Beyond SAG

CPSC 540: Machine Learning
Kernel Methods

Mark Schmidt

University of British Columbia

Winter 2018

Digression: Kernel Trick

Beyond SAG Digression: Kernel Trick

Last time: Stochastic Average Gradient (SAG)

@ We discussed stochastic gradient methods minimizing finite sums,

1 n
= n Zz; sz’(w

@ For Lipschitz V f and strongly-convex f, ways to get linear convergence:
o Grow the batch size |B¥| fast enough,

k1 _
w |Bk| Z fi(w®),
icBk

makes setting step-size easy but eventually needs all gradients on each iteration.
o Stochastic average gradient (SAG),

where on each step we set v} = V f; (w") for one random ij.
@ Only evaluates one gradient per iteration.

Beyond SAG Digression: Kernel Trick

Stochastic Average Gradient

@ We can think of SAG as having a memory:

U1
V2

vy ——
where v¥ is the gradient V f;(w*) from the last k where i was selected.

@ On each iteration we:

e Randomly choose one of the v; and update it to the current gradient.
o We take a step in the direction of the avarge of these v;.

SAG Algorithm

@ Basic SAG algorithm (maintains g = > | v;):
e Set g = 0 and gradient approximation v; =0 fori =1,2,...,n.
o while(1)

Sample ¢ from {1,2,...,n}.

o Compute V f;(w).

e g=g—v + Vfi(w).

@ vV, = Vfl(w)

(]

—w—
w=w— 4.

e lteration cost is O(d), but “lazy updates” allow O(z) with sparse gradients.
o For linear models where f;(w) = h(w”xz?), it only requires O(n) memory:

Vfi(w) = h'(wai)\J:L

scalar data

o Least squares, logistic regression, etc.
@ For neural networks, would need to store all activations (which seems bad).

Beyond SAG

Discussion of SAG and Beyond

@ Bonus slides discuss practical issues related to SAG:

e Setting step-size with an approximation to L.
e Deciding when to stop.
e Lipschitz sampling of training examples.

o Improves rate for SAG, only changes constants for SG.

@ There are now a bunch of stochastic algorithm with O(log(1/¢)) rates:

e SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
o Accelerated/Newton-like/coordinate-wise/proximal /ADMM versions.
e Analysis in non-convex settings, including new algorithms for PCA.

@ Most notable is SVRG which gets rid of the memory...

Beyond SAG Digression: Kernel Trick

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.
@ Start with wg
e fors=0,1,2.
o Vf(ws) EZ 1 Vfi(ws)

o w? = w;
o fork=0,1,2,...m
e Randomly pick ix € {1,2,...,n}
o Wt = w* — i (Vfi, (W) — Vi, (ws) + Vf(ws)).

mean zero

® Wg41 = ’U)k.

Convergence properties similar to SAG (for suitable m).
e Unbiased: E[V f;, (ws)] = Vf(ws) (special case of “control variate”).
@ Theoretically m depends on L, y, and n.

@ In practice m = n usually works.
e O(d) storage at average cost of 3 gradients per iteration.

Beyond SAG Digression: Kernel Trick

Stochastic Subgradient for Infinite Datasets?

@ Our analysis of stochastic subgradient used two assumptions on g;,:

o Unbiased approximation of subgradient: E[g;,| = g;.
o Variance is bounded: E[||g;,||?] < B2

@ Consider a scenario where we have infinite number of 1ID samples:
o We can optimize the test loss,

argmin E[f;(w)],

weRd

by applying stochastic subgradient on a new [ID sample on each iteration.
e In this setting, we are directly optimizing test loss and cannot overfit.
o We require O(1/€) samples to reach test loss accuracy of € (under PL).

@ However, keep in mind that the test loss may not be the test error.
o Linear classifiers approximate 0-1 loss (test error) with logistic/hinge loss (test loss).

Beyond SAG

Infinite-Data Optimization

@ Consider number of training examples so large we can’'t go through all examples.
e Stochastic gradient gets within e of optimal test loss after t = O(1/¢) iterations.

@ How does this compare to sampling ¢t examples and optimizing on these?
o What we usually do: “minimize regularized training loss".

How many samples ¢ before training objective is within € of test objective?
o Minimum possible assumptions: ¢ = O(1/¢€?).
o Realistic assumptions: t = O(1/e).
e Strong assumptions: t = O(log(1/¢)).

@ “Realistic”: n iterations of stochastic gradient on n examples is optimal!?!

o Almost always worse empirically than methods which do multiple passes.
o Constants matter for test data (better optimization improves constants).

Beyond SAG

End of Part 1. Key ldeas

@ Typical ML problems are written as optimization problem
argmin F'(w Zfl)+ Ar(w).
weRd

o Convex optimization packages:

e For the special case when F'is convex and d is small.

@ Gradient descent:
o Applies when F' is differentiable, yields iteration cost that is linear in d.
o Only needs O(log(1/e)) iterations if F' is strongly-convex.
o Faster versions like Nesterov's and Newton-like methods exist.

