Last Time: Kernel Trick

- Alternative approach to L2-regularized least squares with features Z:
 1. Derive non-linear features Z from X.
 2. Compute $K = ZZ^T$ containing all inner products $\langle z^i, z^j \rangle$.
 3. Fit model,
 \[
 v = (ZZ^T + \lambda I)^{-1} y,
 \]
 4. Use the model to make predictions,
 \[
 \hat{y} = \tilde{Z} Z^T v.
 \]

- This assumes we can compute Z.

1. $\text{Derive non-linear features } Z \text{ from } X.$
2. $\text{Compute } K = ZZ^T \text{ containing all inner products } \langle z^i, z^j \rangle.$
3. $\text{Fit model, } v = (ZZ^T + \lambda I)^{-1} y,$
4. $\text{Use the model to make predictions, } \hat{y} = \tilde{Z} Z^T v.$

This assumes we can compute $Z.$
Last Time: Kernel Trick

- **Kernel trick for** L2-regularized least squares with features Z:
 1. (No need for explicit features Z)
 2. Compute $K = ZZ^T$ containing all inner products $\langle z^i, z^j \rangle = k(x^i, x^j)$.
 3. Fit model,
 \[v = (K_{n \times n} + \lambda I)^{-1}y, \]
 4. Use the model to make predictions,
 \[\hat{y} = \tilde{K}_{t \times n}v. \]

- This does not assume we can compute Z.
 - Allows exponential- or infinite-sized features.
 - Instead of features, we could work with “similarity” $k(x^i, x^j)$.

Valid Kernels and Representer Theorem

Structured Prediction
Valid Kernels

- Can we use any function k for our kernel/similarity function $k(x^i, x^j)$?

- We need to have kernel k be an inner product in some space:
 - There exists transformation $z^i = \phi(x^i)$ such that $k(x^i, x^j) = \langle \phi(x^i), \phi(x^j) \rangle$.

We can decompose a (continuous or finite-domain) function k into

$$k(x^i, x^j) = \langle \phi(x^i), \phi(x^j) \rangle,$$

iff it is symmetric and for any finite $\{x^1, x^2, \ldots, x^n\}$ we have $K \succeq 0$.

- For finite domains you can show existence of ϕ using spectral theorem (bonus).
 - The general case is called **Mercer’s Theorem**.
Mercer’s Theorem is nice in theory, what do we do in practice?
- You could show explicitly that $k(x^i, x^j) = \langle \phi(x^i), \phi(x^j) \rangle$ for some function ϕ.
- You could that K is positive semi-definite by construction.
- Or you can show k is constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)
Constructing Valid Kernels

- If \(k_1(x^i, x^j) \) and \(k_2(x^i, x^j) \) are valid kernels, then the following are valid kernels:
 - Non-negative scaling: \(\alpha k_1(x^i, x^j) \) for \(\alpha \geq 0 \).
 - Sum: \(k_1(x^i, x^j) + k_2(x^i, x^j) \).
 - Product: \(k_1(x^i, x^j)k_2(x^i, x^j) \).
 - Special case: \(\phi(x^i)k_1(x^i, x^j)\phi(x^j) \) for any function \(\phi \).
 - Exponentiation: \(\exp(k_1(x^i, x^j)) \).
 - Recursion: \(k_1(\phi(x^i), \phi(x^j)) \) for any function \(\phi \).

- Example: Gaussian-RBF kernel:

\[
k(x^i, x^j) = \exp \left(-\frac{\|x^i - x^j\|^2}{2\sigma^2} \right) = \exp \left(-\frac{\|x^i\|^2}{2\sigma^2} + \frac{1}{\sigma^2} (x^i)^T x^j - \frac{1}{2\sigma^2} \|x^i\|^2 \right)
\]

\[
= \exp \left(-\frac{\|x^i\|^2}{2\sigma^2} \right) \exp \left(\frac{1}{\sigma^2} (x^i)^T x^j \right) \exp \left(-\frac{\|x^j\|^2}{2\sigma^2} \right).\]
Models allowing Kernel Trick

Besides L2-regularized least squares, when can we apply the kernel trick?

