CPSC 540: Machine Learning Stochastic Average Gradient

Mark Schmidt

University of British Columbia

Winter 2018

Last time: Stochastic sub-gradient

• We discussed minimizing finite sums,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w),$$

when n is very large.

• For non-smooth f_i , we discussed stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{i_k},$$

for some $g_{i_k} \in \partial f_{i_k}(w^k)$ for some random $i_k \in \{1, 2, \dots, n\}$.

• May increase f, but moves closer to w^* for small α_k in expectation.

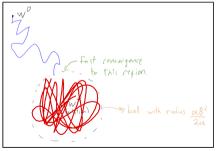
• Same rate as deterministic subgradient method but n times faster.

Stochastic Gradient with Constant Step Size

• Our bound on expected distance with constant step-size:

$$\mathbb{E}[\|w^k - w^*\|^2] \le (1 - 2\alpha\mu)^k \|w^0 - w^*\|^2 + \frac{\alpha B^2}{2\mu},$$

• First term looks like linear convergence, but second term does not go to zero.



- Justifies the "divide the step-size in half if it looks like it's stalled" heuristic.
 - $\bullet\,$ Dividing α in half divides radius of the ball around w^* in half.

Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - We need effect of B^2 to go to zero, but we still need to make progress.
 - Classic approach is to choose α_k such that

$$\sum_{k=1}^{\infty} \alpha_k = \infty, \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty,$$

which suggests setting $\alpha_k = O(1/k)$.

• If
$$\alpha_k = \frac{1}{\mu k}$$
 we can show

$$\mathbb{E}[f(\bar{w}^k) - f^*] = O(\log(k)/k) \qquad (\text{non-smooth } f)$$
$$= O(1/k) \qquad (\text{smooth } f)$$

for the average iteration $\bar{w}^k = \frac{1}{k} \sum_{k'=1}^k w^{k'}$.

Practical Subgradient Methods

Stochastic Average Gradient

Outline

Practical Subgradient Methods

2 Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

-or many datasets, our feature vectors x^* are very sparse.				
"CPSC"	"Expedia"	"vicodin"	<recipient name=""></recipient>	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	1	0	1	
1	0	1	1	
				$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

For many datasets, our feature vectors x^i are very sparse:

- Consider case where d is huge but each row x^i has at most z non-zeroes:
 - The O(d) cost of stochastic subgradient might be too high.
 - We can often modify stochastic subgradient to have O(z) cost.

Digression: Operations on Sparse Vectors

• Consider a vector $g \in \mathbb{R}^d$ with at most z non-zeroes:

$$g^T = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 0 & -0.5 & 0 & 0 \end{bmatrix}.$$

- If $z \ll d$, we can store the vector using O(z) storage instead of O(d):
 - Just store the non-zero values:

$$g_{\text{value}}^T = \begin{bmatrix} 1 & 2 & -0.5 \end{bmatrix}.$$

• Store index of each non-zero ("pointer"):

$$g_{\mathsf{point}}^T = \begin{bmatrix} 4 & 5 & 7 \end{bmatrix}.$$

- With this representation, we can do standard vector operations in O(z):
 - Compute αg in O(z) by setting $g_{\text{value}} = \alpha g_{\text{value}}$.
 - Compute $w^T g$ in O(z) by multiplying g_{value} by w at positions g_{point} .

Stochastic Subgradient with Sparse Features

• Consider optimizing the hinge-loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \, \frac{1}{n} \sum_{i=1}^n \max\{0, 1-y^i(w^T x^i)\},$$

when d is huge but each x^i has at most z non-zeroes.

• A stochastic subgradient method could use

$$w^{k+1} = w^k - \alpha_k g_{i_k}, \text{ where } g_i = \begin{cases} -y^i x^i & \text{if } 1 - y^i (w^T x^i) > 0 \\ 0 & \text{otherwise} \end{cases}$$

• Calculating w^{k+1} is O(z) since these are sparse vector operations.

- So stochastic subgradient is fast if z is small even if d is large.
 - This is how you "train on all e-mails": each e-mail has a limited number of words.

Stochastic Subgradient with Sparse Features

• But consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{i_k} - \frac{\alpha_k \lambda w^k}{\omega_k}$$
, where g_{i_k} is same as before.

• Problems is that w^k could have d non-zeroes:

- So adding L2-regularization increases cost from O(z) to O(d)?
- There are two standard ways to keep the cost at O(z):
 - L2-regularization: use a $w^k = \beta^k v^k$ (scalar times vector) representation (bonus).
 - "Lazy" updates (which work for many regularizers).

Lazy Updates for Sparse Features with Dense Regularizers

• Consider a feature j that has been zero in the loss for 10 iterations (constant α):

$$w_j^k = w_j^{k-1} - 0 - \alpha \lambda w_j^{k-1}$$
$$= (1 - \alpha \lambda) w_j^{k-1}$$
$$= (1 - \alpha \lambda)^2 w_j^{k-2}$$

$$= (1 - \alpha \lambda)^{10} w_j^{k-10}.$$

- So we can apply 10 regularizer gradient steps in O(1).
- Lazy updates:
 - If j is zero in g_{i_k} , do nothing.
 - If j is non-zero, apply all the old regularizer updates then do the gradient step.
 - Requires keeping a "checkpoint" of the last time each variable was updated.

Lazy Updates for Sparse Features with Dense Regularizers

- Lazy updates that track cumulative effects of simple updates.
- Considern stochastic proximal-gradient for L1-regularization:
 - $\bullet\,$ Soft-threshold operator with constant step-size α applies to each element,

$$w_j^{k+1} = \operatorname{sign}(w_j^k) \max\{0, |w_j^k| - \alpha \lambda\}.$$

• If all that happens to w_j for 10 iterations is the proximal operator, we can use

$$w_j^{k+10} = \operatorname{sign}(w_j^k) \max\{0, |w_k^k| - 10\alpha\lambda\}.$$

- Digression: stochastic proximal-gradient methods:
 - Same convergence rates as basic stochastic gradient method (doesn't help).
 - Open problem: convergence rate of stochastic proximal-gradient for non-convex.

Stochastic Subgradient Methods in Practice

- We've said that α_k must go to zero for convergence.
- Theory says using $\alpha_k = 1/\mu t$ is close to optimal.
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: 1/k gets small very quickly.
 - Convergence rate slows dramatically if $\boldsymbol{\mu}$ isn't accurate.
 - No adaptation to "easier" problems than worst case.
- Decreasing step-sizes are also hard to tune.
- They also make it hard to decide when to stop.

Practical Step-Sizes

- Tricks that can improve theoretical and practical properties:
 - Use smaller initial step-sizes, that go to zero more slowly:

$$\alpha_k = \gamma/\sqrt{k},$$

or just use a constant step-size,

$$\alpha_k = \gamma,$$

which we showed converges linearly to $O(\gamma)$ -ball around the solution.

I Take a (weighted) average of the iterations or gradients:

$$\bar{w}^k = \sum_{k'=1}^k \omega_{k'} w^{k'},$$

where ω_k is weight of iteration k.

- Could weight all iterations equally.
- Could ignore first half of the iterations then weight equally.
- Could weight proportional to k.

Speeding up Stochastic Subgradient Methods

- Results that support using large steps and averaging:
 - Averaging later iterations achieves O(1/k) in non-smooth case.
 - Gradient averaging improves constants in analysis.
 - $\alpha_k = O(1/k^\beta)$ for $\beta \in (0.5, 1)$ more robust than $\alpha_k = O(1/k)$.
 - Constant step size $(\alpha_k = \alpha)$ achieves linear rate to accuracy $O(\alpha)$.
 - In smooth case, iterate averaging is asymptotically optimal:
 - Achieves same rate as optimal stochastic Newton method.
- These tricks usually help, but tuning is often required:
 - Stochastic subgradient is not a black box.

Practical Subgradient Methods

Stochastic Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These do not improve the $O(1/\epsilon)$ convergence rate.
- But some positive results exist.
 - Nesterov/Newton can improve constant factors.
 - Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.
 - AdaGrad method,

$$w^{k+1} = w^k + \alpha Dg_{i_k}, \quad \text{with diagonal } D_{jj} = \sqrt{\sum_{k'=1}^k \|\nabla_j f_{i_{k'}}(w^k)\|^2},$$

improves "regret" but not optimization error.

