CPSC 540: Machine Learning

Fundamentals of Learning
Winter 2018



Admin

Auditing/registration forms:

— Submit then at end of class, pick them up at end of next class.
— | need your prereq form before I’ll sign your registration form.
Website/Piazza:

— http://www.cs.ubc.ca/~schmidtm/Courses/540-W18
— https://piazza.com/ubc.ca/winterterm22017/cpsc540

Tutorials: start Monday after class (no need to formally register).

Assignment 1 due Friday (pushed back two days).
— Sign up for CS account so you can hand it in.


http://www.cs.ubc.ca/~schmidtm/Courses/540-W18
https://piazza.com/ubc.ca/winterterm22017/cpsc540

Supervised Learning Notation

 We are given training data where we know labels:

(Egg | Milk | Fish | Wheat | Shellfish | Peanuts .. _
0 0.7 0 0.3 0 0 1

0.3 0.7 0 0.6 0 0.01 1
X 0 0 0 0.8 0 0 o 0
03 0.7 1.2 0 0.10 0.01 1
03 O 1.2 0.3 0.10 0.01 1

* But the goal is to do well on any possible testing data:
cgg | Wik | Fish | Wheat | shelfsh | Peanuts |
0.5 0 1 0.6 2 1 ?
0 0.7 0 1 0 0
3 1 0 0.5 0 0 ?



“Test Set” vs. “Test Error”

* Formally, the “test error” is the expected error of our model:
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— Here I’'m using absolute error between predictions and true labels.
* But you could use squared error on other losses.

— The expectation is taken over distribution of test examples.
* Think of this as the “error with infinite data”.

— We assume that our training examples are drawn |ID from this distribution.
* Otherwise, “training” might not help to reduce “test error”.

* Unfortunately, we cannot compute the test error.
— We don’t have access to the distribution over all test examples.



“Test Set” vs. “Test Error”

* We often approximate “test error” with the error on a “test set”:

1
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— Here, we are using ‘t” examples drawn |ID from the test distribution.

* Note that “test set error” is not the “test error”.
— The goal is have a low “test error”, not “test set error”.

* The “golden rule” of machine learning:
— A “test set” cannot influence the “training” in any way.
— Otherwise, “test set error” is not an unbiased “test error” approximation.
— We run the risk of “overfitting” to the “test set”.



Typical Supervised Learning Steps (Are Bad?)

e Given data {X,y}, a typical set of supervised learning steps:

— Data splitting:
* Split {X,y}into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.
* We’re going to use the validation set error as approximation of test error.

— Tune hyper-parameters (number of hidden units, A, polynomial degree,etc.):

* For each candidate value “\” of the hyper-parameters:
— Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters “\”.
— Evaluate the model on the validation set {Xvalid,yvalid}.

— Choose the model with the best performance on the validation set.

* And maybe re-train using hyper-parameter “A” on the full dataset.

e Can this overfit, even though we used a validation set?
— Yes, we’ve violated the golden rule. But maybe it’s not too bad...



Validation Error, Test Error, and Approximation Error

* 340 discusses the “Fundamental Trade-Off of Machine Learning”.
— Simple identity relating training set error to test error.

 We have a similar identity for the validation error.
— If E..; is the test error and E, ;.4 is the error on the validation set, then:
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e IfE is small, then E ., is @ good approximation of E
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— We can’t measure E,.;, so how do we know if E_ ., is small?
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Bounding E

approx

e Let’s consider a simple case:
— Labels y' are binary, and we try 1 hyper-parameter setting.
— |ID assumption on validation set implies E ;.4 is unbiased: E[E ;4] = E -

* We can bound probability E, ., is different than E; by €.
— Assumptions: data is IID (so E ;4 is unbiased) and loss is in [0,1].

— By using Hoeffding’s inequality:
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— Probability that E ., is far from E, . goes down exponentially with ‘t’.