- **Distance-based** methods from CPSC 340:

$$\|z^i - z^j\|^2 = \langle z_i, z_i \rangle - 2 \langle z_i, z_j \rangle + \langle z_j, z_j \rangle$$

$$= k(x^i, x^i) - 2k(x^i, x^j) + k(x^j, x^j).$$

- k-nearest neighbours.
- Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
- Distance-based outlier detection (KNN-based, outlier ratio)
- “Amazon product recommendation”.
- Multi-dimensional scaling (ISOMAP, t-SNE).
- Label propagation.
- **L2-regularized linear models** (today).
- **Eigenvalue** methods:
 - Principle component analysis (need trick for centering in high-dimensional space).
 - Canonical correlation analysis.
 - Spectral clustering.
Representer Theorem

- Consider linear model with differentiable losses f_i and L2-regularization,

$$\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} f_i(w^T x^i) + \frac{\lambda}{2} \|w\|^2.$$

- Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} \nabla f_i(w^T x^i)x^i + \lambda w.$$

- So any solution w^* be can written as a linear combination of features x^i,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^{n} \nabla f_i((w^*)^T x^i)x^i = \sum_{i=1}^{n} v_i x^i = X^T v.$$
Representer Theorem

- Let’s use the representation $w = X^T v$ in original problem,

$$
\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} f_i(w^T x^i) + \frac{\lambda}{2} \|w\|^2
$$

$$
= \arg\min_{v \in \mathbb{R}^n} \sum_{i=1}^{n} f_i(\underbrace{v^T X x^i}_{(x^i)^T X^T v}) + \frac{\lambda}{2} \|X^T v\|^2.
$$

- Now defining $f(u) = \sum_{i=1}^{n} f_i(u_i)$ for a vector u we have

$$
\equiv \arg\min_{v \in \mathbb{R}^n} f(X X^T v) + \frac{\lambda}{2} v^T X X^T v
$$

$$
\equiv \arg\min_{v \in \mathbb{R}^n} f(K v) + \frac{\lambda}{2} v^T K v.
$$

- Which is a kernelized version of the problem.
Representer Theorem

- Using $w = X^T v$, at test time we use

 $$
 \hat{y} = \tilde{X} w \\
 = \tilde{X} X^T v \\
 = \tilde{K} v,
 $$

 or that each $\hat{y}^i = \sum_{j=1}^{n} v_j k(\tilde{x}^i, x^j)$.

- That prediction is a linear combination of kernels is called representer theorem.
 - It holds under more general conditions, including non-smooth f_i like SVMs.
We can kernelize L2-regularized linear models,

\[
\arg\min_{w \in \mathbb{R}^d} f(Xw, y) + \frac{\lambda}{2} \|w\|^2 \Leftrightarrow \arg\min_{v \in \mathbb{R}^n} f(Kv, y) + \frac{\lambda}{2} \|v\|^2_{K},
\]

under fairly general conditions.

What if we have multiple potential kernels and don’t know which to use?

- Obvious approach: cross-validation to choose the best one.

What if we have multiple potentially-relevant kernels?

- Multiple kernel learning:

\[
\arg\min_{v_1 \in \mathbb{R}^n, v_2 \in \mathbb{R}^n, \ldots, v_k \in \mathbb{R}^n} f \left(\sum_{c=1}^{k} K_c v_c, y \right) + \frac{1}{2} \sum_{c=1}^{k} \lambda_c \|v_c\|_{K_c}.
\]

- Defines a valid kernel and is convex if \(f \) is convex (affine function).
- Group L1-regularization of parameters associated with each kernel.
 - Selects a sparse set of kernels.
- Hierarchical kernel learning:
 - Use structured sparsity to search through exponential number of kernels.
Obvious drawback of kernel methods: we can’t compute/store K for large n.
- It has $O(n^2)$ elements.

Standard general approaches:
1. Kernels with special structure (low bandwidth, low-rank, Toeplitz, Kronecker).
2. Losses that are sparse in dual (SVMs, support vector regression, 1-class SVM, etc.).
4. Explicit feature construction (random kitchen sinks, homogeneous kernel maps).

If you’re interested, I put the slides from last year here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf
Outline

1. Valid Kernels and Representer Theorem

2. Structured Prediction
Motivation: Structured Prediction

Classical supervised learning focuses on predicting single discrete/continuous label:

Input: P

Output: "P"

Structured prediction allows general objects as labels:

Input: Paris

Output: "Paris"
“Classic” ML for Structured Prediction

Input: Paris

Output: "Paris"

Two ways to formulate as “classic” machine learning:

1. Treat each word as a different class label.
 - Problem: there are too many possible words.
 - You will never recognize new words.

2. Predict each letter individually:
 - Works if you are really good at predicting individual letters.
 - But some tasks don’t have a natural decomposition.
 - Ignores dependencies between letters.
Motivation: Structured Prediction

- What letter is this?
 \[\sqrt{ } \]

- What are these letters?
 \[\text{Van} \text{ancouver} \text{re} \]

- Predict each letter using “classic” ML and features from neighbouring images?

