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Last Time: Mixture of Gaussians

We discussed density estimation with a mixture of Gaussians,

p(x | µ,Σ, π) =

k∑
c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

where PDF is written as convex combination of Gaussian PDFs.

Convex combination is needed so that probability integrates to 1.

More flexible than a single Gaussian.

With enough Gaussians, can approximate any continuous PDF.

More generally, we can have mixtures of any distributions.

Today we’ll discuss mixture of Bernoullis.
You can also do mixture of student t, mixture of Poisson, and so on.
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Digression: Supervised Learning with Density Estimation

Density estimation can be used for supervised learning:

340 discussed generative models that model joint probability of xi and yi,

p(yi|xi) ∝ p(xi, yi)
= p(xi | yi)p(yi).

Estimating p(xi, yi) is a density estimation problem.

Naive Bayes models p(xi | yi) as product of independent distributions.
Linear discriminant analysis (LDA) assumes p(xi | yi) is Gaussian (shared Σ).
Gaussian discriminant analysis (GDA) allows each class to have its own covariance.

Generative models were unpopular for a while, but are now back:

Naive Bayes regression is being used for CRISPR gene editing.
Generative adversarial networks (GANs) and variational autoencoders (deep learning).
We believe that most human learning is unsupervised.
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Previously: Independent vs. General Discrete Distributions

We previously considered density estimation with discrete variables,

X =

[
1 0 0 0
0 1 0 0

]
,

and considered two extreme approaches:
Product of independent Bernoullis:

p(xi | θ) =

d∏
j=1

p(xij | θj).

Easy to fit but strong independence assumption:
Knowing xij tells you nothing about xik.

General discrete distribution:
p(xi | θ) = θxi .

No assumptions but hard to fit:
Parameter vector θxi for each possible xi.
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Independent vs. General Discrete Distributions on Digits
Consider handwritten images of digits:

xi = vec




,

so each row of X contains all pixels from one image of a 0, 1, 2, . . . , or a 9.

Previously we had labels and wanted to recognize that this is a 4.
In density estimation we want probability distribution over images of digits.

Given an image, what is the probability that it’s a digit?
Sampling from the density estimator it should generate images of digits.
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Independent vs. General Discrete Distributions on Digits

We can visualize probabilities in independent Bernoulli model as an image:

We have a parameter θj for each pixel j, set to (“number of heads at pixel j”)/n

Samples generated from independent Bernoulli model:

Flip a coin that lands hands with probability θj for each pixel j.

This is clearly a terrible model: misses dependencies between pixels.
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Independent vs. General Discrete Distributions on Digits

Here is a sample from the MLE with the general discrete distribution:

Here is an image with a probability of 0:

This model memorized training images and doesn’t generalize.
MLE puts probability at least 1/n on training images, and 0 on non-training images.

A model lying between these extremes is the mixture of Bernoullis.
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Mixture of Bernoullis

Consider a coin flipping scenario where we have two coins:

Coin 1 has θ1 = 0.5 (fair) and coin 2 has θ2 = 1 (biased).

Half the time we flip coin 1, and otherwise we flip coin 2:

p(xi = 1|θ1, θ2) = π1p(x
i = 1|θ1) + π2p(x

i = 1|θ2)

=
1

2
θ1 +

1

2
θ2.

With one variable this mixture model is not very interesting:

It’s equivalent to flipping one coin with θ = 0.75.

But with multiple variables mixture of Bernoullis can model dependencies...
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Mixture of Independent Bernoullis

Consider a mixture of independent Bernoullis:

p(x | θ1, θ2) =
1

2

d∏
j=1

p(xj |θ1j)︸ ︷︷ ︸
first set of Bernoullis

+
1

2

d∏
j=1

p(xj |θ2j)︸ ︷︷ ︸
second set of Bernoulli

.

Conceptually, we now have two sets of coins:
Half the time we throw the first set, half the time we throw the second set.

With d = 4 we could have θ1 =
[
0 0.7 1 1

]
and θ2 =

[
1 0.7 0.8 0

]
.

Half the time we have p(xi3 = 1) = 1 and half the time it’s 0.8.

Have we gained anything?
In this example knowing x1 = 1 tells you that x4 = 0.
So this can model dependencies: p(x4 = 1 | x1 = 1)︸ ︷︷ ︸

0

6= p(x4 = 1)︸ ︷︷ ︸
0.5

.
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Mixture of Independent Bernoullis

General mixture of independent Bernoullis:

p(xi | Θ) =

k∑
c=1

πcp(x
i | θc),

where Θ contains all the model parameters.

Mixture of Bernoullis can model dependencies between variables

Individual mixtures act like clusters of the binary data.
Knowing cluster of one variable gives information about other variables.

