
Valid Kernels and Representer Theorem Structured Prediction

CPSC 540: Machine Learning
Structured Prediction

Mark Schmidt

University of British Columbia

Winter 2018

Valid Kernels and Representer Theorem Structured Prediction

Last Time: Kernel Trick

Alternative approach to L2-regularized least squares with features Z:
1 Derive non-linear features Z from X.
2 Compute K = ZZT containing all inner products 〈zi, zj〉 .
3 Fit model,

v = (ZZT︸ ︷︷ ︸
K

+ λI)−1y,

4 Use the model to make predictions,

ŷ = Z̃ZT︸ ︷︷ ︸
K̃

v.

This assumes we can compute Z.

Allows exponential- or infinite-sized features.
Instead of features, we could work with “similarity” k(xi, xj).

Valid Kernels and Representer Theorem Structured Prediction

Last Time: Kernel Trick

Kernel trick for L2-regularized least squares with features Z:
1 (No need for explicit features Z)
2 Compute K = ZZT containing all inner products 〈zi, zj〉 = k(xi, xj).
3 Fit model,

v = (K︸︷︷︸
n×n

+ λI)−1y,

4 Use the model to make predictions,

ŷ = K̃︸︷︷︸
t×n

v.

This does not assume we can compute Z.

Allows exponential- or infinite-sized features.
Instead of features, we could work with “similarity” k(xi, xj).

Valid Kernels and Representer Theorem Structured Prediction

Valid Kernels

Can we use any function k for our kernel/similarity function k(xi, xj)?

We need to have kernel k be an inner product in some space:

There exists transformation zi = φ(xi) such that k(xi, xj) = 〈φ(xi), φ(xj)〉.

We can decompose a (continuous or finite-domain) function k into

k(xi, xj) = 〈φ(xi), φ(xj)〉,

iff it is symmetric and for any finite {x1, x2, . . . , xn} we have K � 0.

For finite domains you can show existence of φ using spectral theorem (bonus).

The general case is called Mercer’s Theorem.

Valid Kernels and Representer Theorem Structured Prediction

Valid Kernels

Mercer’s Theorem is nice in theory, what do we do in practice?

You could show explicitly that k(xi, xj) = 〈〈φ(xi), φ(xj)〉 for some function φ.
You could that K is positive semi-definite by construction.
Or you can show k is constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)

Valid Kernels and Representer Theorem Structured Prediction

Constructing Valid Kernels
If k1(x

i, xj) and k2(x
i, xj) are valid kernels, then the following are valid kernels:

Non-negative scaling: αk1(xi, xj) for α ≥ 0.
Sum: k1(xi, xj) + k2(xi, xj).
Product: k1(xi, xj)k2(xi, xj).

Special case: φ(xi)k1(x
i, xj)φ(xj) for any function φ.

Exponentiation: exp(k1(xi, xj)).
Recursion: k1(φ(xi), φ(xj)) for any function φ.

Example: Gaussian-RBF kernel:

k(xi, xj) = exp

(
−‖x

i − xj‖2

2σ2

)
= exp

(
−‖x

i‖2

2σ2
+

1

σ2
(xi)Txj −

1

2σ2
‖xi‖2

)

= exp

(
−‖x

i‖2

2σ2

)
︸ ︷︷ ︸

φ(xi)

exp

 1

σ2︸︷︷︸
α>0

(xi)Txj︸ ︷︷ ︸
valid


︸ ︷︷ ︸

exp(valid)

exp

(
−‖x

j‖2

2σ2

)
︸ ︷︷ ︸

φ(xj)

.

Valid Kernels and Representer Theorem Structured Prediction

Models allowing Kernel Trick

Besides L2-regularized least squares, when can we apply the kernel trick?
Distance-based methods from CPSC 340:

‖zi − zj‖2 = 〈zi, zi〉 − 2〈zi, zj〉+ 〈zj , zj〉
= k(xi, xi)− 2k(xi, xj) + k(xj , xj).

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Distance-based outlier detection (KNN-based, outlier ratio)
“Amazon product recommendation”.
Multi-dimensional scaling (ISOMAP, t-SNE).
Label propagation.

L2-regularized linear models (today).
Eigenvalue methods:

Principle component analysis (need trick for centering in high-dimensional space).
Canonical correlation analysis.
Spectral clustering.

Valid Kernels and Representer Theorem Structured Prediction

Representer Theorem

Consider linear model with differentiable losses fi and L2-regularization,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2.

Setting the gradient equal to zero we get

0 =

n∑
i=1

∇fi(wTxi)xi + λw.

So any solution w∗ be can written as a linear combination of features xi,

w∗ = − 1

λ

n∑
i=1

∇fi((w∗)Txi)︸ ︷︷ ︸
vi

xi =

n∑
i=1

vix
i = XT v.

Valid Kernels and Representer Theorem Structured Prediction

Representer Theorem

Let’s use the representation w = XT v in original problem,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2

= argmin
v∈Rn

n∑
i=1

fi(v
TXxi︸ ︷︷ ︸

(xi)TXT v

) +
λ

2
‖XT v‖2.

Now defining f(u) =
∑n

i=1 fi(ui) for a vector u we have

≡ argmin
v∈Rn

f(XXT v) +
λ

2
vTXXT v

≡ argmin
v∈Rn

f(Kv) +
λ

2
vTKv.

Which is a kernelized version of the problem.

Valid Kernels and Representer Theorem Structured Prediction

Representer Theorem

Using w = XT v, at test time we use

ŷ = X̃w

= X̃XT v

= K̃v,

or that each ŷi =
∑n

j=1 vjk(x̃i, xj).

That prediction is a linear combination of kernels is called representer theorem.

It holds under more general conditions, including non-smooth fi like SVMs.

Valid Kernels and Representer Theorem Structured Prediction

Multiple Kernel Learning

We can kernelize L2-regularized linear models,

argmin
w∈Rd

f(Xw, y) +
λ

2
‖w‖2 ⇔ argmin

v∈Rn
f(Kv, y) +

λ

2
‖v‖2K ,

under fairly general conditions.
What if we have multiple potential kernels and don’t know which to use?

Obvious approach: cross-validation to choose the best one.
What if we have multiple potentially-relevant kernels?

Multiple kernel learning:

argmin
v1∈Rn,v2∈Rn,...,vk∈Rn

f

(
k∑

c=1

Kcvc, y

)
+

1

2

k∑
c=1

λc‖v‖Kc .

Defines a valid kernel and is convex if f is convex (affine function).
Group L1-regularization of parameters associated with each kernel.

Selects a sparse set of kernels.
Hiearchical kernel learning:

Use structured sparsity to search through exponential number of kernels.

Valid Kernels and Representer Theorem Structured Prediction

Large-Scale Kernel Methods

Obvious drawback of kernel methods: we can’t compute/store K for large n.

It has O(n2) elements.

Standard general approaches:
1 Kernels with special structure (low bandwidth, low-rank, Toepelitz, Kronecker).
2 Losses that are sparse in dual (SVMs, support vector regression, 1-class SVM, etc.).
3 Subsampling methods (Nystrom approximation, subset of regressors).
4 Explicit feature construction (random kitchen sinks, homogeneous kernel maps).

If you’re interested, I put the slides from last year here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

Valid Kernels and Representer Theorem Structured Prediction

Outline

1 Valid Kernels and Representer Theorem

2 Structured Prediction

Valid Kernels and Representer Theorem Structured Prediction

Motivation: Structured Prediction

Classical supervised learning focuses on predicting single discrete/continuous label:

Structured prediction allows general objects as labels:

Valid Kernels and Representer Theorem Structured Prediction

“Classic” ML for Structured Prediction

Two ways to formulate as “classic” machine learning:
1 Treat each word as a different class label.

Problem: there are too many possible words.
You will never recognize new words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
But some tasks don’t have a natural decomposition.
Ignores dependencies between letters.

Valid Kernels and Representer Theorem Structured Prediction

Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and features from neighbouring images?

This classic appraoch can be good or bad depending on goal:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.

Valid Kernels and Representer Theorem Structured Prediction

Examples of Structured Prediction

Valid Kernels and Representer Theorem Structured Prediction

Examples of Structured Prediction

Valid Kernels and Representer Theorem Structured Prediction

Examples of Structured Prediction

Valid Kernels and Representer Theorem Structured Prediction

Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.

Valid Kernels and Representer Theorem Structured Prediction

Supervised Learning vs. Structured Prediction

In 340 we focused a lot on “classic” supervised learning:

Model p(y|x) where y is a single discrete/continuous variable.

In the next few classes we’ll focus on density estimation:

Model p(x) where x is a vector or general object.

Structured prediction is the logical combination of these:

Model p(y|x) where y is a vector or general object.

Valid Kernels and Representer Theorem Structured Prediction

3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:
1 Generative models use p(y|x) ∝ p(y, x) as in naive Bayes.

Turns structured prediction into density estimation.

But we’ll want to go beyond naive Bayes.

2 Discriminative models directly fit p(y|x) as in logistic regression.
View structured prediction as conditional density estimation.

Lets you use complicated features x that make the task easier.

3 Discriminant functions just try to map from x to y as in SVMs.

Now you don’t even need to worry about calibrated probabilities.

Valid Kernels and Representer Theorem Structured Prediction

Density Estimation

The next topic we’ll focus on is density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 X̃ =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


What is probability of xi for a generic feature vector xi?

For the training data this is easy:
Set p(xi) to “number of times xi is in the training data” divided by n.

We’re interested in the probability of test data,
What is probability of seeing feature vector x̃i for a new example i.

Valid Kernels and Representer Theorem Structured Prediction

Density Estimation Applications

Density estimation could be called a “master problem” in machine learning.

Solving this problem lets you solve a lot of other problems.

If you have p(xi) then:

Outliers could be cases where p(xi) is small.
Missing data in xi can be “filled in” based on p(xi).
Vector quantization can be achieved by assigning shorter code to high p(xi) values.
Association rules can be computed from conditionals p(xij |xik).

We can also do density estimation on (xi, yi) jointly:

Supervised learning can be done by conditioning to give p(yi|xi).
Feature relevance can be analyzed by looking at p(xi|yi).

Valid Kernels and Representer Theorem Structured Prediction

Unsupervised Learning

Density estimation is an unsupervised learning method.

We only have xi values, but no explicit target labels.
You want to do “something” with them.

Some unsupervised learning tasks from CPSC 340:

Clustering: what types of xi are there?
Association rules: which xj and xk occur together?
Outlier detection: is this a “normal” xi?
Latent-factors: what “parts” are xi made from?
Data visualization: what do the high-dimensional xi look like?
Ranking: which are the most important xi?

You can probably address all these if you can do density estimation.

Valid Kernels and Representer Theorem Structured Prediction

Summary

Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.

Structured prediction is supervised learning with a complicated yi.

3 flavours are generative models, discriminative models, and discriminant functions.

Density estimation: unsupervised modelling of probability of feature vectors.

Next time: everyone’s favourite distributions...

Valid Kernels and Representer Theorem Structured Prediction

Constructing Feature Space (Finite Domain)

Why is positive semi-definiteness important?

With finite domain we can define K over all points.
By symmetry of K it has a spectral decomposition

K = UT ΛU,

and K � 0 means λi ≥ 0 and so we have a real diagonal Λ
1
2 .

Thus we hav K = UT Λ
1
2 Λ

1
2U = (Λ

1
2U)T (Λ

1
2U) and we could use

Z = Λ
1
2U, which means zi = Λ

1
2U:,i.

The above reasoning isn’t quite right for continuous domains.

The more careful generalization is known as “Mercer’s theorem”.

	Valid Kernels and Representer Theorem
	Structured Prediction