- This classic approach can be good or bad depending on goal:
 - Good if you want to predict individual letters.
 - Bad if goal is to predict entire word.
Examples of Structured Prediction

Translate

I moved to Canada in 2013, as indicated on my 2013 declaration of revenue. I received no income from French sources in 2014. How can I owe 12 thousand Euros?


```
S
  |NP
  |  |Det
  |  |N
  |  The
  |  teacher
  |VP
  |  V
  |  |Det
  |  |N
  |  the
  |  student
```

Valid Kernels and Representer Theorem

Structured Prediction
Examples of Structured Prediction

Coding Regions

Non-coding Regions
(Containing large TE content)
Examples of Structured Prediction
Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.

What do you see?
By shifting perspective you might see an old woman or a young woman.
In 340 we focused a lot on “classic” supervised learning:
- Model $p(y|x)$ where y is a single discrete/continuous variable.

In the next few classes we’ll focus on density estimation:
- Model $p(x)$ where x is a vector or general object.

Structured prediction is the logical combination of these:
- Model $p(y|x)$ where y is a vector or general object.
3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:

1. **Generative models** use $p(y|x) \propto p(y,x)$ as in naive Bayes.
 - Turns structured prediction into density estimation.
 - But we'll want to go beyond naive Bayes.

2. **Discriminative models** directly fit $p(y|x)$ as in logistic regression.
 - View structured prediction as conditional density estimation.
 - Lets you use complicated features x that make the task easier.

3. **Discriminant functions** just try to map from x to y as in SVMs.
 - Now you don’t even need to worry about calibrated probabilities.
The next topic we’ll focus on is **density estimation**:

\[
X = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
\end{bmatrix} \quad \tilde{X} = \begin{bmatrix}
\end{bmatrix}
\]

- What is probability of \(x^i \) for a generic feature vector \(x^i \)?

For the training data this is easy:

- Set \(p(x^i) \) to “number of times \(x^i \) is in the training data” divided by \(n \).

We’re interested in the **probability of test data**,

- What is probability of seeing feature vector \(\tilde{x}^i \) for a new example \(i \).
Density Estimation Applications

- Density estimation could be called a “master problem” in machine learning.
 - Solving this problem lets you solve a lot of other problems.

- If you have $p(x^i)$ then:
 - **Outliers** could be cases where $p(x^i)$ is small.
 - **Missing data** in x^i can be “filled in” based on $p(x^i)$.
 - **Vector quantization** can be achieved by assigning shorter code to high $p(x^i)$ values.
 - **Association rules** can be computed from conditionals $p(x^i_j | x^i_k)$.

- We can also do density estimation on (x^i, y^i) jointly:
 - **Supervised learning** can be done by conditioning to give $p(y^i | x^i)$.
 - **Feature relevance** can be analyzed by looking at $p(x^i | y^i)$.
Unsupervised Learning

- Density estimation is an **unsupervised learning** method.
 - We only have x^i values, but no explicit target labels.
 - You want to do “something” with them.

- Some unsupervised learning tasks from CPSC 340:
 - Clustering: what types of x^i are there?
 - Association rules: which x_j and x_k occur together?
 - Outlier detection: is this a “normal” x^i?
 - Latent-factors: what “parts” are x^i made from?
 - Data visualization: what do the high-dimensional x^i look like?
 - Ranking: which are the most important x^i?

- You can probably address all these if you can do density estimation.
Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.

Structured prediction is supervised learning with a complicated y^i.
- 3 flavours are generative models, discriminative models, and discriminant functions.

Density estimation: unsupervised modelling of probability of feature vectors.

Next time: everyone’s favourite distributions...
Valid Kernels and Representer Theorem

Constructing Feature Space (Finite Domain)

- Why is positive semi-definiteness important?
 - With finite domain we can define K over all points.
 - By symmetry of K it has a spectral decomposition
 \[K = U^T \Lambda U, \]
 and $K \succeq 0$ means $\lambda_i \geq 0$ and so we have a real diagonal $\Lambda^{\frac{1}{2}}$.
 - Thus we have $K = U^T \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} U = (\Lambda^{\frac{1}{2}} U)^T (\Lambda^{\frac{1}{2}} U)$ and we could use
 \[Z = \Lambda^{\frac{1}{2}} U, \text{ which means } z_i = \Lambda^{\frac{1}{2}} U_{:,i}. \]

- The above reasoning isn’t quite right for continuous domains.
- The more careful generalization is known as “Mercer’s theorem”.