CPSC 540: Machine Learning Structured Prediction

Mark Schmidt

University of British Columbia

Winter 2018

Valid Kernels and Representer Theorem

Structured Prediction

Last Time: Kernel Trick

- Alternative approach to L2-regularized least squares with features Z:
 - **①** Derive non-linear features Z from X.
 - 2 Compute $K = ZZ^T$ containing all inner products $\langle z^i, z^j \rangle$.
 - I Fit model,

$$v = (\underbrace{ZZ^T}_K + \lambda I)^{-1}y,$$

Use the model to make predictions,

$$\hat{y} = \underbrace{\tilde{Z}Z^T}_{\tilde{K}} v.$$

• This assumes we can compute Z.

Last Time: Kernel Trick

- Kernel trick for L2-regularized least squares with features Z:
 - (No need for explicit features Z)
 Compute K = ZZ^T containing all inner products ⟨zⁱ, z^j⟩ = k(xⁱ, x^j).
 Fit model,

$$v = (\underbrace{K}_{n \times n} + \lambda I)^{-1} y,$$

Use the model to make predictions,

$$\hat{y} = \underbrace{\tilde{K}}_{t \times n} v.$$

- This does not assume we can compute Z.
 - Allows exponential- or infinite-sized features.
 - Instead of features, we could work with "similarity" $k(x^i,x^j)$.

Valid Kernels

- Can we use any function k for our kernel/similarity function $k(x^i,x^j)?$
- We need to have kernel k be an inner product in some space:
 - There exists transformation $z^i = \phi(x^i)$ such that $k(x^i, x^j) = \langle \phi(x^i), \phi(x^j) \rangle$.

We can decompose a (continuous or finite-domain) function k into

$$k(x^i, x^j) = \langle \phi(x^i), \phi(x^j) \rangle,$$

iff it is symmetric and for any finite $\{x^1, x^2, \ldots, x^n\}$ we have $K \succeq 0$.

For finite domains you can show existence of φ using spectral theorem (bonus).
 The general case is called Mercer's Theorem.

Valid Kernels

- Mercer's Theorem is nice in theory, what do we do in practice?
 - You could show explicitly that $k(x^i, x^j) = \langle \langle \phi(x^i), \phi(x^j) \rangle$ for some function ϕ .
 - You could that K is positive semi-definite by construction.
 - Or you can show k is constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)

Constructing Valid Kernels

- If $k_1(x^i, x^j)$ and $k_2(x^i, x^j)$ are valid kernels, then the following are valid kernels:
 - Non-negative scaling: $\alpha k_1(x^i, x^j)$ for $\alpha \ge 0$.
 - Sum: $k_1(x^i, x^j) + k_2(x^i, x^j)$.
 - Product: $k_1(x^i, x^j)k_2(x^i, x^j)$.
 - Special case: $\phi(x^i)k_1(x^i, x^j)\phi(x^j)$ for any function ϕ .
 - Exponentiation: $\exp(k_1(x^i, x^j))$.
 - Recursion: $k_1(\phi(x^i), \phi(x^j))$ for any function ϕ .
- Example: Gaussian-RBF kernel:

$$k(x^{i}, x^{j}) = \exp\left(-\frac{\|x^{i} - x^{j}\|^{2}}{2\sigma^{2}}\right) = \exp\left(-\frac{\|x^{i}\|^{2}}{2\sigma^{2}} + \frac{1}{\sigma^{2}}(x^{i})^{T}x_{j} - \frac{1}{2\sigma^{2}}\|x^{i}\|^{2}\right)$$
$$= \underbrace{\exp\left(-\frac{\|x^{i}\|^{2}}{2\sigma^{2}}\right)}_{\phi(x^{i})} \underbrace{\exp\left(\underbrace{\frac{1}{\sigma^{2}}}_{\alpha>0}\underbrace{(x^{i})^{T}x^{j}}_{\text{valid}}\right)}_{\exp(\text{valid}} \underbrace{\exp\left(-\frac{\|x^{j}\|^{2}}{2\sigma^{2}}\right)}_{\phi(x^{j})}.$$

Models allowing Kernel Trick

- Besides L2-regularized least squares, when can we apply the kernel trick?
 - Distance-based methods from CPSC 340:

$$\begin{aligned} \|z^i - z^j\|^2 &= \langle z_i, z_i \rangle - 2\langle z^i, z^j \rangle + \langle z^j, z_j \rangle \\ &= k(x^i, x^i) - 2k(x^i, x^j) + k(x^j, x^j). \end{aligned}$$

- k-nearest neighbours.
- Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
- Distance-based outlier detection (KNN-based, outlier ratio)
- "Amazon product recommendation".
- Multi-dimensional scaling (ISOMAP, t-SNE).
- Label propagation.
- L2-regularized linear models (today).
- Eigenvalue methods:
 - Principle component analysis (need trick for centering in high-dimensional space).
 - Canonical correlation analysis.
 - Spectral clustering.

