CPSC 540: Machine Learning
Monte Carlo Methods

Mark Schmidt
University of British Columbia

Winter 2018
Introduction to Sampling Monte Carlo Approximation

Last Time: Markov Chains

- We can use Markov chains for density estimation,

\[p(x) = \underbrace{p(x_1)}_{\text{initial prob.}} \prod_{j=2}^{d} p(x_j \mid x_{j-1}), \]

which model dependency between adjacent features.
- Different than fmixture models which focus on describe clusters in the data.

- **Homogeneous** chains use same transition probability for all \(j \) (parameter tieing).
 - Gives more data to estimate transitions, allows examples of different sizes.

- **Inhomogeneous** chains allow different transitions at different times.

- Given a Markov chain model, we overviewed common computational problems:
 - Sampling, inference, decoding, conditioning, and stationary distribution.
A fundamental problem in density estimation is sampling from the density.
- Generating examples x^i that are distributed according to a given density $p(x)$.
- Basically, the “opposite” of density estimation.

We’ve been using pictures of samples to “tell us what the model has learned”.
- If the samples look like real data, then we have a good density model.

Samples can also be used in Monte Carlo estimation (today):
- Replace complicated $p(x)$ with samples to solve hard problems at test time.
Consider sampling from a Bernoulli, for example
\[p(x = 1) = 0.9, \quad p(x = 0) = 0.1. \]

Sampling methods assume we can sample uniformly over \([0, 1]\).
- Usually, a "pseudo-random" number generator is good enough (like Julia’s `rand`).

How to use a uniform sample to sample from the Bernoulli above:
1. Generate a uniform sample \(u \sim U(0, 1) \).
2. If \(u \leq 0.9 \), set \(x = 1 \) (otherwise, set \(x = 0 \)).

If uniform samples are “good enough”, then we have \(x = 1 \) with probability 0.9.
Consider a more general categorical density like

\[p(x = 1) = 0.4, \quad p(x = 2) = 0.1, \quad p(x = 3) = 0.2, \quad p(x = 4) = 0.3, \]

we can divide up the $[0, 1]$ interval based on probability values:

- If $u \sim \mathcal{U}(0, 1)$, 40\% of the time it lands in x_1 region, 10\% of time in x_2, and so on.
Consider a more general categorical density like

\[p(x = 1) = 0.4, \quad p(x = 2) = 0.1, \quad p(x = 3) = 0.2, \quad p(x = 4) = 0.3. \]

To sample from this categorical density we can use (sampleDiscrete.jl):

1. Generate \(u \sim \mathcal{U}(0, 1) \).
2. If \(u \leq 0.4 \), output 1.
3. If \(u \leq 0.4 + 0.1 \), output 2.
4. If \(u \leq 0.4 + 0.1 + 0.2 \), output 3.
5. Otherwise, output 4.
Sampling from a Categorical Distribution

- **General case for sampling from categorical.**
 1. Generate $u \sim \mathcal{U}(0, 1)$.
 2. If $u \leq p(x \leq 1)$, output 1.
 3. If $u \leq p(x \leq 2)$, output 2.
 4. If $u \leq p(x \leq 3)$, output 3.
 5. ...

 - The value $p(x \leq c) = p(x = 1) + p(x = 2) + \cdots + p(x = c)$ is the CDF.
 - “Cumulative distribution function”.

- Worst case cost with k possible states is $O(k)$ by incrementally computing CDFs.

- But to generate t samples only costs $O(k + t \log k)$:
 - One-time $O(k)$ cost to store the CDF $p(x \leq c)$ for each c.
 - Per-sample $O(\log k)$ cost to do binary search for smallest c with $u \leq p(x \leq c)$.

Introduction to Sampling Monte Carlo Approximation

Inverse Transform Method (Exact 1D Sampling)

- We often use $F(c) = p(x \leq c)$ to denote the CDF.
 - $F(c)$ is between 0 and 1 and gives proportion of times x is below c.
 - F can be used for discrete and continuous variables:

![CDF Diagram](https://en.wikipedia.org/wiki/Cumulative_distribution_function)

- The inverse CDF (or “quantile” function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, returns c such that $p(x \leq c) = u$.

- Inverse transform method for exact sampling in 1D:
 1. Sample $u \sim U(0, 1)$.
 2. Return $F^{-1}(u)$.

