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Motvation: Getting Rid of the Step-Size

@ SVMs are a widely-used model but objective is non-differentiable.

e We can't apply coordinate optimization or proximal-gradient or SAG.
o The non-differentiable part is the loss, which isn't nice.

@ Stochastic subgradient methods achieve O(1/¢) without dependence on n.
e But choosing the step-size is painful.

@ Can we develop a method where choosing the step-size is easy?
e To do this, we first need the concept of the Lagrangian...
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Lagrangian Function for Equality Constraints

o Consider minimizing a differentiable f with linear equality constraints,

argmin f(x).
Ax=b

@ The Lagrangian of this problem is defined by
L(z,z) = f(z) + 2" (Az — D),

for a vector z € R™ (with A being n by d).
@ At a solution of the problem we must have

V.L(z,2) = Vf(x)+ AT2 =0  (gradient is orthogonal to constraints)
V.L(z,z) =Az—b=0 (constraints are satisfied)

@ So solution is stationary point of Lagrangian.
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Dual Function

@ But we can't just minimize with respect to x and z.

@ The solution for convex f is actually a saddle point,

max min L(z, 2).
z T

(in cases where the max and min have solutions)

@ One way to solve this is to eliminate z,

max D(z),

where D(z) = min, L(x, z) is called the dual function.

@ Another method is eliminate constraints (see Michael Friedlander’s course).

(find a feasible x, find basis for null-space of A, optimize f over null-space.)
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Digression: Supremum and Infimum

To handle case where min, f(x) is not achieved for any x, we can use infimum.

@ Generalization of min that includes limits:

minz? =0, inf 22 =0,

T€R zeR
but
mine® = DNE, inf e* = 0.
z€eR z€R
@ The infimum of a function f is its largest lower-bound,
inf f(x) = max
(=) yly<f(z)
@ The analogy for max is called the supremum (sup).



Fenchel Duality Large-Scale Kernel Methods

Dual function
@ Even for non-smooth convex f solution is a saddle point of the Lagrangian,

max inf f(z) + 27 (Az — D).

L(z,z)

(restricted to z where the max is finite)

@ We're going to eliminate = by working with the dual function,
max D(z),
z

with D(z) = inf,{f(z) + 27 (Az — b)}.

(D is concave for any f, so —D is convex)

If f is strongly-convex, dual is smooth (not obvious).
Dual sometimes has sparse kernel representation.
Dual has fewer variables if n < d.
Dual gives lower bound, D(z) < f(z) (weak duality).
We can solve dual instead of primal, D(z*) = f(z*) (strong duality).
(see Michael Friedlander's class for details/conditions.)
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Convex Conjugate
@ The convex conjugate f* of a function f is given by

F*(y) = sup{y"z — f(x)},
TEX

where X is values where sup is finite.

\f(fc)

0, - ()

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
@ It's the maximum that the linear function 3”2 can get above f(x).


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate

@ The convex conjugate f* of a function f is given by
F*(y) = sup{y’z — f(a)},
reX

where X is values where sup is finite.

1)

Py b =10

o e—ry

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
e If f is differentable, then sup occurs at x where y = V f(x).
o Note that f* is convex even if f is not (but we may lose strong duality).
o If fis convex then f** = f (“closed” f).


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples

= 1||z||* we have
o f*(y) =sup,{y"z — 3|lz||*} or equivalently (by taking derivative and setting to 0)

0=y—ux,
and pluggin in x = y we get

* _ T _1 271 2
70 = 9"y Sl = 31wl
o If f(x) = alx we have

y=a

oo otherwise.
@ For other examples, see Boyd & Vandenberghe.
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Fenchel Dual

@ In machine learning our primal problem is usually (for convex f and r)

argmin f(Xw) + r(w).
weR?

@ If we introduce equality constraints,

argmin f(v) + r(w).

v=Xw

then dual has a special form called the Fenchel dual,

argmax D(z) = —f*(—2) — " (XT2),
z€R™

where we're maximizing the (negative) convex conjugates f* and r*.
(bonus slide)

@ If r is strongly-convex, dual will be smooth...
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{O 1 —ywl e} + —Hsz.
weR? i=1

@ The Fenchel dual is given by

1
argmaszZ o X7y 2|2,

0<2<1 T

2ZTYXXTY 2
with w* = L XTY 2* and constraints coming from f* < oo.

@ A couple magical things have happened:
o We can apply kernel trick.

o Non-negativity makes dual variables z sparse (non-zeroes are “support vectors”)
o Can give faster training and testing.

o Dual is differentiable (though not strongly-convex).
@ And for this function coordinate optimization is efficient
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Stochastic Dual Coordinate Ascent

o If we have an L2-regularized linear model,

n
_ A
argmin E fitwlz;) + §||w!|2,
weR? ;)

then Fenchel dual is a problem where we can apply coordinate optimization,

n
1
argmax— 3 f; (21) —5 - | X4
= =l 2T XXTy
separable

@ It's known as stochastic dual coordinate ascent (SDCA):
e Only needs to looks at one training example on each iteration.
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz.
o Performance similar to SAG for many problems, worse if © >> A.
o Obtains O(1/¢) rate for non-smooth f:
@ Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.
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Large-Scale Kernel Methods

@ Let's go back to the basic L2-regularized least squares setting,
§=K(K+ ) ty.

@ Obvious drawback of kernel methods: we can’'t compute/store K.
o It has O(n?) elements.

@ Standard general approaches:
@ Kernels with special structure.
@ Subsampling methods.
© Explicit feature construction.
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Kernels with Special Structure

@ The bottleneck in fitting the model is O(n?) cost of solving the linear system
(K+X)v=y.
@ Consider using the “identity” kernel,
k(z', 2?) = T[z' = 27].

@ In this case /K is diagonal so we can solve linear system in O(n).

@ More interesting special K structures that support fast linear algebra:
e Band-diagonal matrices.

Sparse matrices (via conjugate gradient).

Diagonal plus low-rank, D +UVT.

Toeplitz matrices.

Kronecker product matrices.

Fast Gauss transform.
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Subsampling Methods

In subsampling methods we only use a subset of the kernels.

For example, some loss functions have support vectors.
e But this mainly helps at testing time, and some problems have O(n) support vectors.

Nystrom approximation chooses a random and fixed subset of training examples.
e Many variations exist such as greedily choosing kernels.

A common variation is the subset of regressors approach....
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Subsampling Methods
o Consider partitioning our matrices as

K1 Ko

K =
[Km Koo

]:[Kl K], K=[K K,

where K11 corresponds to a set of m training examples
o Kism by m, Ky isn by m.
@ In subset of regressors we use the approximation
K~K K;'K¥, K~KK;'KT.
@ Which for L2-regularized least squares can be shown to give

§j=K, (KITK, + K1) 'KTy.

v

e Given K7 and K11, computing v costs O(m?n + m3) which is cheap for small m.
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Explicit Feature Construction
@ In explicit feature methods, we form Z such that 72T7 ~ K.

o But where Z has a small number of columns of m.

@ We then use our non-kernelized approach with features Z,
w=(Z"Z + )1 (Z"y).

@ Random kitchen sinks approach does this for translation-invariant kernels,
E(x', x?) = k(2" — 27,0),

by sampling elements of inverse Fourier transform (not obvious).
@ In the special case of the Gaussian RBF kernel this gives Z = exp(iX R).

e Ris a d by m matrix with elements sampled from the Gaussian (same variance).
e i is v/—1 and exp is taken element-wise.
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Summary

@ Fenchel dual re-writes sum of convex functions with convex conjugates:

e Dual may have nice structure: differentiable, sparse, coordinate optimization.
@ Large-scale kernel methods is an active research area.

e Special K structures, subsampling methods, explicit feature construction.
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Bonus Slide: Fenchel Dual
@ Lagrangian for constrained problem is
L(v,w,2) = f(v) +7(w) + 25 (Xw — v),
so the dual function is
D(:) = inf{f(v) + r(w) + =T (Xw = v)}
@ For the inf wrt v we have
inf{f(v) = 2"v} = —sup{v’z = f(v)} = = f*(2).
v v
@ For the inf wrt w we have
mf{r( + 2T Xw} = —r* (= XT2).
@ This gives
D(z) = —f*(z) =1 (=XT2),

but we could alternately get this in terms of —z by replacing (Xw — v) with
(v — Xw) in the Lagrangian.
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