Proximal gradient:
o Applies when f; is differentiable and r is “simple” (like L1-regularization).

Digression: Kernel Trick

e Similar convergence properties to gradient descent, even for non-smooth 7.

e Special case is projected gradient, which allows “simple” constraints.

Beyond SAG Digression: Kernel Trick

End of Part 1. Key ldeas

@ Typical ML problems are written as optimization problem
argmin F'(w Z fi(w” z") + Ar(w).
weR

Coordinate optimization:
o Faster than gradient descent if iterations are d-times cheaper.
e Allows non-smooth r if it's separable.

@ Stochastic subgradient:
e lteration cost is n-times cheaper than [sub]gradient descent, and allow n = co.
e For non-smooth problems, convergence rate is same as subgradient method.
e For smooth problems, number of iterations is much higher than gradient descent.

SAG and SVRG:
e Special case when F' is smooth.
e Same low cost as stochastic gradient methods.
e But similar convergence rate to gradient descent.

Beyond SAG

Other Non-Smooth Optimization

@ We discussed structured regularization to enforce patterns in w:
e Total-variation regularizaiton and structured sparsity.

@ We can use proximal-gradient versions of the large-scale methods:
o Coordinate optimization, stochastic subgradient, SAG, and SVRG.

@ Keywords for ther common non-smooth methods:
o Proximal-Newton, Chambolle-Pock, ADMM, Frank-Wolfe, mirror descent.

@ In previous years we also covered dual methods:

For cases with non-smooth convex f; and L2-regularization.

Transforms into a smooth problem where we can apply coordinate optimization.
Similar cost to stochastic subgradient, but you can use line-search to set step-size.
If you're interested, | put the slides from last year here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

Beyond SAG

Even Bigger Problems?

@ What about datasets that don't fit on one machine?
o We need to consider parallel and distributed optimization.
@ New issues:

e Synchronization: we may not want to wait for the slowest machine.
e Communication: it's expensive to transfer data and parameters across machines.
o Failures: in huge-scale settings, machine failure probability is non-trivial.

@ “Embarassingly” parallel solution:

e Split data across machines, each machine computes gradient of their subset.
o Papers present more fancy methods, but always try this first (“linear speedup”).

@ Fancier methods:
e Asyncronous stochastic subgradient (works fine if you make the step-size smaller).
o Parallel coordinate optimization (works fine if you make the step-size smaller).
o Decentralized gradient (needs a smaller step-size and an “EXTRA" trick).

Beyond SAG

Machine Learning Reading Group

@ The machine learning reading group (MLRG) this term:
e Tuesdays from 5-6 in ICICS 146, starting tomorrow.

@ We'll be focusing on parallel and distributed methods this term.

Outline

© Beyond SAG

© Digression: Kernel Trick

Beyond SAG Digression: Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Consider quadratic polynomial basis with only have two features (z* € R?):

7' = wo + wlxi + ngé + w2($1) + ws(x) + w4$1$2

@ In 340 we saw that we can fit this model using a change of basis:
0.2 0.3 1 02 03 (02?2 (03?2 02-03
X=|1 05|=Z=|1 1 05 (1) (0.5)2 1-05
-0.5 —0.1 1 -05 —0.1 (-0.5)2 (-0.1)> —-0.5--0.1

If you have d = 100 and p = 5, there are O(100°) possible degree-5 terms:
(1), (@) b, (1) 2, (21)(23)°, (@1)(2D)%, - (2)) P, .

@ How can we do this when number of features k in basis is huge?

Beyond SAG

The "Other” Normal Equations

@ Recall the L2-regularized least squares model with basis Z,

1 A

argmin | 70—y + S o]
vER4

@ By solving for V f(v) = 0 we get that

_ (7T —1,T

v= (2" Z+Xa) 2"y,
k by k

where I; is the d by d identity matrix.
@ An equivalent way to write the solution is:

v=2"(22" +)I,)" 'y,
n by n

by using a variant of the matrix inversion lemma (bonus slide).

e Computing v with this formula is faster if n << d:
o ZZT isn by n while ZTZ is d by d.

Digression: Kernel Trick

Beyond SAG
Predictions using Equivalent Form

o Given test data X, we predict § using:

!

v

z27%(z2" + ALYy

g

“other” normal equations
o If we define K = ZZ" (Gram matrix) and K = ZZ", then we have
§=K(K+ \,) 1y,

where K isn x n and K is t x n.

@ Key observation behind kernel trick:
e If we can directly compute K and K, we don't need to form Z or Z.

Digression: Kernel Trick

Beyond SAG Digression: Kernel Trick

Gram Matrix

@ The Gram matrix K is defined by:

e TR A
K=2z7"= o (Z) o 21 22 28 2"
(21, 21) (21, 2?) (21, 2™) k(z',zl) k(! 2?) k(z!, z™)
B (22,21) (22, 2%) (22,27 B k(z?, 2b) k(z? 2?) k(z?, ™)
<z”;zl> <z";22> <z”,.z”> k(z™, 2b) k(z™, 2?%) k(™ ™)

@ K contains the inner products between all training examples in basis z

e K contains the inner products between training and test examples.
o Kernel trick: if we can compute k(2% 27) = (2%, 27), we don't need z' and 27.