- Video on pseudo-random numbers and inverse-transform sampling:
 - https://www.youtube.com/watch?v=C82JyCmtKWg
Sampling from a 1D Gaussian

- Consider a Gaussian distribution,
 \[x \sim \mathcal{N}(\mu, \sigma^2). \]

- CDF has the form
 \[F(x) = p(x \leq c) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{c - \mu}{\sigma \sqrt{2}} \right) \right], \]
 where “erf” is the CDF of \(\mathcal{N}(0, 1) \).

- Inverse CDF has the form
 \[F^{-1}(u) = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1). \]

- To sample from a Gaussian:
 1. Generate \(u \sim \mathcal{U}(0, 1) \).
 2. Return \(F^{-1}(u) \).
Consider a product distribution,

\[p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2) \cdots p(x_d). \]

Because variables are independent, we can sample independently:
- Sample \(x_1 \) from \(p(x_1) \).
- Sample \(x_2 \) from \(p(x_2) \).
- \(\ldots \)
- Sample \(x_d \) from \(p(x_d) \).

Example: sampling from a multivariate Gaussian with diagonal covariance.
- Sample each variable independently based on \(\mu_j \) and \(\sigma_j^2 \).
In some cases we can sample from multivariate distributions by transformation.

Recall the affine property of multivariate Gaussian:
- If $x \sim \mathcal{N}(\mu, \Sigma)$, then $Ax + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$.

To sample from a general multivariate Gaussian $\mathcal{N}(\mu, \Sigma)$:
1. Sample x from a $\mathcal{N}(0, I)$ (each x_j coming independently from $\mathcal{N}(0, 1)$).
2. Transform to a sample from the right Gaussian using the affine property:

$$Ax + \mu \sim \mathcal{N}(\mu, AA^T),$$

where we choose A so that $AA^T = \Sigma$ (e.g., by Cholesky factorization).
Another way to sample non-product distributions is using chain rule,

\[p(x_1, x_2, x_3, \ldots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \ldots, x_1), \]

which comes from repeated application of the product rule

\[(p(a, b) = p(a)p(b \mid a)). \]

The chain rule suggests the following sampling strategy:

- Sample \(x_1 \) from \(p(x_1) \).
- Given \(x_1 \), sample \(x_2 \) from \(p(x_2 \mid x_1) \).
- Given \(x_1 \) and \(x_2 \), sample \(x_3 \) from \(p(x_3 \mid x_2, x_1) \).
- \(\ldots \)
- Given \(x_1 \) through \(x_{d-1} \), sample \(x_d \) from \(p(x_d \mid x_{d-1}, x_{d-2}, \ldots x_1) \).

This is called ancestral sampling.

- It’s easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
Ancestral Sampling Examples

- For **Markov chains** the chain rule simplifies to

\[
p(x_1, x_2, x_3, \ldots, x_d) = p(x_1)p(x_2 | x_1)p(x_3 | x_2) \cdots p(x_d | x_{d-1}),
\]

- So ancestral sampling simplifies too:
 1. Sample \(x_1\) from initial probabilities \(p(x_1)\).
 2. Given \(x_1\), sample \(x_2\) from transition probabilities \(p(x_2 | x_1)\).
 3. Given \(x_2\), sample \(x_3\) from transition probabilities \(p(x_3 | x_2)\).
 4. \(\ldots\)
 5. Given \(x_{d-1}\), sample \(x_d\) from transition probabilities \(p(x_d | x_{d-1})\).

- For **mixture models** with cluster variables \(z\) we could write

\[
p(x, z) = p(z)p(x | z),
\]

so we can **first sample** cluster \(z\) and then **sample** \(x\) given cluster \(z\).

- You can just ignore the \(z\) values to get samples of \(x\).
Markov Chain Toy Example: CS Grad Career

“Computer science grad career” Markov chain:

- Initial probabilities:

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>0.60</td>
<td>They work for a company or own their own company.</td>
</tr>
<tr>
<td>Grad School</td>
<td>0.30</td>
<td>They are trying to get a Masters or PhD degree.</td>
</tr>
<tr>
<td>Video Games</td>
<td>0.10</td>
<td>They mostly play video games.</td>
</tr>
</tbody>
</table>

- Transition probabilities:

<table>
<thead>
<tr>
<th>From\to</th>
<th>Video Games</th>
<th>Industry</th>
<th>Grad School</th>
<th>Video Games (with PhD)</th>
<th>Industry (with PhD)</th>
<th>Academia</th>
<th>Deceased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Games</td>
<td>0.08</td>
<td>0.90</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry</td>
<td>0.03</td>
<td>0.95</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Grad School</td>
<td>0.06</td>
<td>0.06</td>
<td>0.75</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Video Games (with PhD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>0.60</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry (with PhD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.95</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Academia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Deceased</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Markov Chain Toy Example: CS Grad Career

- **Samples** from “computer science grad career” Markov chain:

- State 7 ("deceased") is called an **absorbing state** (no probability of leaving).
- Samples often give you an idea of what model knows (and what should be fixed).
Outline

1. Introduction to Sampling
2. Monte Carlo Approximation
Marginal and Conditional Inference

- Given density estimator, we often want to make **probabilistic inferences**:
 - **Marginals**: what is the probability that $x_j = c$?
 - What is the probability we’re in industry 10 years after graduation?
 - **Conditionals**: what is the probability that $x_j = c$ given $x_j' = c'$?
 - What is the probability of industry after 10 years, if we immediately go to grad school?

- This is easy for simple independent models:
 - We are directly modeling marginals $p(x_j)$.
 - By independence, conditional are marginals: $p(x_j | x_j') = p(x_j)$.

- This is also easy for mixtures of simple independent models.
 - Do inference for each mixture.

- For Markov chains, it’s more complicated...
Marginals in CS Grad Career

- All marginals $p(x_j = c)$ from “computer science grad career” Markov chain:

- Each row j is a year and each column c is a state.
Monte Carlo: Inference by Sampling

- A basic Monte Carlo method for estimating probabilities of events:
 1. Generate a large number of samples x^i from the model,

\[
X = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}.
\]

 2. Compute frequency that the event happened in the samples,

\[
p(x_2 = 1) \approx \frac{3}{4},
\]

\[
p(x_3 = 0) \approx \frac{0}{4}.
\]

- Monte Carlo methods are second most important class of ML algorithms.
 - Originally developed to build better atomic bombs :(
Monte Carlo Method for Rolling Dice

- Probability of event:
 - \(\frac{\text{number of samples where event happened}}{\text{number of samples}} \)
Monte Carlo Method for Inequalities

- Monte Carlo estimate of probability that variable is above threshold:
 - Compute fraction of examples where sample is above threshold.
Monte Carlo Method for Mean

- A Monte Carlo approximation of the mean:
 - Approximate the mean by average of samples.
 \[E[x] \approx \frac{1}{n} \sum_{i=1}^{n} x^i. \]

- Visual demo of Monte Carlo approximation of mean and variance:
 - http://students.brown.edu/seeing-theory/basic-probability/index.html
Monte Carlo for Markov Chains

- Our samples from the CS grad student Markov chain:

- We can estimate probabilities by looking at frequencies in samples.
- This works for continuous states too.
Monte Carlo Methods

- **Monte Carlo** methods approximate expectations of random functions,

\[
\mathbb{E}[g(x)] = \sum_{x \in \mathcal{X}} g(x)p(x) \quad \text{or} \quad \mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x) \, dx.
\]

- Computing **mean** is the special case of \(g(x) = x \).
- Computing **probability of any event** \(A \) is also a special case:
 - Set \(g(x) = \mathbb{I}[\text{"A happened in sample } x^i\text{"}] \).

- To approximate expectation, generate \(n \) samples \(x^i \) from \(p(x) \) and use:

\[
\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^i).
\]
Unbiasedness of Monte Carlo Methods

- Let $\mu = \mathbb{E}[g(x)]$ be the value we want to approximate.

- The Monte Carlo estimate is an **unbiased** approximation of μ,

\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{n} g(x^i) \right]
\]

 (linearity of \mathbb{E})

 \[
 = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[g(x^i)]
 \]

 (linearity of \mathbb{E})

 \[
 = \frac{1}{n} \sum_{i=1}^{n} \mu
 \]

 (x^i is IID with mean μ)

 \[
 = \mu.
 \]

- The **law of large numbers** says that:
 - Unbiased approximators “converge” (probabilistically) to expectation as $n \to \infty$.
 - So the more samples you get, the closer to the true value you expect to get.
Rate of Convergence of Monte Carlo Methods

- Let f be the squared error in a 1D Monte Carlo approximation,

$$f(x^1, x^2, \ldots, x^n) = \left(\frac{1}{n} \sum_{i=1}^{n} g(x^i) - \mu \right)^2.$$