- Popular variations are RMSprop and Adam.
- Recent work argues these may give worse final test error than basic method.

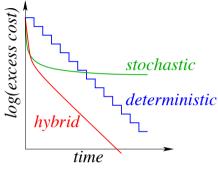
Practical Subgradient Methods

Stochastic Average Gradient

Outline

2 Stochastic Average Gradient

Better Methods for Smooth Objectives and Finite Datasets?



- Stochastic methods:
 - $O(1/\epsilon)$ iterations but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\log(1/\epsilon))$ iterations but requires n gradients per iteration.
 - $\bullet\,$ The faster rate is possible because n is finite.
- For finite n, can we design a better method?

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- Deterministic method uses all n gradients,

$$\nabla f(w^k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^k).$$

• Stochastic method approximates it with 1 sample,

$$\nabla f_{i_k}(w^k) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^k).$$

• A common variant is to use larger sample \mathcal{B}^k

$$\frac{1}{|\mathcal{B}^k|} \sum_{i \in \mathcal{B}^k} \nabla f_i(w^k) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^k),$$

particularly useful for vectorization/parallelization.

• For example, with 16 cores set $|\mathcal{B}^k| = 16$ and compute 16 gradients at once.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^k uses iterations

$$w^{k+1} = w^k - \frac{\alpha_k}{|\mathcal{B}^k|} \sum_{i \in \mathcal{B}^k} \nabla f_i(w^k).$$

• Let's view this as a "gradient method with error",

$$w^{k+1} = w^k - \alpha_k (\nabla f(w^k) + \boldsymbol{e^k}),$$

where e^k is the difference between approximate and true gradient.

• If you use $\alpha_k = 1/L$, then using descent lemma this algorithm has

$$f(w^{k+1}) \le f(w^k) - \underbrace{\frac{1}{2L} \|\nabla f(w^k)\|^2}_{\text{good}} + \underbrace{\frac{1}{2L} \|e^k\|^2}_{\text{bad}},$$

for any error e^k .

Approach 1: Batching

• Our progress bound with $\alpha_k = 1/L$ and error in the gradient of e^k is

$$f(w^{k+1}) \leq f(w^k) - \underbrace{\frac{1}{2L} \|\nabla f(w^k)\|^2}_{\text{good}} + \underbrace{\frac{1}{2L} \|e^k\|^2}_{\text{bad}}.$$

- We can use the batch size $|\mathcal{B}^k|$ control error size e^k .
 - If we sample with replacement we get

$$\mathbb{E}[\|e^k\|^2] = \frac{1}{|\mathcal{B}^k|}\sigma^2,$$

where σ^2 is the variance of the gradient norms.

- "Doubling the batch size cuts the error in half".
- If we sample without replacement from a training set of size n we get

$$\mathbb{E}[\|e^k\|^2] = \frac{n - |\mathcal{B}^k|}{n} \frac{1}{|\mathcal{B}^k|} \sigma^2,$$

which drives error to zero as batch size approaches n.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^k uses iterations

$$w^{k+1} = w^k - \frac{\alpha_k}{|\mathcal{B}^k|} \sum_{i \in \mathcal{B}^k} \nabla f_i(w^k).$$

- For a fixed sample size $|\mathcal{B}^k|$, the rate is sublinear.
- But we can grow $|\mathcal{B}^k|$ to achieve a linear rate:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a sophisticated gradient method.
 - No need to set a magical step-size: use a line-search.
 - Can incorporate linear-time approximations to Newton.
- Another approach: at some point switch from stochastic to deterministic:
 - Often after a small number of passes (but hard to know when to switch).

Stochastic Average Gradient

- Growing $|\mathcal{B}^k|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! First method was the stochastic average gradient (SAG) algorithm in 2012.
- To motivate SAG, let's view gradient descent as performing the iteration

$$w^{k+1} = w^k - \frac{\alpha_k}{n} \sum_{i=1}^n \frac{v_i^k}{v_i^k},$$

where on each step we set $v_i^k = \nabla f_i(w^k)$ for all *i*.

