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Motvation: Getting Rid of the Step-Size

SVMs are a widely-used model but objective is non-differentiable.

We can’t apply coordinate optimization or proximal-gradient or SAG.
The non-differentiable part is the loss, which isn’t nice.

Stochastic subgradient methods achieve O(1/ε) without dependence on n.

But choosing the step-size is painful.

Can we develop a method where choosing the step-size is easy?

To do this, we first need the concept of the Lagrangian...
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Lagrangian Function for Equality Constraints

Consider minimizing a differentiable f with linear equality constraints,

argmin
Ax=b

f(x).

The Lagrangian of this problem is defined by

L(x, z) = f(x) + zT (Ax− b),

for a vector z ∈ Rn (with A being n by d).

At a solution of the problem we must have

∇xL(x, z) = ∇f(x) +AT z = 0 (gradient is orthogonal to constraints)

∇zL(x, z) = Ax− b = 0 (constraints are satisfied)

So solution is stationary point of Lagrangian.
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Dual Function

But we can’t just minimize with respect to x and z.

The solution for convex f is actually a saddle point,

max
z

min
x
L(x, z).

(in cases where the max and min have solutions)

One way to solve this is to eliminate x,

max
z
D(z),

where D(z) = minx L(x, z) is called the dual function.

Another method is eliminate constraints (see Michael Friedlander’s course).
(find a feasible x, find basis for null-space of A, optimize f over null-space.)
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Digression: Supremum and Infimum

To handle case where minx f(x) is not achieved for any x, we can use infimum.

Generalization of min that includes limits:

min
x∈R

x2 = 0, inf
x∈R

x2 = 0,

but
min
x∈R

ex = DNE, inf
x∈R

ex = 0.

The infimum of a function f is its largest lower-bound,

inf f(x) = max
y|y≤f(x)

y.

The analogy for max is called the supremum (sup).
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Dual function
Even for non-smooth convex f solution is a saddle point of the Lagrangian,

max
z

inf
x
f(x) + zT (Ax− b)︸ ︷︷ ︸

L(x,z)

.

(restricted to z where the max is finite)

We’re going to eliminate x by working with the dual function,

max
z
D(z),

with D(z) = infx{f(x) + zT (Ax− b)}.
(D is concave for any f , so −D is convex)

Why?????
If f is strongly-convex, dual is smooth (not obvious).
Dual sometimes has sparse kernel representation.
Dual has fewer variables if n < d.
Dual gives lower bound, D(z) ≤ f(x) (weak duality).
We can solve dual instead of primal, D(z∗) = f(x∗) (strong duality).

(see Michael Friedlander’s class for details/conditions.)
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Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈X
{yTx− f(x)},

where X is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

It’s the maximum that the linear function yTx can get above f(x).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf


Fenchel Duality Large-Scale Kernel Methods

Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈X
{yTx− f(x)},

where X is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

If f is differentable, then sup occurs at x where y = ∇f(x).
Note that f∗ is convex even if f is not (but we may lose strong duality).

If f is convex then f∗∗ = f (“closed” f).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples

If f(x) = 1
2‖x‖

2 we have

f∗(y) = supx{yTx− 1
2‖x‖

2} or equivalently (by taking derivative and setting to 0):

0 = y − x,

and pluggin in x = y we get

f∗(y) = yT y − 1

2
‖y‖2 =

1

2
‖y‖2.

If f(x) = aTx we have

f∗(y) = sup
x
{yTx− aTx} = sup

x
{(y − a)Tx} =

{
0 y = a

∞ otherwise.

For other examples, see Boyd & Vandenberghe.
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Fenchel Dual

In machine learning our primal problem is usually (for convex f and r)

argmin
w∈Rd

f(Xw) + r(w).

If we introduce equality constraints,

argmin
v=Xw

f(v) + r(w).

then dual has a special form called the Fenchel dual,

argmax
z∈Rn

D(z) = −f∗(−z)− r∗(XT z),

where we’re maximizing the (negative) convex conjugates f∗ and r∗.
(bonus slide)

If r is strongly-convex, dual will be smooth...
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Fenchel Dual of SVMs

Consider support vector machines,

argmin
w∈Rd

n∑
i=1

max{0, 1− yiwTxi}+
λ

2
‖w‖2.

