Beyond SAG Digression: Kernel Trick

CPSC 540: Machine Learning

Kernel Methods

Mark Schmidt

University of British Columbia

Winter 2018
Last time: Stochastic Average Gradient (SAG)

We discussed stochastic gradient methods minimizing finite sums,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w),$$

For Lipschitz ∇f and strongly-convex f, ways to get linear convergence:

- Grow the batch size $|B^k|$ fast enough,

$$w^{k+1} = w^k - \alpha_k \frac{1}{|B^k|} \sum_{i \in B^k} f_i(w^k),$$

which makes setting step-size easy but eventually needs all gradients on each iteration.

- Stochastic average gradient (SAG),

$$w^{k+1} = w^k - \frac{\alpha_k}{n} \sum_{i=1}^{n} v_{i_k}^k,$$

where on each step we set $v_{i_k}^k = \nabla f_{i_k}(w^k)$ for one random i_k.

- Only evaluates one gradient per iteration.
We can think of SAG as having a memory:

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n
\end{bmatrix},
\]

where \(v_i^k \) is the gradient \(\nabla f_i(w^k) \) from the last \(k \) where \(i \) was selected.

On each iteration we:
- Randomly choose one of the \(v_i \) and update it to the current gradient.
- We take a step in the direction of the average of these \(v_i \).
SAG Algorithm

- Basic SAG algorithm (maintains $g = \sum_{i=1}^{n} v_i$):
 - Set $g = 0$ and gradient approximation $v_i = 0$ for $i = 1, 2, \ldots, n$.
 - while(1)
 - Sample i from $\{1, 2, \ldots, n\}$.
 - Compute $\nabla f_i(w)$.
 - $g = g - v_i + \nabla f_i(w)$.
 - $v_i = \nabla f_i(w)$.
 - $w = w - \frac{\alpha}{n} g$.

- Iteration cost is $O(d)$, but “lazy updates” allow $O(z)$ with sparse gradients.
- For linear models where $f_i(w) = h(w^T x^i)$, it only requires $O(n)$ memory:
 \[
 \nabla f_i(w) = h'(w^T x^i) x^i .
 \]
 - Least squares, logistic regression, etc.
- For neural networks, would need to store all activations (which seems bad).
Discussion of SAG and Beyond

Bonus slides discuss **practical issues** related to SAG:
- **Setting step-size** with an approximation to L.
- Deciding **when to stop**.
- **Lipschitz sampling** of training examples.
 - Improves rate for SAG, only changes constants for SG.

There are now a bunch of stochastic algorithm with $O(\log(1/\epsilon))$ rates:
- SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
- Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
- Analysis in non-convex settings, including new algorithms for PCA.

Most notable is **SVRG** which gets rid of the memory...
Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

- Start with w_0
- for $s = 0, 1, 2 \ldots$
 - $\nabla f(w_s) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_s)$
 - $w^0 = w_s$
- for $k = 0, 1, 2, \ldots m$
 - Randomly pick $i_k \in \{1, 2, \ldots, n\}$
 - $w^{k+1} = w^k - \alpha_k (\nabla f_{i_k}(w^k) - \nabla f_{i_k}(w_s) + \nabla f(w_s)).$
 - mean zero
- $w_{s+1} = w^k.$

Convergence properties similar to SAG (for suitable m).

- Unbiased: $\mathbb{E}[\nabla f_{i_k}(w_s)] = \nabla f(w_s)$ (special case of “control variate”).
- Theoretically m depends on L, μ, and n.
- In practice $m = n$ usually works.
 - $O(d)$ storage at average cost of 3 gradients per iteration.
Stochastic Subgradient for Infinite Datasets?

- Our analysis of stochastic subgradient used two assumptions on g_{it}:
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{it}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{it}\|^2] \leq B^2$.

- Consider a scenario where we have infinite number of IID samples:
 - We can optimize the test loss,
 $$\arg\min_{w \in \mathbb{R}^d} \mathbb{E}[f_i(w)],$$
 by applying stochastic subgradient on a new IID sample on each iteration.
 - In this setting, we are directly optimizing test loss and cannot overfit.
 - We require $O(1/\epsilon)$ samples to reach test loss accuracy of ϵ (under PL).

- However, keep in mind that the test loss may not be the test error.
 - Linear classifiers approximate 0-1 loss (test error) with logistic/hinge loss (test loss).
Infinite-Data Optimization

- Consider number of training examples so large we can’t go through all examples.
 - Stochastic gradient gets within ϵ of optimal test loss after $t = O(1/\epsilon)$ iterations.

- How does this compare to sampling t examples and optimizing on these?
 - What we usually do: “minimize regularized training loss”.