- Rate of convergence of f in terms of n is sublinear $O(1/n)$,

$$\mathbb{E} \left[\left(\frac{1}{n} \sum_{i=1}^{n} g(x^i) - \mu \right)^2 \right] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n^2} \text{Var} \left[\sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[g(x^i)] = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}.$$

- Similar $O(1/n)$ argument holds in higher-dimensions.
Monte Carlo Methods for Markov Chain Inference

- Monte Carlo methods allow approximating expectations in Markov chains:
 - Marginal $p(x_j = c)$ is the number of chains that were in state c at time j.
 - Average value at time j, $E[x_j]$, is approximated by average of x_j in the samples.
 - $p(x_j \leq 10)$ is approximate by frequency of x_j being less than 10.
 - $p(x_j \leq 10, x_{j+1} \geq 10)$ is approximated by number of chains where both happen.
Monte Carlo for Conditional Probabilities

- We often want to compute conditional probabilities in Markov chains.
 - We can ask "what lead to $x_{10} = 4$?" with queries like $p(x_1 \mid x_{10} = 4)$.
 - We can ask "where does $x_{10} = 4$ lead?" with queries like $p(x_d \mid x_{10} = 4)$.

Monte Carlo approach to estimating $p(x_j \mid x_{j'})$:

1. Generate a large number of samples from the Markov chain, $x^i \sim p(x_1, x_2, \ldots, x_d)$.
2. Use Monte Carlo estimates of $p(x_j = c, x_{j'} = c')$ and $p(x_{j'} = c')$ to give

$$p(x_j = c \mid x_{j'} = c') = \frac{p(x_j = c, x_{j'} = c')}{p(x_{j'} = c')} \approx \frac{\sum_{i=1}^{n} I[x^i_j = c, x^i_{j'} = c']}{\sum_{i=1}^{n} I[x^i_{j'} = c']},$$

frequency of first event in samples consistent with second event.

- This is a special case of rejection sampling (we’ll see general case later).
 - Unfortunately, if $x_{j'} = c'$ is rare then most samples are “rejected” (ignored).
Summary

- **Inverse Transform** generates samples from simple 1D distributions.
 - When we can easily invert the CDF.

- **Ancestral sampling** generates samples from multivariate distributions.
 - When conditionals have a nice form.

- **Monte Carlo** methods approximate expectations using samples.
 - Can be used to approximate arbitrary probabilities in Markov chains.

- Next time: the original Google algorithm.
Monte Carlo as a Stochastic Gradient Method

- Consider case of using Monte Carlo method to estimate mean $\mu = \mathbb{E}[x]$,
 $$\mu \approx \frac{1}{n} \sum_{i=1}^{n} x^i.$$
 We can write this as minimizing the 1-strongly convex
 $$f(w) = \frac{1}{2} \| w - \mu \|^2.$$
- The gradient is $\nabla f(w) = (w - \mu)$.
- Consider stochastic gradient using
 $$\nabla f_i(w^k) = w^k - x^{k+1},$$
 which is unbiased since each x^i is unbiased μ approximation.
- Monte Carlo method is a stochastic gradient method with this approximation.
Monte Carlo as a Stochastic Gradient Method

- Monte Carlo approximation as a stochastic gradient method with $\alpha_i = 1/(i+1)$,

$$w^n = w^{n-1} - \alpha_{n-1}(w^{n-1} - x^i)$$
$$= (1 - \alpha_{n-1})w^{n-1} + \alpha_{n-1}x^i$$
$$= \frac{n-1}{n}w^{n-1} + \frac{1}{n}x^i$$
$$= \frac{n-1}{n}\left(\frac{n-2}{n-1}w^{n-2} + \frac{1}{n-1}x^{i-1}\right) + \frac{1}{n}x^i$$
$$= \frac{n-2}{n}w^{n-2} + \frac{1}{n}(x^{i-1} + x^i)$$
$$= \frac{n-3}{n}w^{n-3} + \frac{1}{n}(x^{i-2} + x^{i-1} + x^i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} x^i.$$

- We know the rate of stochastic gradient for strongly-convex is $O(1/n)$.
Accelerated Monte Carlo: Quasi Monte Carlo

- Unlike stochastic gradient, there are some “accelerated” Monte Carlo methods.

- **Quasi Monte Carlo** methods achieve an accelerated rate of $O(1/n^2)$.
 - Key idea: fill the space strategically with a deterministic “low-discrepancy sequence”.
 - Uniform random vs. deterministic low-discrepancy: