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Last Time: Mixture of Gaussians

@ We discussed density estimation with a mixture of Gaussians,

k
p(x ’ /J,Z,Tr) = Zﬂ'c p(:z: ‘ Mc;zc) )
—————

e=1 PDF of Gaussian ¢

where PDF is written as convex combination of Gaussian PDFs.
e Convex combination is needed so that probability integrates to 1.

@ More flexible than a single Gaussian.

@ With enough Gaussians, can approximate any continuous PDF.

@ More generally, we can have mixtures of any distributions.
e Today we'll discuss mixture of Bernoullis.

e You can also do mixture of student ¢, mixture of Poisson, and so on.
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Digression: Supervised Learning with Density Estimation

@ Density estimation can be used for supervised learning:
o 340 discussed generative models that model joint probability of z¢ and ¥,
ply'|z") o p(a’,y')
=p(" | y")p(y")-

o Estimating p(x%,%") is a density estimation problem.
o Naive Bayes models p(z* | ) as product of independent distributions.
o Linear discriminant analysis (LDA) assumes p(z‘ | ") is Gaussian (shared X).
o Gaussian discriminant analysis (GDA) allows each class to have its own covariance.

o Generative models were unpopular for a while, but are now back:
o Naive Bayes regression is being used for CRISPR gene editing.
o Generative adversarial networks (GANs) and variational autoencoders (deep learning).
@ We believe that most human learning is unsupervised.
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Previously: Independent vs. General Discrete Distributions

@ We previously considered density estimation with discrete variables,

1000
X‘[0100]’

and considered two extreme approaches:
e Product of independent Bernoullis:

d
p(z' | 0) = [[ p(=} | 6).
j=1
Easy to fit but strong independence assumption:
e Knowing a:; tells you nothing about z% .
o General discrete distribution: '
p(z' ] 0) =0,:.
No assumptions but hard to fit:
o Parameter vector 6, for each possible z°.
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Independent vs. General Discrete Distributions on Digits

o Consider handwritten images of digits:

' = vec

so each row of X contains all pixels from one image of a 0, 1,2, ..., 0ra9.

Previously we had labels and wanted to recognize that this is a 4.
In density estimation we want probability distribution over images of digits.

Given an image, what is the probability that it's a digit?
Sampling from the density estimator it should generate images of digits.
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Independent vs. General Discrete Distributions on Digits

@ We can visualize probabilities in independent Bernoulli model as an image:

o We have a parameter 6; for each pixel j, set to (“number of heads at pixel j")/n

@ Samples generated from independent Bernoulli model:

o Flip a coin that lands hands with probability 6; for each pixel j.

@ This is clearly a terrible model: misses dependencies between pixels.
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Independent vs. General Discrete Distributions on Digits

@ Here is a sample from the MLE with the general discrete distribution:

@ Here is an image with a probability of O:

@ This model memorized training images and doesn’t generalize.
o MLE puts probability at least 1/n on training images, and 0 on non-training images.
@ A model lying between these extremes is the mixture of Bernoullis.
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Mixture of Bernoullis

o Consider a coin flipping scenario where we have two coins:
e Coin 1 has #; = 0.5 (fair) and coin 2 has 8, = 1 (biased).

@ Half the time we flip coin 1, and otherwise we flip coin 2:
p(z' = 1/61,62) = mp(a’ = 1/f1) + map(a’ = 1[62)
1 1
= =01 + -0,.
71 + 572

@ With one variable this mixture model is not very interesting:
e It's equivalent to flipping one coin with 8 = 0.75.

@ But with multiple variables mixture of Bernoullis can model dependencies...
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Mixture of Independent Bernoullis

@ Consider a mixture of independent Bernoullis:

d
1
p(z | 61,02) = HP zjl015) +5 11 2(x5162)
_f—/ N——r
first set of Bernoullis second set of Bernoulli

@ Conceptually, we now have two sets of coins:
o Half the time we throw the first set, half the time we throw the second set.

o With d = 4 we could have 8; = [0 07 1 1] and 65 = [1 0.7 0.8 0].
o Half the time we have p(z% = 1) = 1 and half the time it's 0.8.

@ Have we gained anything?
o In this example knowing x; = 1 tells you that 4 = 0.
o So this can model dependencies: p(xs =1 |21 =1) # p(za =1).
—_——

0 0.5
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Mixture of Independent Bernoullis

@ General mixture of independent Bernoullis:

p(z' | ©) = Zﬂcpxw

where © contains all the model parameters.

@ Mixture of Bernoullis can model dependencies between variables

o Individual mixtures act like clusters of the binary data.
e Knowing cluster of one variable gives information about other variables.

e With k large enough, mixture of Bernollis can model any discrete distribution.
o Hopefully with k& << 29,
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Mixture of Independent Bernoullis

@ Plotting parameters 6. with 10 mixtures trained on MNIST:digits.

(hand-written images of the the numbers 0 through 9)
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@ Remember this is unsupervised: it hasn't been told there are ten digits.
e Density estimation tries to figure out how the world works.


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Mixture of Independent Bernoullis

@ Plotting parameters 6. with 10 mixtures trained on MNIST:digits.
(hand-written images of the the numbers 0 through 9)
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@ You could use this model to “fill in” missing parts of an image:
o By finding likely cluster/mixture, you find likely values for the missing parts.


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Learning with Hidden Values

e We often want to learn with unobserved/missing/hidden/latent values.

@ For example, we could have a dataset like this:

N 33 5 1
L 10 1 +1
X=1p 9 9| ¥= |4
M 22 0 ?

@ Missing values are very common in real datasets.

@ An important issue to consider: why is data missing?
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Missing at Random (MAR)

e We'll focus on data that is missing at random (MAR):
o Assume that the reason 7 is missing does not depend on the missing value.

e This definition doesn't agree with intuitive notion of “random™:

@ A variable that is always missing would be “missing at random” .
o The intuitive/stronger version is missing completely at random (MCAR).

@ Examples of MCAR and MAR for digit data:

o Missing random pixels/labels: MCAR.
o Hide the the top half of every digit: MAR.
o Hide the labels of all the 2" examples: not MAR.

o We'll consider MAR, because otherwise you need to model why data is missing.
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Imputation Approach to MAR Variables

@ Consider a dataset with MAR values:

N 33 5 ~1
F 10 1 +1
X=1p 2 o= |
M 22 0 ?

@ Imputation method is one of the first things we might try:
@ Initialization: find parameters of a density model (often using “complete” examples).
© Imputation: replace each 7 with the most likely value.
@ Estimation: fit model with these imputed values.

@ You could also alternate between imputation and estimation.
e Block coordinate optimization, treating ? values as more parameters.
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Semi-Supervised Learning

@ Important special case of MAR is semi-supervised learning.
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e Motivation for training on labeled data (X,y) and unlabeled data X:
o Getting labeled data is usually expensive, but unlabeled data is usually cheap.
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Semi-Supervised Learning

@ Important special case of MAR is semi-supervised learning.
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@ Imputation approach is called self-taught learning:
o Alternate between guessing ¢ and fitting the model with these values.
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Back to Mixture Models

e To fit mixture models we often introduce n MAR variables 2.
o Why?7?

o Consider mixture of Gaussians, and let 2’ be the cluster number of example i:
o So z* €{1,2,--- ,k} tells you which Gaussian generated example i.

o Given the 2% it's easy to optimize the means and variances (i, 3.):

o Fit a Gaussian to examples in cluster 7.

o Given the (y.,Y.) it's easy to optimize the clusters z*:
o Find the cluster with highest p(z*|pc, Z¢)-
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Imputation Approach for Mixtures of Gaussians
@ Consider mixture of Gaussians with the choice 3. = I for all c.

@ Here is the imputation approach for fitting a mixtures of Gaussian:
e Randomly pick some initial means p..

o Assigns ' to the closest mean..
o Given ., for each z’ set z* to the ¢ maximizing p(x’ | )

e Set y. to the mean of the points assigned to cluster c.
o Given the clusters/mixtures z*, find the MLE of each mean.

@ This is exactly k-means clustering.
o With variable X, distance to mean will be measured in || - ||, -norms.
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (common X.).
e But variable X, in mixture of Gaussians allow non-convex clusters.

Wijﬂn samt (ouafiamce) clusters are Convey.
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (common X.).
e But variable X, in mixture of Gaussians allow non-convex clusters.

Wijﬂn samt (ouafiamce) clusters are Convey.
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (common X.).
e But variable 3. in mixture of Gaussians allow non-convex clusters.
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (common X.).
e But variable 3. in mixture of Gaussians allow non-convex clusters.
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (common 3.).
o But variable X, in mixture of Gaussians allow non-convex clusters.

Partitioning of the space
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (common X.).
e But variable X, in mixture of Gaussians allow non-convex clusters.
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https://en.wikipedia.org/wiki/K-means_clustering
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Drawbacks of Imputation Approach

@ The imputation approach to MAR variables is simple:

o Use density estimator to “fill in” the missing values.
o Now fit the “complete data” using a standard method.

@ But “hard” assignments of missing values lead to propagation of errors.

e What if cluster is ambiguous in k-means clustering?
e What if label is ambiguous in “self-taught” learning?

Ideally, we should use probabilities of different assignments ( “soft” assignments):

o If the MAR values are obvious, this will act like the imputation approach.
e For ambiguous examples, takes into account probability of different assignments.

Expectation maximization (EM) considers probability of all imputations of ?.
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Summary

Mixture of Bernoullis can model dependencies between discrete variables.
o Probability of belonging to mixtures is a soft-clustering of examples.

Missing at random: fact that variable is missing does not depend on its value.

Imputation approach to handling missing data.

o Guess values of hidden variables, then fit the model (and usually repeat).
e K-means is a special case, if we introduce “cluster number” as MAR variables.

Next time: one of the most cited papers in statistics.
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