Representer Theorem

• Consider linear model with differentiable losses f_i and L2-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x^i) + \frac{\lambda}{2} \|w\|^2.$$

• Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} \nabla f_i(w^T x^i) x^i + \lambda w.$$

• So any solution w^* be can written as a linear combination of features x^i ,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^{n} \underbrace{\nabla f_i((w^*)^T x^i)}_{v_i} x^i = \sum_{i=1}^{n} v_i x^i = X^T v$$

Representer Theorem

• Let's use the representation $w = X^T v$ in original problem,

$$\begin{aligned} & \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x^i) + \frac{\lambda}{2} \|w\|^2 \\ & = \underset{v \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n f_i(\underbrace{v^T X x^i}_{(x^i)^T X^T v}) + \frac{\lambda}{2} \|X^T v\|^2 \end{aligned}$$

.

• Now defining $f(u) = \sum_{i=1}^n f_i(u_i)$ for a vector u we have

$$\equiv \underset{v \in \mathbb{R}^n}{\operatorname{argmin}} f(XX^Tv) + \frac{\lambda}{2}v^TXX^Tv$$
$$\equiv \underset{v \in \mathbb{R}^n}{\operatorname{argmin}} f(Kv) + \frac{\lambda}{2}v^TKv.$$

• Which is a kernelized version of the problem.

Representer Theorem

• Using
$$w = X^T v$$
, at test time we use

$$\begin{split} \hat{y} &= \tilde{X}w \\ &= \tilde{X}X^Tv \\ &= \tilde{K}v, \end{split}$$

or that each $\hat{y}^i = \sum_{j=1}^n v_j k(\tilde{x}^i, x^j)$.

• That prediction is a linear combination of kernels is called representer theorem.

• It holds under more general conditions, including non-smooth f_i like SVMs.

Multiple Kernel Learning

• We can kernelize L2-regularized linear models,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(Xw, y) + \frac{\lambda}{2} \|w\|^2 \Leftrightarrow \underset{v \in \mathbb{R}^n}{\operatorname{argmin}} f(Kv, y) + \frac{\lambda}{2} \|v\|_K^2,$$

under fairly general conditions.

- What if we have multiple potential kernels and don't know which to use?
 - Obvious approach: cross-validation to choose the best one.
- What if we have multiple potentially-relevant kernels?
 - Multiple kernel learning:

$$\underset{v_1 \in \mathbb{R}^n, v_2 \in \mathbb{R}^n, \dots, v_k \in \mathbb{R}^n}{\operatorname{argmin}} f\left(\sum_{c=1}^k K_c v_c, y\right) + \frac{1}{2} \sum_{c=1}^k \lambda_c \|v\|_{K_c}.$$

- Defines a valid kernel and is convex if f is convex (affine function).
- Group L1-regularization of parameters associated with each kernel.
 - Selects a sparse set of kernels.
- Hiearchical kernel learning:
 - Use structured sparsity to search through exponential number of kernels.

Large-Scale Kernel Methods

- Obvious drawback of kernel methods: we can't compute/store K for large n.
 - It has $O(n^2)$ elements.
- Standard general approaches:
 - **()** Kernels with special structure (low bandwidth, low-rank, Toepelitz, Kronecker).
 - **Q** Losses that are sparse in dual (SVMs, support vector regression, 1-class SVM, etc.).
 - **Subsampling** methods (Nystrom approximation, subset of regressors).
 - Separation (and the second sec
- If you're interested, I put the slides from last year here: https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

Valid Kernels and Representer Theorem

Structured Prediction

Outline

1 Valid Kernels and Representer Theorem

2 Structured Prediction

Motivation: Structured Prediction

Classical supervised learning focuses on predicting single discrete/continuous label:

Output: "P"

Structured prediction allows general objects as labels:

Output: "Paris"

"Classic" ML for Structured Prediction

Input: Paris

Output: "Paris"

Two ways to formulate as "classic" machine learning:

- Treat each word as a different class label.
 - Problem: there are too many possible words.
 - You will never recognize new words.
- Predict each letter individually:
 - Works if you are really good at predicting individual letters.
 - But some tasks don't have a natural decomposition.
 - Ignores dependencies between letters.

