e When conditionals have a nice form.

Monte Carlo methods approximate expectations using samples.
e Can be used to approximate arbitrary probabilities in Markov chains.

Next time: the original Google algorithm.

Monte Carlo Approximation
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Monte Carlo as a Stochastic Gradient Method

Consider case of using Monte Caro method to estimate mean p = E[z],

e
~— z".
p= '
=1
We can write this as minimizing the 1-strongly convex

Flw) = 3w —

The gradient is V f(w) = (w — ).
Consider stochastic gradient using

Vfi(w®) = w* — 2,

which is unbiased since each x? is unbiased y approximation.
Monte Carlo method is a stochastic gradient method with this approximation.
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Monte Carlo as a Stochastic Gradient Method

@ Monte Carlo approximation as a stochastic gradient method with o; = 1/(i + 1),

w” = wn—l _ anil(wn—l _ :L'Z)

i=1
@ We know the rate of stochastic gradient for strongly-convex is O(1/n).
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Accelerated Monte Carlo: Quasi Monte Carlo
@ Unlike stochastic gradient, there are some “accelerated” Monte Carlo methods.
o Quasi Monte Carlo methods achieve an accelerated rate of O(1/n?).

o Key idea: fill the space strategically with a deterministic “low-discrepancy sequence”.
e Uniform random vs. deterministic low-discrepancy:

% 290 o0

06 0g 0 o,

https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method
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