* This is great: the bigger your validation set, the better approximation you get.


https://en.wikipedia.org/wiki/Hoeffding's_inequality

Bounding E

approx

e Let’s consider a simple case:
— Labels are binary, and we tried ‘k’ hyper-parameter values.
— In this case it’s unbiased for each ‘k’: E[E, ;4] = E

test*

— So for each validation error E, ;4 We have:

In( | €y iy 7 E) S 2exp (2E°E)

— But our final E,;y = min{E,,;i5py}, Which is biased.

* We can’t apply Hoeffding because we chose best among ‘k’ values.

* Fix: bound on probability that all |E..; — E,,iqn | Values are < &.
— Since we showed it holds for all values, it holds for the best value.



Bounding E

approx

* The “union bound” for any events {A,, A,, ..., A } is that:
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Bounding E

approx

* So if we choose best E, ;4 among k’ A values, we have:
()( 'ECHT - EVJ'\{(’/\)\ > ‘S FO" 9_’1\/ //\> é k 2 €xr(’2 Ez‘t)

* So optimizing over ‘k" models is ok if we have large ‘t’.
— But if 'k’ is too large or ‘t’ is too small the validation error isn’t useful.

 Examples:
— If k=10 and t=1000, probability that |E, .,
— If k=10 and t=10000, probability that |E
— If k=10 and t=1000, probability that |E, .,
— If k=100 and t=100000, probability that |E

| >.05 is less than 0.14.

approx| > 05 is less than 10-°.
| >.01is less than 2.7 (useless).
| >.01 is less than 10°.

approx



Bounding E

approx

e Validation error vs. test error for fixed ‘t’.

— E,.iq 80€s down as we increase ‘k’, but E

e Overfitting of validation set.

can go up.
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Discussion

Bound is usually very loose, but data is probably not fully IID.
— Similar bounds are possible for cross-validation.

Similar arguments apply for the E_ ., of the training error.
— But ‘k’ is usually huge: you try out k=O(nd) decision stumps.

What if we train by gradient descent?
— We’re optimizing on continuous space (k==<), so the bound is useless.

— In this case, VC-dimension is one way to replace ‘Kk’.
* “Simpler” models like decision stumps and linear models will have lower VC-dimension.

Learning theory keywords if you want to go deeper into this topic:

— Bias-variance (see bonus slides for details and why this is weird), sample complexity, PCA
learning, VC dimension, Rademacher complexity.

— A gentle place to start is the Learning from Data book.



https://work.caltech.edu/telecourse.html

(pause)



Generalization Error

e An alternative measure of performance is the generalization error:

— Average error over the set of x' values that are not seen in the training set.

* Test error vs. generalization error when labels are deterministic:
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“Best” and the “Good” Machine Learning Models

* Question 1: what is the “best” machine learning model?
— The model that gets lower generalization error than all other models.

* Question 2: which models always do better than random guessing?
— Models with lower generalization error than random for all problemes.

e No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.



No Free Lunch Theorem

* Let’s show the “no free lunch” theorem in a simple setting:
— The x' and y' are binary, and y' being a deterministic function of x'.

* With ‘d’ features, each “learning problem” is a map from each of
the 29 feature combinations to 0 or 1: {0,1}9 ->{0,1}

Feowrel resurez Jreowres [wapl  wap2 w3 |
0 0 0 0 1 0

0 0 1 0 0 1

0 1 0 0 0 0

* Let’s pick one of these maps (“learning problems”) and:
— Generate a set training set of ‘n’ IID samples.
— Fit model A (convolutional neural network) and model B (naive Bayes).



No Free Lunch Theorem

Define the “unseen” examples as the (29— n) not seen in training.

— Assuming no repetitions of x' values, and n < 29.
— Generalization error is the average error on these “unseen” examples.

Suppose that model A got 1% error and model B got 60% error.

— We want to show model B beats model A on another “learning problem”.

Among our set of “learning problems” find the one where:
— The labels y' agree on all training examples.

— The labels y, disagree on all “unseen” examples.

