CPSC 540: Machine Learning Monte Carlo Methods

Mark Schmidt

University of British Columbia

Winter 2018

Last Time: Markov Chains

• We can use Markov chains for density estimation,

$$p(x) = \underbrace{p(x_1)}_{\text{initial prob.}} \prod_{j=2}^{d} \underbrace{p(x_j \mid x_{j-1})}_{\text{transition prob.}},$$

which model dependency between adjacent features.

- Different than fmixture models which focus on describe clusters in the data.
- Homogeneous chains use same transition probability for all j (parameter tieing).
 Gives more data to estimate transitions, allows examples of different sizes.
- Inhomogeneous chains allow different transitions at different times.
- Given a Markov chain model, we overviewed common computational problems:
 Sampling, inference, decoding, conditioning, and stationary distribution.

Fundamental Problem: Sampling from a Density

- A fundamental problem in density estimation is sampling from the density.
 - Generating examples x^i that are distributed according to a given density p(x).
 - Basically, the "opposite" of density estimation.

• We've been using pictures of samples to "tell us what the model has learned".

- If the samples look like real data, then we have a good density model.
- Samples can also be used in Monte Carlo estimation (today):
 - Replace complicated p(x) with samples to solve hard problems at test time.

Simplest Case: Sampling from a Bernoulli

• Consider sampling from a Bernoulli, for example

$$p(x = 1) = 0.9, \quad p(x = 0) = 0.1.$$

- Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Julia's rand).
- How to use a uniform sample to sample from the Bernoulli above:
 - **(**) Generate a uniform sample $u \sim \mathcal{U}(0, 1)$.
 - 2 If $u \leq 0.9$, set x = 1 (otherwise, set x = 0).
- If uniform samples are "good enough", then we have x = 1 with probability 0.9.

Sampling from a Categorical Distribution

• Consider a more general categorical density like

$$p(x = 1) = 0.4$$
, $p(x = 2) = 0.1$, $p(x = 3) = 0.2$, $p(x = 4) = 0.3$,

we can divide up the [0,1] interval based on probability values:

• If $u \sim \mathcal{U}(0,1)$, 40% of the time it lands in x_1 region, 10% of time in x_2 , and so on.

Sampling from a Categorical Distribution

• Consider a more general categorical density like

$$p(x = 1) = 0.4$$
, $p(x = 2) = 0.1$, $p(x = 3) = 0.2$, $p(x = 4) = 0.3$.

- To sample from this categorical density we can use (*sampleDiscrete.jl*):
 - **④** Generate $u \sim \mathcal{U}(0, 1)$.
 - (2) If $u \leq 0.4$, output 1.
 - **3** If $u \le 0.4 + 0.1$, output 2.
 - If $u \le 0.4 + 0.1 + 0.2$, output 3.
 - **Otherwise**, output 4.

Sampling from a Categorical Distribution

• General case for sampling from categorical.

Generate
$$u \sim U(0, 1)$$
.
If $u \le p(x \le 1)$, output 1.
If $u \le p(x \le 2)$, output 2.
If $u \le p(x \le 3)$, output 3.
...

• The value $p(x \le c) = p(x = 1) + p(x = 2) + \dots + p(x = c)$ is the CDF.

- "Cumulative distribution function".
- Worst case cost with k possible states is O(k) by incrementally computing CDFs.
- But to generate t samples only costs $O(k + t \log k)$:
 - One-time O(k) cost to store the CDF $p(x \le c)$ for each c.
 - Per-sample $O(\log k)$ cost to do binary search for smallest c with $u \le p(x \le c)$.

Inverse Transform Method (Exact 1D Sampling)

• We often use $F(c) = p(x \le c)$ to denote the CDF.

- F(c) is between 0 and 1 a gives proportion of times x is below c.
- F can be used for discrete and continuous variables:

https://en.wikipedia.org/wiki/Cumulative_distribution_function

- The inverse CDF (or "quantile" function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, returns c such that $p(x \le c) = u$.
- Inverse transfrom method for exact sampling in 1D:

1 Sample
$$u \sim \mathcal{U}(0, 1)$$
.

2 Return $F^{-1}(u)$.

Video on pseudo-random numbers and inverse-transform sampling:
 https://www.youtube.com/watch?v=C82JyCmtKWg

Introduction to Sampling

Sampling from a 1D Gaussian

• Consider a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \sigma^2).$$

• CDF has the form

$$F(x) = p(x \le c) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{c-\mu}{\sigma\sqrt{2}}\right) \right],$$

where "erf" is the CDF of $\mathcal{N}(0,1)$.

• Inverse CDF has the form

$$F^{-1}(u) = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1).$$

- To sample from a Gaussian:

 - 2 Return $F^{-1}(u)$.

Sampling from a Product Distribution

• Consider a product distribution,

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d).$$

- Because variables are independent, we can sample independently:
 - Sample x_1 from $p(x_1)$.
 - Sample x_2 from $p(x_2)$.
 - . . .
 - Sample x_d from $p(x_d)$.
- Example: sampling from a multivariate Gaussian with diagonal covariance.
 - Sample each variable independently based on μ_j and σ_j^2 .

Digression: Sampling from a Multivariate Gaussian

- In some cases we can sample from multivariate distributions by transformation.
- Recall the affine property of multivariate Gaussian:
 - If $x \sim \mathcal{N}(\mu, \Sigma)$, then $Ax + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$.
- To sample from a general multivariate Gaussian $\mathcal{N}(\mu,\Sigma)$:
 - **③** Sample x from a $\mathcal{N}(0, I)$ (each x_j coming independently from $\mathcal{N}(0, 1)$).
 - **2** Transform to a sample from the right Gaussian using the affine property:

$$Ax + \mu \sim \mathcal{N}(\mu, AA^T),$$

where we choose A so that $AA^T = \Sigma$ (e.g., by Cholesky factorization).

Introduction to Sampling

Ancestral Sampling

• Another way to sample non-product distibutions is using chain rule,

 $p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1),$

which comes from repeated application of the product rule $(p(a, b) = p(a)p(b \mid a)).$

- The chain rule suggests the following sampling strategy:
 - Sample x_1 from $p(x_1)$.
 - Given x_1 , sample x_2 from $p(x_2 \mid x_1)$.
 - Given x_1 and x_2 , sample x_3 from $p(x_3 \mid x_2, x_1)$.
 - . . .
 - Given x_1 through x_{d-1} , sample x_d from $p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1)$.
- This is called ancestral sampling.
 - It's easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.

Ancestral Sampling Examples

• For Markov chains the chain rule simplifies to

 $p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1}),$

• So ancestral sampling simplifies too:

Sample x₁ from initial probabilities p(x₁).
 Given x₁, sample x₂ from transition probabilities p(x₂ | x₁).
 Given x₂, sample x₃ from transition probabilities p(x₃ | x₂).
 ...
 Given x_{d-1}, sample x_d from transition probabilities p(x_d | x_{d-1}).

• For mixture models with cluster variables z we could write

$$p(x, z) = p(z)p(x \mid z),$$

so we can first sample cluster z and then sample x given cluster z.

• You can just ignore the z values to get samples of x.

Markov Chain Toy Example: CS Grad Career

- "Computer science grad career" Markov chain:
 - Initial probabilities:

State	Probability	Description
Industry	0.60	They work for a company or own their own company.
Grad School	0.30	They are trying to get a Masters or PhD degree.
Video Games	0.10	They mostly play video games.

• Transition probabilities:

From\to	Video Games	Industry	Grad School	Video Games (with PhD)	Industry (with PhD)	Academia	Deceased
Video Games	0.08	0.90	0.01	0	0	0	0.01
Industry	0.03	0.95	0.01	0	0	0	0.01
Grad School	0.06	0.06	0.75	0.05	0.05	0.02	0.01
Video Games (with PhD)	0	0	0	0.30	0.60	0.09	0.01
Industry (with PhD)	0	0	0	0.02	0.95	0.02	0.01
Academia	0	0	0	0.01	0.01	0.97	0.01
Deceased	0	0	0	0	0	0	1

Markov Chain Toy Example: CS Grad Career

• Samples from "computer science grad career" Markov chain:

• State 7 ("deceased") is called an absorbing state (no probability of leaving).

• Samples often give you an idea of what model knows (and what should be fixed).

Outline

Introduction to Sampling

Marginal and Conditional Inference

- Given density estimator, we often want to make probabilistic inferences:
 - Marginals: what is the probability that $x_j = c$?
 - What is the probability we're in industry 10 years after graduation?
 - Conditionals: what is the probability that $x_j = c$ given $x_{j'} = c'$?
 - What is the probability of industry after 10 years, if we immediately go to grad school?
- This is easy for simple independent models:
 - We are directly modeling marginals $p(x_j)$.
 - By independence, conditional are marginals: $p(x_j \mid x_{j'}) = p(x_j)$.
- This is also easy for mixtures of simple independent models.
 - Do inference for each mixture.
- For Markov chains, it's more complicated...

Marginals in CS Grad Career

• All marginals $p(x_i = c)$ from "computer science grad career" Markov chain:

• Each row j is a year and each column c is a state.

Monte Carlo: Inference by Sampling

• A basic Monte Carlo method for estimating probabilities of events:

() Generate a large number of samples x^i from the model,

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Occupies Compute frequency that the event happened in the samples,

$$p(x_2 = 1) \approx 3/4,$$

 $p(x_3 = 0) \approx 0/4.$

Monte Carlo methods are second most important class of ML algorithms.
 Originally developed to build better atomic bombs :(

Monte Carlo Method for Rolling Di

- Probability of event:
 - (number of samples where event happend)/(number of samples)

Monte Carlo Method for Inequalities

- Monte Carlo estimate of probability that variable is above threshold:
 - Compute fraction of examples where sample is above threshold.

Monte Carlo Method for Mean

- A Monte Carlo approximation of the mean:
 - Approximate the mean by average of samples.

- Visual demo of Monte Carlo approximation of mean and vairance:
 - http://students.brown.edu/seeing-theory/basic-probability/index.html

Monte Carlo for Markov Chains

• Our samples from the CS grad student Markov chain:

- We can estimate probabilities by looking at frequencies in samples.
- This works for continuous states too.

Monte Carlo Methods

• Monte Carlo methods approximate expectations of random functions,

$$\mathbb{E}[g(x)] = \underbrace{\sum_{x \in \mathcal{X}} g(x)p(x)}_{\text{discrete } x} \quad \text{or} \quad \underbrace{\mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x)dx}_{\text{continuous } x}.$$

- Computing mean is the special case of g(x) = x.
- Computing probability of any event A is also a special case:
 - Set $g(x) = \mathcal{I}[$ "A happened in sample x^{i} "].
- To approximate expectation, generate n samples x^i from p(x) and use:

$$\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^{i})$$

Unbiasedness of Monte Carlo Methods

- Let $\mu = \mathbb{E}[g(x)]$ be the value we want to approximate.
- The Monte Carlo estimate is an unbiased approximation of μ ,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(x^{i})\right] = \frac{1}{n}\mathbb{E}\left[\sum_{i=1}^{n}g(x^{i})\right] \qquad \text{(linearity of }\mathbb{E}\text{)}$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(x^{i})] \qquad \text{(linearity of }\mathbb{E}\text{)}$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu \qquad (x^{i} \text{ is IID with mean }\mu)$$
$$= \mu.$$

- The law of large numbers says that:
 - Unbiased approximators "converge" (probabilistically) to expectation as $n \to \infty$.
 - So the more samples you get, the closer to the true value you expect to get.

Rate of Convergence of Monte Carlo Methods

• Let f be the squared error in a 1D Monte Carlo approximation,

$$f(x^1, x^2, \dots, x^n) = \left(\frac{1}{n} \sum_{i=1}^n g(x^i) - \mu\right)^2$$

• Rate of convergence of f in terms of n is sublinear O(1/n),

$$\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}g(x^{i})-\mu\right)^{2}\right] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}g(x^{i})\right] \qquad (\text{unbiased and def'n of variance})$$

$$= \frac{1}{n^{2}}\operatorname{Var}\left[\sum_{i=1}^{n}g(x^{i})\right] \qquad (\operatorname{Var}(\alpha x) = \alpha^{2}\operatorname{Var}(x))$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[g(x^{i})] \qquad (\text{IID})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \frac{\sigma^{2}}{n}. \qquad (x^{i} \text{ is IID with var } \sigma^{2})$$

• Similar O(1/n) argument holds in higher-dimensions.

Monte Carlo Methods for Markov Chain Inference

- Monte Carlo methods allow approximating expectations in Markov chains:
 - Marginal $p(x_j = c)$ is the number of chains that were in state c at time j.
 - Average value at time j, $E[x_j]$, is approximated by average of x_j in the samples.
 - $p(x_j \le 10)$ is approximate by frequency of x_j being less than 10.
 - $p(x_j \le 10, x_{j+1} \ge 10)$ is approximated by number of chains where both happen.

Monte Carlo for Conditional Probabilities

- We often want to compute conditional probabilities in Markov chains.
 - We can ask "what lead to $x_{10} = 4$?" with queries like $p(x_1 \mid x_{10} = 4)$.
 - We can ask "where does $x_{10} = 4$ lead?" with queries like $p(x_d \mid x_{10} = 4)$.
- Monte Carlo approach to estimating $p(x_j | x_{j'})$:
 - Q Generate a large number of samples from the Markov chain, xⁱ ∼ p(x₁, x₂,..., x_d).
 Q Use Monte Carlo estimates of p(x_j = c, x_{j'} = c') and p(x_{j'} = c') to give

$$p(x_j = c \mid x_{j'} = c') = \frac{p(x_j = c, x_{j'} = c')}{p(x_{j'} = c')} \approx \frac{\sum_{i=1}^n I[x_j^i = c, x_{j'}^i = c']}{\sum_{i=1}^n I[x_{j'}^i = c']},$$

frequency of first event in samples consistent with second event.

- This is a special case of rejection sampling (we'll see general case later).
 - Unfortunately, if $x_{j'} = c'$ is rare then most samples are "rejected" (ignored).

Summary

- Inverse Transform generates samples from simple 1D distributions.
 - When we can easily invert the CDF.
- Ancestral sampling generates samples from multivariate distributions.
 When conditionals have a nice form.
- Monte Carlo methods approximate expectations using samples.
 - Can be used to approximate arbitrary probabilities in Markov chains.
- Next time: the original Google algorithm.

Monte Carlo as a Stochastic Gradient Method

• Consider case of using Monte Caro method to estimate mean $\mu = \mathbb{E}[x]$,

$$\mu \approx \frac{1}{n} \sum_{i=1}^{n} x^{i}$$

• We can write this as minimizing the 1-strongly convex

$$f(w) = \frac{1}{2} ||w - \mu||^2.$$

- The gradient is $\nabla f(w) = (w \mu)$.
- Consider stochastic gradient using

$$\nabla f_i(w^k) = w^k - x^{k+1},$$

which is unbiased since each x^i is unbiased μ approximation.

• Monte Carlo method is a stochastic gradient method with this approximation.

Monte Carlo as a Stochastic Gradient Method

• Monte Carlo approximation as a stochastic gradient method with $\alpha_i = 1/(i+1)$,

$$\begin{split} v^{n} &= w^{n-1} - \alpha_{n-1}(w^{n-1} - x^{i}) \\ &= (1 - \alpha_{n-1})w^{n-1} + \alpha_{n-1}x^{i} \\ &= \frac{n-1}{n}w^{n-1} + \frac{1}{n}x^{i} \\ &= \frac{n-1}{n}\left(\frac{n-2}{n-1}w^{n-2} + \frac{1}{n-1}x^{i-1}\right) + \frac{1}{n}x^{i} \\ &= \frac{n-2}{n}w^{n-2} + \frac{1}{n}\left(x^{i-1} + x^{i}\right) \\ &= \frac{n-3}{n}w^{n-3} + \frac{1}{n}\left(x^{i-2} + x^{i-1} + x^{i}\right) \\ &= \frac{1}{n}\sum_{i=1}^{n}x^{i}. \end{split}$$

• We know the rate of stochastic gradient for strongly-convex is O(1/n).

Accelerated Monte Carlo: Quasi Monte Carlo

- Unlike stochastic gradient, there are some "accelerated" Monte Carlo methods.
- Quasi Monte Carlo methods achieve an accelerated rate of $O(1/n^2)$.
 - Key idea: fill the space strategically with a deterministic "low-discrepancy sequence".
 - Uniform random vs. deterministic low-discrepancy:

