CPSC 540: Machine Learning

Mixture Models

Mark Schmidt

University of British Columbia

Winter 2018
Last Time: Multivariate Gaussian

- The multivariate normal/Gaussian distribution models PDF of vector x^i as

$$p(x^i | \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x^i - \mu)^T \Sigma^{-1} (x^i - \mu) \right)$$

where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$.

- Last time with showed there is a closed-form MLE for μ:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^i.$$

- We’ll now show the analogous result for MLE of the variance:

$$\Sigma = \frac{1}{n} \sum_{i=1}^{N} (x^i - \mu)(x^i - \mu)^T_{d \times d}.$$

- So MLE is closed-form and given by sample mean and sample variance.
Maximum Likelihood Estimation in Multivariate Gaussians

To get MLE for Σ we re-parameterize in terms of precision matrix $\Theta = \Sigma^{-1}$,

$$\frac{1}{2} \sum_{i=1}^{n} (x^i - \mu)^T \Sigma^{-1} (x^i - \mu) + \frac{n}{2} \log |\Sigma|$$

$$= \frac{1}{2} \sum_{i=1}^{n} (x^i - \mu)^T \Theta (x^i - \mu) + \frac{n}{2} \log |\Theta^{-1}| \quad \text{(ok because Σ is invertible)}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \text{Tr} \left((x^i - \mu)^T \Theta (x^i - \mu) \right) + \frac{n}{2} \log |\Theta|^{-1} \quad \text{(} y^T Ay = \text{Tr}(y^T Ay))$$

$$= \frac{1}{2} \sum_{i=1}^{n} \text{Tr} \left((x^i - \mu)(x^i - \mu)^T \Theta \right) - \frac{n}{2} \log |\Theta| \quad \text{(} \text{Tr}(ABC) = \text{Tr}(CAB))$$

Where the trace $\text{Tr}(A)$ is the sum of the diagonal elements of A.

That $\text{Tr}(ABC) = \text{Tr}(CAB)$ when dimensions match is the cyclic property of trace.
Maximum Likelihood Estimation in Multivariate Gaussians

- So in terms of precision matrix Θ we have

$$\frac{1}{2} \sum_{i=1}^{n} \text{Tr}((x^i - \mu)(x^i - \mu)^T \Theta) - \frac{n}{2} \log |\Theta|$$

- We can exchange the sum and trace (trace is a linear operator) to get,

$$\frac{1}{2} \text{Tr} \left(\sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T \Theta \right) - \frac{n}{2} \log |\Theta|$$

$$\sum_i \text{Tr}(A_iB) = \text{Tr} \left(\sum_i A_iB \right)$$

$$\frac{n}{2} \text{Tr} \left(\frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T \right) \Theta - \frac{n}{2} \log |\Theta|.$$)

$$\left(\sum_i A_iB \right) = \left(\sum_i A_i \right) B$$
Properties of Multivariate Gaussian Mixture Models

Maximum Likelihood Estimation in Multivariate Gaussians

- So the NLL in terms of the precision matrix Θ and sample covariance S is

$$f(\Theta) = \frac{n}{2} \text{Tr}(S\Theta) - \frac{n}{2} \log |\Theta|,$$

with $S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T$

- Weird-looking but has nice properties:
 - $\text{Tr}(S\Theta)$ is linear function of Θ, with $\nabla_{\Theta} \text{Tr}(S\Theta) = S$.
 (it's the matrix version of an inner-product $s^T \theta$)
 - Negative log-determinant is strictly-convex and has $\nabla_{\Theta} \log |\Theta| = \Theta^{-1}$.
 (generalizes $\nabla \log |x| = 1/x$ for $x > 0$).

- Using these two properties the gradient matrix has a simple form:

$$\nabla f(\Theta) = \frac{n}{2} S - \frac{n}{2} \Theta^{-1}.$$
Maximum Likelihood Estimation in Multivariate Gaussians

- Gradient matrix of NLL with respect to Θ is
 \[\nabla f(\Theta) = \frac{n}{2} S - \frac{n}{2} \Theta^{-1}. \]

- The MLE for a given μ is obtained by setting gradient matrix to zero, giving
 \[\Theta = S^{-1} \quad \text{or} \quad \Sigma = S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T. \]

- The constraint $\Sigma \succ 0$ means we need positive-definite sample covariance, $S \succ 0$.
 - If S is not invertible, NLL is unbounded below and no MLE exists.
 - This is like requiring “not all values are the same” in univariate Gaussian.

- For most distributions, the MLEs are not the sample mean and covariance.
MAP Estimation in Multivariate Gaussian

- We typically don’t regularize μ, but you could add an L2-regularizer $\frac{\lambda}{2} \| \mu \|^2$.

- A classic regularizer for Σ is to add a diagonal matrix to S and use

$$\Sigma = S + \lambda I,$$

which satisfies $\Sigma \succ 0$ by construction (eigenvalues at least λ).

- This corresponds to a regularizer that penalizes diagonal of the precision,

$$f(\Theta) = \text{Tr}(S\Theta) - \log |\Theta| + \lambda \text{Tr}(\Theta)$$

$$= \text{Tr}(S\Theta + \lambda \Theta) - \log |\Theta|$$

$$= \text{Tr}((S + \lambda I)\Theta) - \log |\Theta|.$$

- L1-regularization of diagonals of inverse covariance.
 - But doesn’t set to exactly zero as it must be positive-definite.
Recent substantial interest in a generalization called the **graphical LASSO**,

\[f(\Theta) = \text{Tr}(S\Theta) - \log|\Theta| + \lambda \| \Theta \|_1. \]

where we are using the element-wise L1-norm.

- Gives **sparse off-diagonals in \(\Theta \).**
 - Can solve very large instances with proximal-Newton and other tricks ("QUIC").

- It’s common to **draw the non-zeroes in \(\Theta \) as a graph.**
 - Has an interpretation in terms on conditional independence (we’ll cover this later).
 - Examples: https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
Closedness of Multivariate Gaussian

- Multivariate Gaussian has nice properties of univariate Gaussian:
 - Closed-form MLE for μ and Σ given by sample mean/variance.
 - Central limit theorem: mean estimates of random variables converge to Gaussians.
 - Maximizes entropy subject to fitting mean and covariance of data.

- A crucial computation property: Gaussians are closed under many operations.
 1. **Affine transformation**: if $p(x)$ is Gaussian, then $p(Ax + b)$ is a Gaussian\(^1\).
 2. **Marginalization**: if $p(x, z)$ is Gaussian, then $p(x)$ is Gaussian.
 3. **Conditioning**: if $p(x, z)$ is Gaussian, then $p(x|z)$ is Gaussian.
 4. **Product**: if $p(x)$ and $p(z)$ are Gaussian, then $p(x)p(z)$ is proportional to a Gaussian.

- Most continuous distributions don’t have these nice properties.

\(^1\) Could be degenerate with $|\Sigma| = 0$ depending on A.
Affine Property: Special Case of Shift

- Assume that random variable x follows a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \Sigma).$$

- And consider an shift of the random variable,

$$z = x + b.$$

- Then random variable z follows a Gaussian distribution

$$z \sim \mathcal{N}(\mu + b, \Sigma),$$

where we’ve shifted the mean.
Affine Property: General Case

- Assume that random variable x follows a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \Sigma).$$

- And consider an affine transformation of the random variable,

$$z = Ax + b.$$

- Then random variable z follows a Gaussian distribution

$$z \sim \mathcal{N}(A\mu + b, A\Sigma A^T),$$

although note we might have $|A\Sigma A^T| = 0$.
Marginalization of Gaussians

Consider partitioning multivariate Gaussian variables into two sets,

\[
\begin{bmatrix}
 x \\
 z
\end{bmatrix}
\sim \mathcal{N}
\left(\begin{bmatrix}
 \mu_x \\
 \mu_z
\end{bmatrix}
, \begin{bmatrix}
 \Sigma_{xx} & \Sigma_{xz} \\
 \Sigma_{zx} & \Sigma_{zz}
\end{bmatrix}\right),
\]

so our dataset would be something like

\[
X = \begin{bmatrix}
 x_1 & x_2 & z_1 & z_2
\end{bmatrix}.
\]

If I want the marginal distribution \(p(x) \), I can use the affine property,

\[
x = \underbrace{\begin{bmatrix}
 I & 0
\end{bmatrix}}_{A} \begin{bmatrix}
 x \\
 z
\end{bmatrix} + \underbrace{0}_{b},
\]

to get that

\[
x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).
\]
Marginalization of Gaussians

- In a picture, ignoring a subset of the variables gives a Gaussian:

- This seems less intuitive if you use usual marginalization rule:

\[
p(x) = \int_{z_1} \int_{z_2} \ldots \int_{z_d} \frac{1}{(2\pi)^{d/2} |\Sigma_{xx}|^{1/2}} \exp \left(-\frac{1}{2} \left(\begin{bmatrix} x \\ \mu_x \end{bmatrix} - \begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix} \right) \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix}^{-1} \left(\begin{bmatrix} x \\ \mu_z \end{bmatrix} - \begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix} \right) \right) \, dz_d \ldots dz_1.
\]
Conditioning in Gaussians

- Consider partitioning multivariate Gaussian variables into two sets,

\[
\begin{bmatrix}
x \\
z
\end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix}
\mu_x \\
\mu_z
\end{bmatrix}, \begin{bmatrix}
\Sigma_{xx} & \Sigma_{xz} \\
\Sigma_{zx} & \Sigma_{zz}
\end{bmatrix}\right).
\]

- The conditional probabilities are also Gaussian,

\[x \mid z \sim \mathcal{N}(\mu_{x \mid z}, \Sigma_{x \mid z}),\]

where

\[
\mu_{x \mid z} = \mu_x + \Sigma_{xz}\Sigma_{zz}^{-1}(z - \mu_z), \quad \Sigma_{x \mid z} = \Sigma_{xx} - \Sigma_{xz}\Sigma_{zz}^{-1}\Sigma_{zx}.
\]

- “For any fixed \(z\), the distribution of \(x\) is a Gaussian”.