The Fenchel dual is given by

argmax
0≤z≤1

n∑
i=1

zi −
1

2λ
‖XTY z‖2︸ ︷︷ ︸
zTY XXTY z

,

with w∗ = 1
λX

TY z∗ and constraints coming from f∗ <∞.
A couple magical things have happened:

We can apply kernel trick.
Non-negativity makes dual variables z sparse (non-zeroes are “support vectors”):

Can give faster training and testing.

Dual is differentiable (though not strongly-convex).
And for this function coordinate optimization is efficient.
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Stochastic Dual Coordinate Ascent

If we have an L2-regularized linear model,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2,

then Fenchel dual is a problem where we can apply coordinate optimization,

argmax
z∈Rn

−
n∑
i=1

f∗i (zi)︸ ︷︷ ︸
separable

− 1

2λ
‖XT z‖2︸ ︷︷ ︸
zTXXT z

.

It’s known as stochastic dual coordinate ascent (SDCA):
Only needs to looks at one training example on each iteration.
Obtains O(log(1/ε)) rate if ∇fi are L-Lipschitz.

Performance similar to SAG for many problems, worse if µ >> λ.

Obtains O(1/ε) rate for non-smooth f :
Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.
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Large-Scale Kernel Methods

Let’s go back to the basic L2-regularized least squares setting,

ŷ = K̂(K + λI)−1y.

Obvious drawback of kernel methods: we can’t compute/store K.

It has O(n2) elements.

Standard general approaches:
1 Kernels with special structure.
2 Subsampling methods.
3 Explicit feature construction.
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Kernels with Special Structure

The bottleneck in fitting the model is O(n3) cost of solving the linear system

(K + λI)v = y.

Consider using the “identity” kernel,

k(xi, xj) = I[xi = xj ].

In this case K is diagonal so we can solve linear system in O(n).

More interesting special K structures that support fast linear algebra:
Band-diagonal matrices.
Sparse matrices (via conjugate gradient).
Diagonal plus low-rank, D + UV T .
Toeplitz matrices.
Kronecker product matrices.
Fast Gauss transform.
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Subsampling Methods

In subsampling methods we only use a subset of the kernels.

For example, some loss functions have support vectors.

But this mainly helps at testing time, and some problems have O(n) support vectors.

Nystrom approximation chooses a random and fixed subset of training examples.

Many variations exist such as greedily choosing kernels.

A common variation is the subset of regressors approach....
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Subsampling Methods

Consider partitioning our matrices as

K =

[
K11 K12

K21 K22

]
=
[
K1 K2

]
, K̂ =

[
K̂1 K̂2

]
,

where K11 corresponds to a set of m training examples
K is m by m, K1 is n by m.

In subset of regressors we use the approximation

K ≈ K1K
−1
11 K

T
1 , K̂ ≈ K̂1K

−1
11 K

T
1 .

Which for L2-regularized least squares can be shown to give

ŷ = K̂1 (K
T
1 K1 + λK11)

−1KT
1 y︸ ︷︷ ︸

v

.

Given K1 and K11, computing v costs O(m2n+m3) which is cheap for small m.
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Explicit Feature Construction

In explicit feature methods, we form Z such that ZTZ ≈ K.

But where Z has a small number of columns of m.

We then use our non-kernelized approach with features Z,

w = (ZTZ + λI)−1(ZT y).

Random kitchen sinks approach does this for translation-invariant kernels,

k(xi, xj) = k(xi − xj , 0),

by sampling elements of inverse Fourier transform (not obvious).

In the special case of the Gaussian RBF kernel this gives Z = exp(iXR).

R is a d by m matrix with elements sampled from the Gaussian (same variance).
i is
√
−1 and exp is taken element-wise.
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Summary

Fenchel dual re-writes sum of convex functions with convex conjugates:

Dual may have nice structure: differentiable, sparse, coordinate optimization.

Large-scale kernel methods is an active research area.

Special K structures, subsampling methods, explicit feature construction.
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Bonus Slide: Fenchel Dual
Lagrangian for constrained problem is

L(v, w, z) = f(v) + r(w) + zT (Xw − v),
so the dual function is

D(z) = inf
v,w
{f(v) + r(w) + zT (Xw − v)}

For the inf wrt v we have

inf
v
{f(v)− zT v} = − sup

v
{vT z − f(v)} = −f∗(z).

For the inf wrt w we have

inf
w
{r(w) + zTXw} = −r∗(−XT z).

This gives
D(z) = −f∗(z)− r∗(−XT z),

but we could alternately get this in terms of −z by replacing (Xw − v) with
(v −Xw) in the Lagrangian.
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