With k large enough, mixture of Bernollis can model any discrete distribution.

Hopefully with k << 2d.
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Mixture of Independent Bernoullis

Plotting parameters θc with 10 mixtures trained on MNIST:digits.
(hand-written images of the the numbers 0 through 9)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

Remember this is unsupervised: it hasn’t been told there are ten digits.
Density estimation tries to figure out how the world works.

http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Mixture of Independent Bernoullis

Plotting parameters θc with 10 mixtures trained on MNIST:digits.
(hand-written images of the the numbers 0 through 9)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

You could use this model to “fill in” missing parts of an image:
By finding likely cluster/mixture, you find likely values for the missing parts.

http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Learning with Hidden Values

We often want to learn with unobserved/missing/hidden/latent values.

For example, we could have a dataset like this:

X =


N 33 5
L 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
Missing values are very common in real datasets.

An important issue to consider: why is data missing?
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Missing at Random (MAR)

We’ll focus on data that is missing at random (MAR):

Assume that the reason ? is missing does not depend on the missing value.

This definition doesn’t agree with intuitive notion of “random”:

A variable that is always missing would be “missing at random”.
The intuitive/stronger version is missing completely at random (MCAR).

Examples of MCAR and MAR for digit data:

Missing random pixels/labels: MCAR.
Hide the the top half of every digit: MAR.
Hide the labels of all the “2” examples: not MAR.

We’ll consider MAR, because otherwise you need to model why data is missing.
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Imputation Approach to MAR Variables

Consider a dataset with MAR values:

X =


N 33 5
F 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
Imputation method is one of the first things we might try:

0 Initialization: find parameters of a density model (often using “complete” examples).
1 Imputation: replace each ? with the most likely value.
2 Estimation: fit model with these imputed values.

You could also alternate between imputation and estimation.

Block coordinate optimization, treating ? values as more parameters.
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Semi-Supervised Learning

Important special case of MAR is semi-supervised learning.

X =

[ ]
, y =

[]
,

X̄ =


 , ȳ =


?
?
?
?
?

 .
Motivation for training on labeled data (X, y) and unlabeled data X̄:

Getting labeled data is usually expensive, but unlabeled data is usually cheap.
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Semi-Supervised Learning

Important special case of MAR is semi-supervised learning.

X =

[ ]
, y =

[]
,

X̄ =


 , ȳ =


?
?
?
?
?

 ,
Imputation approach is called self-taught learning:

Alternate between guessing ȳ and fitting the model with these values.
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Back to Mixture Models

To fit mixture models we often introduce n MAR variables zi.

Why???

Consider mixture of Gaussians, and let zi be the cluster number of example i:

So zi ∈ {1, 2, · · · , k} tells you which Gaussian generated example i.

Given the zi it’s easy to optimize the means and variances (µc,Σc):

Fit a Gaussian to examples in cluster i.

Given the (µc,Σc) it’s easy to optimize the clusters zi:

Find the cluster with highest p(xi|µc,Σc).
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Imputation Approach for Mixtures of Gaussians

Consider mixture of Gaussians with the choice Σc = I for all c.

Here is the imputation approach for fitting a mixtures of Gaussian:

Randomly pick some initial means µc.

Assigns xi to the closest mean..

Given µc, for each xi set zi to the c maximizing p(xi | µc)

Set µc to the mean of the points assigned to cluster c.

Given the clusters/mixtures zi, find the MLE of each mean.

This is exactly k-means clustering.

With variable Σc, distance to mean will be measured in ‖ · ‖Σc
-norms.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).

But variable Σc in mixture of Gaussians allow non-convex clusters.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).

But variable Σc in mixture of Gaussians allow non-convex clusters.

https://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/K-means_clustering
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Drawbacks of Imputation Approach

The imputation approach to MAR variables is simple:

Use density estimator to “fill in” the missing values.
Now fit the “complete data” using a standard method.

But “hard” assignments of missing values lead to propagation of errors.

What if cluster is ambiguous in k-means clustering?
What if label is ambiguous in “self-taught” learning?

Ideally, we should use probabilities of different assignments (“soft” assignments):

If the MAR values are obvious, this will act like the imputation approach.
For ambiguous examples, takes into account probability of different assignments.

Expectation maximization (EM) considers probability of all imputations of ?.
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Summary

Mixture of Bernoullis can model dependencies between discrete variables.

Probability of belonging to mixtures is a soft-clustering of examples.

Missing at random: fact that variable is missing does not depend on its value.

Imputation approach to handling missing data.

Guess values of hidden variables, then fit the model (and usually repeat).
K-means is a special case, if we introduce “cluster number” as MAR variables.

Next time: one of the most cited papers in statistics.
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