- For a careful discussion of Gaussians, see the playlist here:

 - https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34
Product of Gaussian Densities

- Let $f_1(x)$ and $f_2(x)$ be Gaussian PDFs defined on variables x.
 - Let (μ_1, Σ_1) be parameters of f_1 and (μ_2, Σ_2) for f_2.

- The product of the PDFs $f_1(x)f_2(x)$ is proportional to a Gaussian density,

 $$\Sigma = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1}.$$

 mean of $\mu = \Sigma \Sigma_1^{-1} \mu_1 + \Sigma \Sigma_2^{-1} \mu_2$,

 although this density may not be normalized (may not integrate to 1 over all x).

- But if we can write $p(x) \propto f_1(x)f_2(x)$ then this density must be normalized, so x is Gaussian with the above mean/covariance.
 - Special case: if $\Sigma_1 = I$ and $\Sigma_2 = I$ then $\mu = \frac{\mu_1 + \mu_2}{2}$ and $\Sigma = \frac{1}{2} I$.
Problems with Multivariate Gaussian

- Why not the multivariate Gaussian distribution?
 - Still not robust, may want to consider multivariate Laplace or multivariate T.
 - These require numerical optimization to compute MLE/MAP.
Problems with Multivariate Gaussian

- Why not the multivariate Gaussian distribution?
 - Still **not robust**, may want to consider multivariate Laplace of multivariate T.
 - Still **unimodal**, which often leads to very poor fit.
Outline

1. Properties of Multivariate Gaussian
2. Mixture Models
1 Gaussian for Multi-Modal Data

- Major drawback of Gaussian is that it’s uni-modal.
 - It gives a terrible fit to data like this:

- If Gaussians are all we know, how can we fit this data?
We can fit this data by using two Gaussians.

Half the samples are from Gaussian 1, half are from Gaussian 2.
Mixture of Gaussians

Our probability density in this example is given by

\[p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \frac{1}{2} \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}}, \]

We need the \((1/2)\) factors so it still integrates to 1.
Mixture of Gaussians

- If data comes from one Gaussian more often than the other, we could use

\[
p(x^i | \mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi_1, \pi_2) = \pi_1 p(x^i | \mu_1, \Sigma_1) + \pi_2 p(x^i | \mu_2, \Sigma_2),
\]

where \(\pi_1 \) and \(\pi_2 \) are non-negative and sum to 1.
Mixture of Gaussians

- In general we might have mixture k Gaussians with different weights.

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c \cdot p(x \mid \mu_c, \Sigma_c),$$

Where the π_c are non-negative and sum to 1. We can use it to model complicated densities with Gaussians (like RBFs).

- “Universal approximator”: can model any continuous density on compact set.
Properties of Multivariate Gaussian Mixture Models

Mixture of Gaussians

- Gaussian vs. mixture of 2 Gaussian densities in 2D:

- Marginals will also be mixtures of Gaussians.
Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:
Mixture of Gaussians

- Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:
Mixture of Gaussians

How a mixture of Gaussian “generates” data:
1. Sample cluster c based on prior probabilities π_c (categorical distribution).
2. Sample example x based on mean μ_c and covariance Σ_c.

We usually fit these models with **expectation maximization** (EM):
- EM is a general method for fitting models with hidden variables.
- For mixture of Gaussians: we treat cluster c as a hidden variable.
Summary

- **Multivariate Gaussian** generalizes univariate Gaussian for multiple variables.
 - Closed-form MLE given by sample mean and covariance.
 - Closed under affine transformations, marginalization, conditioning, and products.
 - But unimodal and not robust.

- **Mixture of Gaussians** writes probability as convex comb. of Gaussian densities.
 - Can model arbitrary continuous densities.

- Next time: dealing with missing data.
Positive-Definiteness of Θ and Checking Positive-Definiteness

- If we define centered vectors $\tilde{x}^i = x^i - \mu$ then empirical covariance is

$$S = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)(x^i - \mu)^T = \sum_{i=1}^{n} \tilde{x}^i(\tilde{x}^i)^T = \tilde{X}^T \tilde{X} \succeq 0,$$

so S is positive semi-definite but not positive-definite by construction.

- If data has noise, it will be positive-definite with n large enough.

- For $\Theta \succ 0$, note that for an upper-triangular T we have

$$\log |T| = \log(\text{prod}(\text{eig}(T))) = \log(\text{prod}(\text{diag}(T))) = \text{Tr}(\log(\text{diag}(T))),$$

where we’ve used Matlab notation.

- So to compute $\log |\Theta|$ for $\Theta \succ 0$, use Cholesky to turn into upper-triangular.

 Bonus: Cholesky will fail if $\Theta \succ 0$ is not true, so it checks constraint.