Motivation: Structured Prediction

• What letter is this?

• What are these letters?

- Predict each letter using "classic" ML and features from neighbouring images?
- This classic appraoch can be good or bad depending on goal:
 - Good if you want to predict individual letters.
 - Bad if goal is to predict entire word.

Examples of Structured Prediction

Translate	8+ 🔳
English Spanish French Detect language 👻	English Spanish French - Translate
I moved to Canada in 2013, as indicated on my 2013 × declaration of revenue. I received ho income from French sources in 2014. How can I owe 12 thousand Euros?	Je déménagé au Canada en 2013, comme indiqué sur ma déclaration de revenus 2013. Je recevais aucun revenu de source française en 2014. Comment puis-je dois 12 mille euros?
«I)	☆ 團 ♠)

Structured Prediction

Examples of Structured Prediction

Structured Prediction

Examples of Structured Prediction

Does the brain do structured prediction?

Gestalt effect: "whole is other than the sum of the parts".

What do you see? By shifting perspective you might see an old woman or a young woman.

Supervised Learning vs. Structured Prediction

- In 340 we focused a lot on "classic" supervised learning:
 - Model p(y|x) where y is a single discrete/continuous variable.
- In the next few classes we'll focus on density estimation:
 - Model p(x) where x is a vector or general object.
- Structured prediction is the logical combination of these:
 - Model p(y|x) where y is a vector or general object.

3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:

- - Turns structured prediction into density estimation.
 - But we'll want to go beyond naive Bayes.
- **2** Discriminative models directly fit p(y|x) as in logistic regression.
 - View structured prediction as conditional density estimation.
 - $\bullet\,$ Lets you use complicated features x that make the task easier.
- Discriminant functions just try to map from x to y as in SVMs.
 - Now you don't even need to worry about calibrated probabilities.

Density Estimation

• The next topic we'll focus on is density estimation:

- What is probability of x^i for a generic feature vector x^i ?
- For the training data this is easy:
 - Set $p(x^i)$ to "number of times x^i is in the training data" divided by n.
- We're interested in the probability of test data,
 - What is probability of seeing feature vector \tilde{x}^i for a new example *i*.

Density Estimation Applications

- Density estimation could be called a "master problem" in machine learning.
 - Solving this problem lets you solve a lot of other problems.
- If you have $p(x^i)$ then:
 - Outliers could be cases where $p(x^i)$ is small.
 - Missing data in x^i can be "filled in" based on $p(x^i)$.
 - Vector quantization can be achieved by assigning shorter code to high $p(x^i)$ values.
 - Association rules can be computed from conditionals $p(x_j^i|x_k^i)$.
- We can also do density estimation on (x^i,y^i) jointly:
 - Supervised learning can be done by conditioning to give $p(y^i|x^i)$.
 - Feature relevance can be analyzed by looking at $p(x^i | y^i)$.

Unsupervised Learning

- Density estimation is an unsupervised learning method.
 - We only have x^i values, but no explicit target labels.
 - You want to do "something" with them.
- Some unsupervised learning tasks from CPSC 340:
 - Clustering: what types of x^i are there?
 - Association rules: which x_j and x_k occur together?
 - Outlier detection: is this a "normal" x^i ?
 - Latent-factors: what "parts" are x^i made from?
 - Data visualization: what do the high-dimensional x^i look like?
 - Ranking: which are the most important x^i ?
- You can probably address all these if you can do density estimation.

Summary

- Valid kernels are typically constructed from other valid kernels.
- Representer theorem allows kernel trick for L2-regularized linear models.
- Structured prediction is supervised learning with a complicated y^i .
 - 3 flavours are generative models, discriminative models, and discriminant functions.
- Density estimation: unsupervised modelling of probability of feature vectors.
- Next time: everyone's favourite distributions...

Constructing Feature Space (Finite Domain)

- Why is positive semi-definiteness important?
 - With finite domain we can define K over all points.
 - $\bullet\,$ By symmetry of K it has a spectral decomposition

$$K = U^T \Lambda U,$$

and $K \succeq 0$ means $\lambda_i \ge 0$ and so we have a real diagonal $\Lambda^{\frac{1}{2}}$.

• Thus we hav $K = U^T \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} U = (\Lambda^{\frac{1}{2}} U)^T (\Lambda^{\frac{1}{2}} U)$ and we could use

$$Z = \Lambda^{\frac{1}{2}}U$$
, which means $z_i = \Lambda^{\frac{1}{2}}U_{:,i}$.

- The above reasoning isn't quite right for continuous domains.
- The more careful generalization is known as "Mercer's theorem".