
Beyond SAG Digression: Kernel Trick

CPSC 540: Machine Learning
Kernel Methods

Mark Schmidt

University of British Columbia

Winter 2018

Beyond SAG Digression: Kernel Trick

Last time: Stochastic Average Gradient (SAG)

We discussed stochastic gradient methods minimizing finite sums,

f(w) =
1

n

n∑
i=1

∇fi(w),

For Lipschitz ∇f and strongly-convex f , ways to get linear convergence:
Grow the batch size |Bk| fast enough,

wk+1 = wk − αk

|Bk|
∑
i∈Bk

fi(w
k),

makes setting step-size easy but eventually needs all gradients on each iteration.
Stochastic average gradient (SAG),

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each step we set vkik = ∇fik(wk) for one random ik.
Only evaluates one gradient per iteration.

Beyond SAG Digression: Kernel Trick

Stochastic Average Gradient

We can think of SAG as having a memory:
v1
v2
...
vn

 ,
where vki is the gradient ∇fi(wk) from the last k where i was selected.

On each iteration we:

Randomly choose one of the vi and update it to the current gradient.
We take a step in the direction of the avarge of these vi.

Beyond SAG Digression: Kernel Trick

SAG Algorithm
Basic SAG algorithm (maintains g =

∑n
i=1 vi):

Set g = 0 and gradient approximation vi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute ∇fi(w).
g = g − vi +∇fi(w).
vi = ∇fi(w).
w = w − α

n
g.

Iteration cost is O(d), but “lazy updates” allow O(z) with sparse gradients.

For linear models where fi(w) = h(wTxi), it only requires O(n) memory:

∇fi(w) = h′(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

Least squares, logistic regression, etc.

For neural networks, would need to store all activations (which seems bad).

Beyond SAG Digression: Kernel Trick

Discussion of SAG and Beyond

Bonus slides discuss practical issues related to SAG:

Setting step-size with an approximation to L.
Deciding when to stop.
Lipschitz sampling of training examples.

Improves rate for SAG, only changes constants for SG.

There are now a bunch of stochastic algorithm with O(log(1/ε)) rates:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
Analysis in non-convex settings, including new algorithms for PCA.

Most notable is SVRG which gets rid of the memory...

Beyond SAG Digression: Kernel Trick

Stochastic Variance-Reduced Gradient (SVRG)
SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

Start with w0

for s = 0, 1, 2 . . .
∇f(ws) =

1
n

∑n
i=1∇fi(ws)

w0 = ws

for k = 0, 1, 2, . . .m
Randomly pick ik ∈ {1, 2, . . . , n}
wk+1 = wk − αk(∇fik (w

k)−∇fik (ws) +∇f(ws)︸ ︷︷ ︸
mean zero

).

ws+1 = wk.

Convergence properties similar to SAG (for suitable m).

Unbiased: E[∇fik(ws)] = ∇f(ws) (special case of “control variate”).

Theoretically m depends on L, µ, and n.
In practice m = n usually works.

O(d) storage at average cost of 3 gradients per iteration.

Beyond SAG Digression: Kernel Trick

Stochastic Subgradient for Infinite Datasets?

Our analysis of stochastic subgradient used two assumptions on git :

Unbiased approximation of subgradient: E[git] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

Consider a scenario where we have infinite number of IID samples:

We can optimize the test loss,

argmin
w∈Rd

E[fi(w)],

by applying stochastic subgradient on a new IID sample on each iteration.
In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (under PL).

However, keep in mind that the test loss may not be the test error.

Linear classifiers approximate 0-1 loss (test error) with logistic/hinge loss (test loss).

Beyond SAG Digression: Kernel Trick

Infinite-Data Optimization

Consider number of training examples so large we can’t go through all examples.

Stochastic gradient gets within ε of optimal test loss after t = O(1/ε) iterations.

How does this compare to sampling t examples and optimizing on these?

What we usually do: “minimize regularized training loss”.

How many samples t before training objective is within ε of test objective?

Minimum possible assumptions: t = O(1/ε2).
Realistic assumptions: t = O(1/ε).
Strong assumptions: t = O(log(1/ε)).

“Realistic”: n iterations of stochastic gradient on n examples is optimal!?!

Almost always worse empirically than methods which do multiple passes.
Constants matter for test data (better optimization improves constants).

Beyond SAG Digression: Kernel Trick

End of Part 1: Key Ideas

Typical ML problems are written as optimization problem

argmin
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w
Txi) + λr(w).

Convex optimization packages:
For the special case when F is convex and d is small.

Gradient descent:
Applies when F is differentiable, yields iteration cost that is linear in d.
Only needs O(log(1/ε)) iterations if F is strongly-convex.
Faster versions like Nesterov’s and Newton-like methods exist.

Proximal gradient:
Applies when fi is differentiable and r is “simple” (like L1-regularization).
Similar convergence properties to gradient descent, even for non-smooth r.
Special case is projected gradient, which allows “simple” constraints.

Beyond SAG Digression: Kernel Trick

End of Part 1: Key Ideas
Typical ML problems are written as optimization problem

argmin
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w
Txi) + λr(w).

Coordinate optimization:
Faster than gradient descent if iterations are d-times cheaper.
Allows non-smooth r if it’s separable.

Stochastic subgradient:
Iteration cost is n-times cheaper than [sub]gradient descent, and allow n =∞.
For non-smooth problems, convergence rate is same as subgradient method.
For smooth problems, number of iterations is much higher than gradient descent.

SAG and SVRG:
Special case when F is smooth.
Same low cost as stochastic gradient methods.
But similar convergence rate to gradient descent.

Beyond SAG Digression: Kernel Trick

Other Non-Smooth Optimization

We discussed structured regularization to enforce patterns in w:
Total-variation regularizaiton and structured sparsity.

We can use proximal-gradient versions of the large-scale methods:
Coordinate optimization, stochastic subgradient, SAG, and SVRG.

Keywords for ther common non-smooth methods:
Proximal-Newton, Chambolle-Pock, ADMM, Frank-Wolfe, mirror descent.

In previous years we also covered dual methods:
For cases with non-smooth convex fi and L2-regularization.
Transforms into a smooth problem where we can apply coordinate optimization.
Similar cost to stochastic subgradient, but you can use line-search to set step-size.
If you’re interested, I put the slides from last year here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L12.5.pdf

Beyond SAG Digression: Kernel Trick

Even Bigger Problems?

What about datasets that don’t fit on one machine?

We need to consider parallel and distributed optimization.

New issues:

Synchronization: we may not want to wait for the slowest machine.
Communication: it’s expensive to transfer data and parameters across machines.
Failures: in huge-scale settings, machine failure probability is non-trivial.

“Embarassingly” parallel solution:

Split data across machines, each machine computes gradient of their subset.
Papers present more fancy methods, but always try this first (“linear speedup”).

Fancier methods:

Asyncronous stochastic subgradient (works fine if you make the step-size smaller).
Parallel coordinate optimization (works fine if you make the step-size smaller).
Decentralized gradient (needs a smaller step-size and an “EXTRA” trick).

Beyond SAG Digression: Kernel Trick

Machine Learning Reading Group

The machine learning reading group (MLRG) this term:

Tuesdays from 5-6 in ICICS 146, starting tomorrow.

We’ll be focusing on parallel and distributed methods this term.

Beyond SAG Digression: Kernel Trick

Outline

1 Beyond SAG

2 Digression: Kernel Trick

Beyond SAG Digression: Kernel Trick

Motivation: Multi-Dimensional Polynomial Basis

Consider quadratic polynomial basis with only have two features (xi ∈ R2):

ŷi = w0 + w1x
i
1 + w2x

i
2 + w2(x

i
1)

2 + w3(x
i
2)

2 + w4x
i
1x

i
2.

In 340 we saw that we can fit this model using a change of basis:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Z =

1 0.2 0.3 (0.2)2 (0.3)2 0.2 · 0.3
1 1 0.5 (1)2 (0.5)2 1 · 0.5
1 −0.5 −0.1 (−0.5)2 (−0.1)2 −0.5 · −0.1

If you have d = 100 and p = 5, there are O(1005) possible degree-5 terms:

(xi1)
5, (xi1)

4xi2, (x1)
4xi3, . . . , (x

i
1)

3(xi2)
2, (xi1)

3(xi2)
2, . . . , (xi1)

3xi2x
i
3, . . .

How can we do this when number of features k in basis is huge?

Beyond SAG Digression: Kernel Trick

The ”Other” Normal Equations

Recall the L2-regularized least squares model with basis Z,

argmin
v∈Rd

1

2
‖Zv − y‖2 + λ

2
‖v‖2.

By solving for ∇f(v) = 0 we get that

v = (ZTZ︸ ︷︷ ︸
k by k

+λId)
−1ZT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

v = ZT (ZZT︸ ︷︷ ︸
n by n

+λIn)
−1y,

by using a variant of the matrix inversion lemma (bonus slide).
Computing v with this formula is faster if n << d:

ZZT is n by n while ZTZ is d by d.

Beyond SAG Digression: Kernel Trick

Predictions using Equivalent Form

Given test data X̃, we predict ŷ using:

ŷ = Z̃v

= Z̃ ZT (ZZT + λIn)
−1y︸ ︷︷ ︸

“other” normal equations

If we define K = ZZT (Gram matrix) and K̃ = Z̃ZT , then we have

ŷ = K̃(K + λIn)
−1y,

where K is n× n and K̃ is t× n.

Key observation behind kernel trick:

If we can directly compute K and K̃, we don’t need to form Z or Z̃.

Beyond SAG Digression: Kernel Trick

Gram Matrix

The Gram matrix K is defined by:

K = ZZT =

— (z1)T —
— (z2)T —

...
— (zn)T —

 · · ·
z1 z2 z3 · · · zn

· · ·

=

〈z1, z1〉 〈z1, z2〉 · · · 〈z1, zn〉
〈z2, z1〉 〈z2, z2〉 · · · 〈z2, zn〉

...
...

. . .
...

〈zn, z1〉 〈zn, z2〉 · · · 〈zn, zn〉

=

k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

K contains the inner products between all training examples in basis z

K̃ contains the inner products between training and test examples.

Kernel trick: if we can compute k(xi, xj) = 〈zi, zj〉, we don’t need zi and zj .

Beyond SAG Digression: Kernel Trick

Polynomial Kernel

In 340 we saw the polynomial kernel of degree p,

k(xi, xk) = (1 + 〈xi, xj〉)p,

which corresponds to a general degree-p polynomial zi.

You can make predictions with these zi using

ŷ = K̃(K + λI)−1y.

Total cost is only O(n2d+ n3) even though number of features is O(dp).

Kernel trick:
We have kernel function k(xi, xj) that gives 〈zi, zj〉.
Skip forming Z and directly form K and K̃.
Size of K is n by n even if Z has exponential or infinite columns.

Beyond SAG Digression: Kernel Trick

Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖x

i − xj‖2

2σ2

)
.

What features zi would lead to this as the inner-product?
To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp

(
−1

2
(xi)2 + xixj − 1

2
(xj)2

)
= exp

(
−1

2
(xi)2

)
exp(xixj) exp

(
−1

2
(xj)2

)
,

so we need zi = exp(− 1
2 (x

i)2)ui where uiuj = exp(xixj).
For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(xixj) =

∞∑
k=0

(xi)k(xj)k

k!
,

then we obtain

zi = exp

(
−1

2
(xi)2

)[
1 1√

1!
xi 1√

2!
(xi)2 1√

3!
(xi)3 · · ·

]
.

Beyond SAG Digression: Kernel Trick

Kernel Trick for Structured Data

Kernel trick can be useful for structured data:

Consider that doesn’t look like this:

X =

0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =

+1
−1
−1
+1

 ,
but instead looks like this:

X =

Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =

+1
−1
−1
+1

 .
It might be easier to define a “similarity” between sentences than to define features.

Beyond SAG Digression: Kernel Trick

Kernel Trick for Structured Data

A classic “string kernel”:
We want to compute k(“cat”, “cart”).
Find common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
Weight them by total length in original strings:

‘c’ is has lengths (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and son.

Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart’) = γ1γ1︸︷︷︸
‘c’

+ γ1γ1︸︷︷︸
‘a’

+ γ1γ1︸︷︷︸
‘t’

+ γ2γ2︸︷︷︸
‘ca’

+ γ2γ3︸︷︷︸
‘at’

+ γ3γ4︸︷︷︸
‘ct’

+ γ3γ4︸︷︷︸
‘cat’

,

where γ is a hyper-parameter controlling influence of length.
Corresponds to exponential feature set (counts/lengths of all subsequences).

But kernel can be computed in linear time by dynamic programming.

Many variations exist. And there are “image kernels”, “graph kernels”, and so on.
You can turn probabilities over examples (second half of course) into kernels.
A survey on the topic is here.

http://homepages.rpi.edu/~bennek/class/mmld/papers/p49-gartner.pdf

Beyond SAG Digression: Kernel Trick

Summary

SVRG removes the memory requirement of SAG.

Infinite datasets can be handle with stochastic subgradient methods.

This is theoretically “optimal” in some settings, not optimal in practice.

Kernel trick: allows working with “similarity” instead of features.

Also allows exponential- or infinite-sized feature spaces.

Next time:

Instead of predicting scalar label yi, we want to predict sentences/images/proteins.

Beyond SAG Digression: Kernel Trick

Equivalent Form of Ridge Regression

Beyond SAG Digression: Kernel Trick

SAG Practical Implementation Issues

Implementation tricks:
Improve performance at start using 1

mg instead of 1
ng.

m is the number of examples visited.

Common to use αk = 1/L and use adaptive L.

Start with L̂ = 1 and double it whenever we don’t satisfiy

fik

(
wk − 1

L̂
∇fik (w

k)

)
≤ fik (w

k)− 1

2L̂
‖∇fik (w

k)‖2,

and ‖∇fik (w
k)‖ is non-trivial. Costs O(1) for linear models in terms of n and d.

Can use ‖wk+1 − wk‖/α = 1
n‖g‖ ≈ ‖∇f(w

k)‖ to decide when to stop.

Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.
For classic SG methods, this only changes constants.

	Beyond SAG
	Digression: Kernel Trick