On this other “learning problem”:

— Model A gets 99% error and model B gets 40% error.

)



No Free Lunch Theorem

* Further, across all “learning problems” with these ‘n” examples:
— Average generalization error of every model is 50% on unseen examples.
— With ‘k’ classes, the average error is (k-1)/k% (random guessing).

* This is kind of depressing:
— For general problems, no “machine learning” is better than “predict 0”.



(pause)



Limit of No Free Lunch Theorem

Fortunately, the world is structured:
— Some “learning problems” are more likely than others.

For example, it’s usually the case that “similar” x' have similar y'.

— Datasets with properties like this are more likely.
— Otherwise, you probably have no hope of learning.

Models with the right “similarity” assumptions can beat “predict 0”.

With assumptions like this, you can consider consistency:
— As ‘n’ grows, model A converges to the optimal test error.



Refined Fundamental Trade-Off

* Let E_ . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_;:
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 This is similar to the bias-variance trade-off (bonus slide):
—  E,pprox Measures how sensitive we are to training data (like “variance”).

E...qe Measures if our model is complicated enough to fit data (like “bias”).
E,.: measures how low can any model make test error (“irreducible” error).



Refined Fundamental Trade-Off

* Let E_ . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_;:
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 This is similar to the bias-variance trade-off (bonus slide):

— You need to trade between having low E_, ., and having low E

— Powerful models have low E_ 4. but can have high E
E,...; does not depend on what model you choose.

model*

approx*



Consistency and Universal Consistency

A model is a consistent for a particular learning problem if:
— E,.. cOnverges to E, ., as ‘n’ goes to infinity, for that particular problem.

A model is universally consistent for a class of learning problems if:
— E.; COnverges to E, ., as ‘n’ goes to infinity, for all problems in the class.

* Typically, the class would consist of:
— A continuity assumption on the labels y' as a function of x.

* E.g., if x'is close to X then they are likely to receive the same label.

— A boundedness assumption of the set of x'.



K-Nearest Neighbours (KNN)

* Classical consistency results focus on k-nearest neighbours (KNN).
* To classify an object X :

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.
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Consistency of KNN

 KNN consistency properties (under reasonable assumptions):

(.7 —
— As’'n' goestoeo, E <= 2E, ..

* For fixed ‘k” and binary labels.

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n converges to 0 as ‘n’ goes to e, E,_, converges to E, ...
* For example, k = O(log n).
* First algorithm shown to have this property.

* Consistency says nothing about finite ‘n’.
— See "Dont Trust Asymptotics”.



https://www.naftaliharris.com/blog/asymptotics/

Consistency of Non-Parametric Models

* Universal consistency has been shown for several models:
— Linear models with polynomial basis.
— Linear models with Gaussian RBFs.

— Neural networks with one hidden layer and standard activations.
e Sigmoid, tanh, RelLU, etc.

* |t's non-parametric versions that are consistent:
— Size of model is a function of ‘n’.

— Examples:
 KNN needs to store all ‘'n’ training examples.
* Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
 Number of hidden units must grow with ‘n’ (not true for fixed neural network).



Parametric vs. Non-Parametric Models
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Parametric vs. Non-Parametric Models




Summary

Test error vs. test set error

— What we care about is the test error.

Overfitting hyper-parameters on a validation set:

— Depends on how many hyper-parameters you try and number of validation examples.
No free lunch theorem:

— There is no “best” or even “good” machine learning models across all problems.
Universal consistency:

— Some non-parametric models can solve any continuous learning problem.

: bias-variance decomposition.

Next time:
— Besides least squares, what other problems can be solved in 1 line of code?



Bias-Variance Decomposition

* Analysis of expected test error of any learning algorithm:
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Learning Theory

* Bias-variance decomposition is a bit weird:

— Considers expectation over possible training sets.

* Bias-variance says nothing about your training set.
— This is different than Hoeffding bounds:

* Bound the test error based on your actual training set and training/validation error.