- How many samples t before training objective is within ϵ of test objective?
 - Minimum possible assumptions: $t = O(1/\epsilon^2)$.
 - Realistic assumptions: $t = O(1/\epsilon)$.
 - Strong assumptions: $t = O(\log(1/\epsilon))$.

“Realistic”: n iterations of stochastic gradient on n examples is optimal!?!?
- Almost always worse empirically than methods which do multiple passes.
- Constants matter for test data (better optimization improves constants).
End of Part 1: Key Ideas

- Typical ML problems are written as optimization problem

\[
\arg\min_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w^T x^i) + \lambda r(w).
\]

- Convex optimization packages:
 - For the special case when \(F \) is convex and \(d \) is small.

- Gradient descent:
 - Applies when \(F \) is differentiable, yields iteration cost that is linear in \(d \).
 - Only needs \(O(\log(1/\epsilon)) \) iterations if \(F \) is strongly-convex.
 - Faster versions like Nesterov’s and Newton-like methods exist.

- Proximal gradient:
 - Applies when \(f_i \) is differentiable and \(r \) is “simple” (like L1-regularization).
 - Similar convergence properties to gradient descent, even for non-smooth \(r \).
 - Special case is projected gradient, which allows “simple” constraints.
Typical ML problems are written as optimization problem

$$\arg\min_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w^T x^i) + \lambda r(w).$$

Coordinate optimization:
- Faster than gradient descent if iterations are \(d\)-times cheaper.
- Allows non-smooth \(r\) if it’s separable.

Stochastic subgradient:
- Iteration cost is \(n\)-times cheaper than [sub]gradient descent, and allow \(n = \infty\).
- For non-smooth problems, convergence rate is same as subgradient method.
- For smooth problems, number of iterations is much higher than gradient descent.

SAG and SVRG:
- Special case when \(F\) is smooth.
- Same low cost as stochastic gradient methods.
- But similar convergence rate to gradient descent.
Other Non-Smooth Optimization

- We discussed **structured regularization** to enforce patterns in \(w \):
 - Total-variation regularization and structured sparsity.

- We can use proximal-gradient versions of the large-scale methods:
 - Coordinate optimization, stochastic subgradient, SAG, and SVRG.

- Keywords for the common non-smooth methods:
 - Proximal-Newton, Chambolle-Pock, ADMM, Frank-Wolfe, mirror descent.

- In previous years we also covered **dual methods**:
 - For cases with non-smooth convex \(f_i \) and L2-regularization.
 - Transforms into a smooth problem where we can apply coordinate optimization.
 - Similar cost to stochastic subgradient, but you can use line-search to set step-size.
 - If you're interested, I put the slides from last year here:
 https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf
Beyond SAG Digression: Kernel Trick

Even Bigger Problems?

- What about datasets that don’t fit on one machine?
 - We need to consider parallel and distributed optimization.

- New issues:
 - Synchronization: we may not want to wait for the slowest machine.
 - Communication: it’s expensive to transfer data and parameters across machines.
 - Failures: in huge-scale settings, machine failure probability is non-trivial.

- “Embarassingly” parallel solution:
 - Split data across machines, each machine computes gradient of their subset.
 - Papers present more fancy methods, but always try this first (“linear speedup”).

- Fancier methods:
 - Asynchronous stochastic subgradient (works fine if you make the step-size smaller).
 - Parallel coordinate optimization (works fine if you make the step-size smaller).
 - Decentralized gradient (needs a smaller step-size and an “EXTRA” trick).
The machine learning reading group (MLRG) this term:
 - Tuesdays from 5-6 in ICICS 146, starting tomorrow.

We’ll be focusing on parallel and distributed methods this term.
Outline

1. Beyond SAG

2. Digression: Kernel Trick
Motivation: Multi-Dimensional Polynomial Basis

- Consider quadratic polynomial basis with only have two features \(x^i \in \mathbb{R}^2 \):
 \[
 \hat{y}^i = w_0 + w_1 x_1^i + w_2 x_2^i + w_2 (x_1^i)^2 + w_3 (x_2^i)^2 + w_4 x_1^i x_2^i.
 \]

- In 340 we saw that we can fit this model using a change of basis:
 \[
 X = \begin{bmatrix}
 0.2 & 0.3 \\
 1 & 0.5 \\
 -0.5 & -0.1
 \end{bmatrix} \quad \Rightarrow \quad Z = \begin{bmatrix}
 1 & 0.2 & 0.3 & (0.2)^2 & (0.3)^2 & 0.2 \cdot 0.3 \\
 1 & 1 & 0.5 & (1)^2 & (0.5)^2 & 1 \cdot 0.5 \\
 1 & -0.5 & -0.1 & (-0.5)^2 & (-0.1)^2 & -0.5 \cdot -0.1
 \end{bmatrix}
 \]

- If you have \(d = 100 \) and \(p = 5 \), there are \(O(100^5) \) possible degree-5 terms:
 \[
 (x_1^i)^5, (x_1^i)^4 x_2^i, (x_1^i)^4 x_3^i, \ldots, (x_1^i)^3 (x_2^i)^2, (x_1^i)^3 (x_2^i)^2, \ldots, (x_1^i)^3 x_2^i x_3^i, \ldots
 \]

- How can we do this when number of features \(k \) in basis is huge?
The "Other" Normal Equations

- Recall the L2-regularized least squares model with basis Z,

$$
\arg\min_{v \in \mathbb{R}^d} \frac{1}{2} \| Zv - y \|^2 + \frac{\lambda}{2} \| v \|^2.
$$

- By solving for $\nabla f(v) = 0$ we get that

$$
v = (Z^T Z + \lambda I_d)_{k \times k}^{-1} Z^T y,
$$

where I_d is the d by d identity matrix.

- An equivalent way to write the solution is:

$$
v = Z^T (ZZ^T + \lambda I_n)_{n \times n}^{-1} y,
$$

by using a variant of the matrix inversion lemma (bonus slide).

- Computing v with this formula is faster if $n << d$:
 - ZZ^T is n by n while $Z^T Z$ is d by d.

Predictions using Equivalent Form

- Given test data \tilde{X}, we predict \hat{y} using:

 \[
 \hat{y} = \tilde{Z}v = \tilde{Z}Z^T(ZZ^T + \lambda I_n)^{-1}y
 \]

 "other" normal equations

- If we define $K = ZZ^T$ (Gram matrix) and $\tilde{K} = \tilde{Z}Z^T$, then we have

 \[
 \hat{y} = \tilde{K}(K + \lambda I_n)^{-1}y,
 \]

 where K is $n \times n$ and \tilde{K} is $t \times n$.

- Key observation behind kernel trick:
 - If we can directly compute K and \tilde{K}, we don't need to form Z or \tilde{Z}.

The **Gram matrix** K is defined by:

$$K = ZZ^T = \begin{bmatrix}
\vdots & (z_1)^T & \vdots \\
\vdots & (z_2)^T & \vdots \\
\vdots & \vdots & \vdots \\
(\vdots) & \vdots & (\vdots) \\
\vdots & (z_n)^T & \vdots \\
\end{bmatrix}
\begin{bmatrix}
z_1 \\
z_2 \\
\vdots \\
z_n \\
\end{bmatrix}
= \begin{bmatrix}
\langle z_1, z_1 \rangle & \langle z_1, z_2 \rangle & \cdots & \langle z_1, z_n \rangle \\
\langle z_2, z_1 \rangle & \langle z_2, z_2 \rangle & \cdots & \langle z_2, z_n \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle z_n, z_1 \rangle & \langle z_n, z_2 \rangle & \cdots & \langle z_n, z_n \rangle \\
\end{bmatrix}
= \begin{bmatrix}
k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\
k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\
\vdots & \vdots & \ddots & \vdots \\
k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n) \\
\end{bmatrix}
$$

- K contains the *inner products* between all training examples in basis z
- \tilde{K} contains the *inner products* between training and test examples.
 - **Kernel trick**: if we can compute $k(x^i, x^j) = \langle z^i, z^j \rangle$, we don’t need z^i and z^j.
Polynomial Kernel

- In 340 we saw the polynomial kernel of degree p,

$$k(x^i, x^j) = (1 + \langle x^i, x^j \rangle)^p,$$

which corresponds to a general degree-p polynomial z^i.

- You can make predictions with these z^i using

$$\hat{y} = \tilde{K}(K + \lambda I)^{-1} y.$$

- Total cost is only $O(n^2d + n^3)$ even though number of features is $O(d^p)$.

- Kernel trick:
 - We have kernel function $k(x^i, x^j)$ that gives $\langle z^i, z^j \rangle$.
 - Skip forming Z and directly form K and \tilde{K}.
 - Size of K is n by n even if Z has exponential or infinite columns.
Guasian-RBF Kernels

- The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
 \[k(x^i, x^j) = \exp \left(-\frac{\|x^i - x^j\|^2}{2\sigma^2} \right). \]

- What features \(z_i \) would lead to this as the inner-product?
 - To simplify, assume \(d = 1 \) and \(\sigma = 1 \),
 \[k(x^i, x^j) = \exp \left(-\frac{1}{2}(x^i)^2 + x^i x^j - \frac{1}{2}(x^j)^2 \right) = \exp \left(-\frac{1}{2}(x^i)^2 \right) \exp(x^i x^j) \exp \left(-\frac{1}{2}(x^j)^2 \right), \]
 so we need \(z_i = \exp(-\frac{1}{2}(x^i)^2)u_i \) where \(u_i u_j = \exp(x^i x^j) \).
 - For this to work for all \(x^i \) and \(x^j \), \(z_i \) must be infinite-dimensional.
 - If we use that
 \[\exp(x^i x^j) = \sum_{k=0}^{\infty} \frac{(x^i)^k (x^j)^k}{k!}, \]
 then we obtain
 \[z_i = \exp \left(-\frac{1}{2}(x^i)^2 \right) \left[1 \quad \frac{1}{\sqrt{1!}} x^i \quad \frac{1}{\sqrt{2!}} (x^i)^2 \quad \frac{1}{\sqrt{3!}} (x^i)^3 \quad \cdots \right]. \]
Kernel Trick for Structured Data

Kernel trick can be useful for structured data:

Consider that doesn't look like this:

\[X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ -1 \\ -1 \\ +1 \end{bmatrix}, \]

but instead looks like this:

\[X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J’achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}. \]

It might be easier to define a “similarity” between sentences than to define features.
A classic “string kernel”:

- We want to compute $k(\text{“cat”}, \text{“cart”})$.
- Weight them by total length in original strings:
 - ‘c’ has lengths (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
- Add up the weighted lengths of common subsequences to get a similarity:

$$k(\text{“cat”}, \text{“cart”}) = \gamma^1 + \gamma^1 + \gamma^1 + \gamma^2 + \gamma^2 + \gamma^3 + \gamma^3 + \gamma^3,$$

where γ is a hyper-parameter controlling influence of length.

Corresponds to exponential feature set (counts/lengths of all subsequences).

- But kernel can be computed in linear time by dynamic programming.

Many variations exist. And there are “image kernels”, “graph kernels”, and so on.

- You can turn probabilities over examples (second half of course) into kernels.
- A survey on the topic is here.
Summary

- **SVRG** removes the memory requirement of SAG.
- **Infinite datasets** can be handle with stochastic subgradient methods.
 - This is theoretically “optimal” in some settings, not optimal in practice.
- **Kernel trick**: allows working with “similarity” instead of features.
 - Also allows exponential- or infinite-sized feature spaces.

Next time:
- Instead of predicting scalar label y^i, we want to predict sentences/images/proteins.
Beyond SAG Digression: Kernel Trick

Equivalent Form of Ridge Regression

Note that \(\hat{X} \) and \(Y \) are the same on the left and right side, so we only need to show that

\[
(X^T X + \lambda I)^{-1} X^T = X^T (XX^T + \lambda I)^{-1}.
\]

(1)

A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is

\[
(E - FH^{-1}G)^{-1} FH^{-1} = E^{-1} F (H - GE^{-1}F)^{-1}.
\]

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write the left side of (1) as

\[
(X^T X + \lambda I)^{-1} X^T = (\lambda I + X^T X)^{-1} X^T = (\lambda I - X^T (-I) X)^{-1} X^T = - (\lambda I - X^T (-I) X)^{-1} X^T (-I)
\]

Now apply the matrix inversion with \(E = \lambda I \) (so \(E^{-1} = (\frac{1}{\lambda}) I \)), \(F = X^T \), \(H = -I \) (so \(H^{-1} = -I \) too), and \(G = X \):

\[
-(\lambda I - X^T (-I) X)^{-1} X^T (-I) = -\left(\frac{1}{\lambda}\right) I X^T (-I - X \left(\frac{1}{\lambda}\right) X^T)^{-1}.
\]

Now use that \((1/\alpha) A^{-1} = (\alpha A)^{-1} \), to push the \(-1/\lambda \) inside the sum as \(-\lambda \),

\[
-\left(\frac{1}{\lambda}\right) I X^T (-I - X \left(\frac{1}{\lambda}\right) X^T)^{-1} = X^T (\lambda I + XX^T)^{-1} = X^T (XX^T + \lambda I)^{-1}.
\]
SAG Practical Implementation Issues

- Implementation tricks:
 - Improve performance at start using $\frac{1}{m}g$ instead of $\frac{1}{n}g$.
 - m is the number of examples visited.
 - Common to use $\alpha_k = 1/L$ and use adaptive L.
 - Start with $\hat{L} = 1$ and double it whenever we don’t satisfy
 \[
 f_{i_k}(w^k) \leq f_{i_k}(w^k) - \frac{1}{2\hat{L}}\|\nabla f_{i_k}(w^k)\|^2,
 \]
 and $\|\nabla f_{i_k}(w^k)\|$ is non-trivial. Costs $O(1)$ for linear models in terms of n and d.
 - Can use $\|w^{k+1} - w^k\|/\alpha = \frac{1}{n}\|g\| \approx \|\nabla f(w^k)\|$ to decide when to stop.
 - Lipschitz sampling of examples improves convergence rate:
 - As with coordinate descent, sample the ones that can change quickly more often.
 - For classic SG methods, this only changes constants.