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Last Time: Expectation Maximization

EM considers learning with observed variables O and hidden variables H.

@ In this case the “observed” log-likelihood has a nasty form,

log p(O | ©) = log (Z p(O, H | @)) .

H

EM applies when “complete” likelihood, p(O, H | ©), has a nice form.
EM iterations take the form

O'! = argmax {Z ap logp(O, H | @)} ,
© H

where ay = p(H | 0,0%).

e For mixture models, this iteration minimizes a weighted NLL.
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Monotonicity of EM
@ Classic result is that EM iterations are monotonic:
logp(O | ©'1) > logp(O | ©F),

@ We don't need a step-size and this is useful for debugging.

@ We can show this by proving that the below picture is “correct”:
-Q@ l @t> *+ const: ‘Ifz} f0]6)

@ The Q function leads to a global bound on the original function.
@ At O©! the bound matches original function.
e So if you improve on the @ function, you improve on the original function.
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Monotonicity of EM

@ Let's show that the ) function gives a global upper bound on NLL:
—logp(O | ©) = —log (ZP(QH | @)>
H

= _log (Z aHp(OJ:I|@)> (fOI’ [072) 75 0)

ay
< — Za;ﬂog( PO, H|@)>,

because — log(z) is convex and the oy are a convex combination.



Convergence of EM Kernel Density Estimation

Monotonicity of EM

@ Using that log turns multiplication into addition we get

—logp(O | ©) S—Zaﬂlog< p(O; IZ’@))

= —ZaHlogp(O,H | ©) —l—ZozglogaH
H H

QO | 6Y) negative entropy
= —Q(© | ©") — entropy(a),

so we have the first part of the picture, —log p(O | /1) < —Q(©]6?) + const.
e Entropy is a measure how “random"” the ay values are.

@ Now we need to show that this holds with equality at ©F.



Convergence of EM Kernel Density Estimation

Bound on Progress of Expectation Maximization

@ To show equality at ©! we use definition of conditional probability,

H t
p(H|0,0") = W or logp(O | ©") =logp(O, H | ©") —logp(H | O,6")

e Multiply by ayr and summing over H values,
> anlogp(0|6") =Y anlogp(O,H | 6") =Y aplogp(H | O,0").
H H H

@ Using the EM definition of az; we have

logp(O | ©)> " ay = Q(O" | ©) + entropy(a),
H

N——
=1

which is the result we want.
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Bound on Progress of Expectation Maximization

@ Thus we have the two bounds

logp(O | ©) > Q(O | ©°) + entropy(«)
logp(O | ©Y) = Q(O" | ©") + entropy(a).

@ Subtracting these and using © = ©'*! gives a stronger result,
logp(O | ©1) —logp(0 | ©) > QO | ©') — Q6" | &),

that we improve objective by at least the decrease in Q).

o Inequality holds for any choice of ©/*!,
e Approximate M-steps are ok: we just need to decrease () to improve likelihood.

@ For imputation, we instead improve “complete” log-likelihood, log p(O, H | ©Y).
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Convergence of Expectation Maximization

@ We've shown that
logp(O | ©1) —logp(0 | ©') > QO | ©") — (6" | B,

that guaranteed progress is at least as large as difference in Q.

@ Does this imply convergence?
o Yes, the algorithm can't keep improving if the likelihood is bounded above.

@ Does this imply convergence to a local optimum or a stationary point?
e No, although many papers wrongly say that it does.

e Could have maximum of 3 and objective values of 1,1.5,1.75,1.875, ...
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Convergence Rate of Expectation Maximization

@ Can we say EM converges to stationary point or analyze convergence rate?

o If logp(O | ©) is differentiable, then we can show that
Vlegp(O | ©°) =VQ(e' |6,
that gradient of bound agrees with gradient of function at ©°.

o If the bound @ is L-Lipschitz continuous, then we have
1
QO 6" < -Q(&" | 8") — =IO,

since optimizing () does at least as well as one iteration of gradient descent.
@ Using our relationships between ) and objective f gives our usual progress bound

fe*h) < f(e) - *IIVf(@t)HQ

so everything we proved about convergence rate of gradient descent applies.
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A Non-Parametric Mixture Model

@ The classic parametric mixture model has the form

Zp (' | 2" = ¢).