Beyond SAG

Polynomial Kernel

@ In 340 we saw the polynomial kernel of degree p,
k(zt, 2%) = (14 (2f, 27))P,

which corresponds to a general degree-p polynomial 2’

@ You can make predictions with these 2’ using

§=K(K+M)y.

Digression: Kernel Trick

e Total cost is only O(n?d + n?) even though number of features is O(dP).

o Kernel trick:
o We have kernel function k(x?, z7) that gives (2%, 27).
e Skip forming Z and directly form K and K.
e Size of K is n by n even if Z has exponential or infinite columns.

Digression: Kernel Trick

Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
i 2
i) _ |z* — 7|
k(z', x)—exp(52 :
@ What features z; would lead to this as the inner-product?
e To simplify, assume d =1 and o =1,
i g Lo i g L. g L i\e i j L e
k(z',z’) = exp —5(93)- +xta? — i(x]) = exp —i(x)% | exp(z’a?) exp —5(:5]))
so we need z; = exp(—1(2%)?)u; where w;u; = exp(2'z7).
o For this to work for all z* and :vj, z; must be infinite-dimensional.
o If we use that

2 (VR (i)k
eXp(inj):Z()k(')’

e
o

then we obtain

e 4 4 i
ziexp(z(x)2> {1 %IE ﬁ(xf %(z)g]

Digression: Kernel Trick

Kernel Trick for Structured Data

@ Kernel trick can be useful for structured data:
o Consider that doesn't look like this:

0.5377 0.3188 3.5784 +1

X — 1.8339 —1.3077 2.7694 |1
T |—2.2588 —0.4336 —1.3499|° YT |-1|"

0.8622 0.3426 3.0349 +1

but instead looks like this:

Do you want to go for a drink sometime? +1
J'achete du pain tous les jours. —1

X = . , Y=
Fais ce que tu veux. —1
There are inner products between sentences? +1

o It might be easier to define a “similarity” between sentences than to define features.

Digression: Kernel Trick

Kernel Trick for Structured Data

@ A classic “string kernel”:
o We want to compute k(“cat”, “cart”).
e Find common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
o Weight them by total length in original strings:
e ‘c’is has lengths (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and son.

Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart’) = iyl 4y lyl b ylql 42y 4 a2y® £ aBat | aBa4
M~ M M~ M~ M~ ——
‘c! ‘a’ ‘t' ‘ca’ ‘at’ ‘ct’ ‘cat’
where v is a hyper-parameter controlling influence of length.

Corresponds to exponential feature set (counts/lengths of all subsequences).
o But kernel can be computed in linear time by dynamic programming.

@ Many variations exist. And there are “image kernels”, “graph kernels”, and so on.

o You can turn probabilities over examples (second half of course) into kernels.
e A survey on the topic is here.

http://homepages.rpi.edu/~bennek/class/mmld/papers/p49-gartner.pdf

Digression: Kernel Trick

Summary

SVRG removes the memory requirement of SAG.
Infinite datasets can be handle with stochastic subgradient methods.
e This is theoretically “optimal” in some settings, not optimal in practice.
Kernel trick: allows working with “similarity” instead of features.
e Also allows exponential- or infinite-sized feature spaces.

Next time:
o Instead of predicting scalar label 3¢, we want to predict sentences/images/proteins.

Beyond SAG Digression: Kernel Trick

Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX +AD7XT = XT(XXT 4 A~ (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(F-FH'G)'FH Y = E7'F(H -GE~'F)™!

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHAD) ' XT = (MHXTX) T XT = WHXTIX)7XT = (I =-XT(=DX) ' XT = - A= XT (=D X) ' X7 (-1)

Now apply the matrix inversion with £ = Al (so E=* = (}) 1), F = X7, H = —I (so H™! = —I t00), and
G=X:

(M = XT(-DX)'XT(-I) = —(%)IXT(—I -X (%) XL

Now use that (1/a)A™! = (@A)~!, to push the (—1/)) inside the sum as —\,

7(§)1XT(717XG) XNy = XTI+ XXT) L= XT(XXT + A1) !

Digression: Kernel Trick

SAG Practical Implementation Issues

@ Implementation tricks:
o Improve performance at start using --g instead of Lg.
@ m is the number of examples visited.

o Common to use ay = 1/L and use adaptive L.

e Start with L = 1 and double it whenever we don’t satisfiy

fo (w’“ - 15, (wk>) < fiu04) = =V (wH)P

2

and ||V fi, (w"®)]| is non-trivial. Costs O(1) for linear models in terms of n and d.

o Can use [[wf™! — wk|/a = 1|g|| = |V f(w*)|| to decide when to stop.

e Lipschitz sampling of examples improves convergence rate:

@ As with coordinate descent, sample the ones that can change quickly more often.
o For classic SG methods, this only changes constants.

	Beyond SAG
	Digression: Kernel Trick