@ A natural way to define a non-parametric mixture model is

Zp plat | 2" = j),

where we have one mixture for every training example 7.
e Common example: z' is uniform and z* | 2* is Gaussian with mean 7,

1< S

= — E N (2| 27, 0%1),
n
j=1

and we use a shared covariance oI (o can be estimated by cross-validation).
@ This is a special case of kernel density estimation (or Parzen window).
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Histogram vs. Kernel Density Estimator

@ Think of kernel density estimator as a generalization of histogram:
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https://en.wikipedia.org/wiki/Kernel_density_estimation


https://en.wikipedia.org/wiki/Kernel_density_estimation
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Kernel Density Estimator for Visualization

@ Visualization of people’s opinions about what “likely” and other words mean.
Perceptions of Probability
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http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html


http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html
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Violin Plot: Added KDE to a Boxplot

'

T
F

@ Violin plot adds KDE to a boxplot:

A237%

https://datavizcatalogue.com/methods/violin_plot.html



https://datavizcatalogue.com/methods/violin_plot.html
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Violin Plot: Added KDE to a Boxplot
@ Violin plot adds KDE to a boxplot:
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https://seaborn.pydata.org/generated/seaborn.violinplot.html
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Kernel Density Estimation

@ The 1D kernel density estimation (KDE) model uses
') = Lk (@i - )
n = UH,_/ ’

where the PDF k is the “kernel” and the parameter o is the “bandwidth”.
@ In the previous slide we used the (normalized) Gaussian kernel,
2

k() = \/%exp (-2) k() = U\}%exp <_2’”;) .

o Note that we can add a “"bandwith” (standard deviation) o to any PDF k1, using

ko(r) = élﬁ <£) ;

g

from the change of variables formula for probabilities (|4 [Z] | = 1).

@ Under common choices of kernels, KDEs can model any continuous density.
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Efficient Kernel Density Estimation

KDE with the Gaussian kernel is slow at test time:
o We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

3
Fa(r) = § (L= Z[r| <1].
This kernel has two nice properties:

e Epanechnikov showed that it is asymptotically optimal in terms of squared error.
o It can be much faster to use since it only depends on nearby points (use hashing).

@ You can use hashing to quickly find neighbours in training data.

It is non-smooth at the boundaries but many smooth approximations exist.
e Quartic, triweight, tricube, cosine, etc.
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Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:
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https://en.wikipedia.org/wiki/Kernel_%28statistics%29
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Multivariate Kernel Density Estimation
@ The multivariate kernel density estimation (KDE) model uses
1 n
N i g
plat) = > halg — o),
Jj=1 T
@ The most common kernel is a product of independent Gaussians,

@ We can add a bandwith matrix A to any kernel using

— ki (A7) (generalizes k,(r) = %kl < ))7

r
g

and in Gaussian case we get a multivariate Gaussian with ¥ = AT A.

@ To reduce number of parameters, we typically:
e Use a product of independent distributions and use A = oI for some o.
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KDE vs. Mixture of Gaussian

e By fixing mean/covariance/k, we don't have to worry about local optima.

» ‘Gaussian (nll = 6.519) . Mixture of Gaussian (nl = 4.998)

Mixture of Gaussian (nll = 5.123)
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KDE vs. Mixture of Gaussian

e By fixing mean/covariance/k, we don't have to worry about local optima.

» Parzon Window (nll = 4.119)

o Mixture of Gaussian (nl = 4.998)

Mixture of Gaussian (il =5.123)

. ‘ . . | .~ : ., B

Mixture of Gaussian (nil = 4.990)




Kernel Density Estimation

Mean-Shift Clustering

Mean-shift clustering uses KDE for clustering:
o Define a KDE on the training examples, and then for test example Z:
e Run gradient descent to maximize p(z) starting from Z.
o Clusters are points that reach same local minimum.

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Not sensitive to initialization, no need to choose &, can find non-convex clusters.

Similar to density-based clustering from 340.
e But doesn't require uniform density within cluster.
e And can be used for vector quantization.

“The 5 Clustering Algorithms Data Scientists Need to Know":

e https://towardsdatascience.com/
the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68


https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
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Continuous Mixture Models

@ We've been discussing mixture models where 2’ is discrete,
i i i i
pa') = p(a' = c)p(a’ | 2" =c).
@ We can also consider mixtures models where z' is continuous,

pa) = [ p =o' | 2 = )

@ Unfortunately, computing the integral might be hard.
e But if both probabilities are Gaussian then it's straightforward.
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Probabilistic PCA

In 340 we discussed PCA, which approximates (centered) z* by
= W2
In probabilistic PCA we assume that
i~ NWT2E 621, 28~ N(0,1).
Continuous mixture integral will be marginal of a joint Gaussian, and gives (bonus)
| W~ NO,WIW + o).
Regular PCA is obtained as the limit of o2 going to 0.

e Shows that PCA is just fitting a multivariate Gaussian with a restricted form for X.
o Allows you to do things like mixture of PCAs.



Summary

Monotonicity of EM: EM is guaranteed not to decrease likelihood.
e Very-recent results giving convergence rates.

Kernel density estimation: Non-parametric density estimation method.
o Allows smooth variations on histograms.

Probabilistic PCA:

e Continuous mixture models based on Gaussian assumptions.

Next time: the sad truth about rain in Vancouver.
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