- SAG method: only set $v_{i_k}^k = \nabla f_{i_k}(w^k)$ for a randomly-chosen i_k .
 - All other v_i^k are kept at their previous value.

Stochastic Average Gradient

• The SAG iteration is

$$w^{k+1} = w^k - \frac{\alpha_k}{n} \sum_{i=1}^n \frac{v_i^k}{v_i^k},$$

where on each iteration we set $v_{i_k}^k = \nabla f_{i_k}(w^k)$ for a randomly-chosen i_k .

- Unlike batching, we use a gradient for every example.
 - But the gradients might out of date.
- Stochastic variant of earlier increment aggregated gradient (IAG).
 - Selects i_k cyclically, which destroys performance.
- Key proof idea: $v_i^k \to \nabla f_i(w^*)$ at the same rate that $w^k \to w^*$: • So bad term $||e^k||^2$ converges linearly to 0.

Convergence Rate of SAG

If each ∇f_i is *L*-continuous and *f* is strongly-convex, with $\alpha_k = 1/16L$ SAG has

$$\mathbb{E}[f(w^k) - f(w^*)] \leqslant O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^k\right)$$

- Number of ∇f_i evaluations to reach accuracy ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(n\frac{\dot{L}}{\mu}\log(1/\epsilon)).$
 - Nesterov: $O(n\sqrt{\frac{L}{\mu}}\log(1/\epsilon)).$
 - SAG: $O(\max\{n, \frac{L}{\mu}\}\log(1/\epsilon)).$

(Best when n is enormous)

(Best when n is small and L/μ is big)

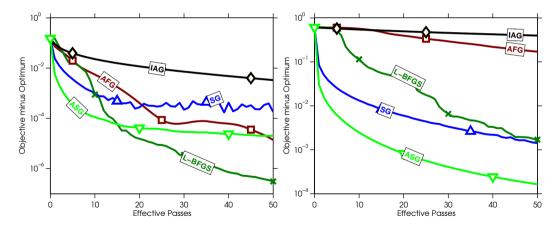
• But note that the L values are again different between algorithms.

Practical Subgradient Methods

Stochastic Average Gradient

Comparing Deterministic and Stochastic Methods

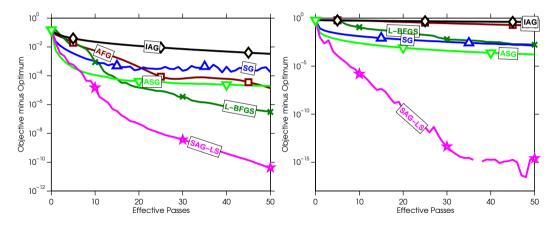
• Two benchmark L2-regularized logistic regression datasets:



Stochastic Average Gradient

SAG Compared to Deterministic/Stochastic Methods

• Two benchmark L2-regularized logistic regression datasets:



Summary

- Practical aspects of stochastic gradient methods:
 - Lazy updates allow regularization with sparse datasets.
 - Different step-size strategies and averaging significantly improve performance.

• Increasing batch sizes:

- Leads to linear rate in terms of iterations.
- Makes setting the step-size easier
- Stochastic average gradient: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.
- Next time: ways to handle $n = \infty$ and $d = \infty$.

Stochastic Subgradient with Sparse Features

• But consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{i_k} - \frac{\alpha_k \lambda w^k}{\lambda w^k}$$
, where g_{i_k} is same as before

- Problems is that w^t could have d non-zeroes:
 - So adding L2-regularization increases cost from O(k) to O(d)?
- $\bullet\,$ To use L2-regularization and keep $O(k)\,\cos$, re-write iteration as

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \frac{\alpha_t \lambda w^t}{\alpha_t \lambda w^t} = \underbrace{(1 - \alpha_t \lambda) w^t}_{\text{changes scale of } w^t} - \underbrace{\alpha_t g_{i_t}}_{\text{sparse update}}$$

Stochastic Subgradient with Sparse Features

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• We can implement both steps in O(k) if we re-parameterize as

$$w^t = \beta^t v^t$$

for some scalar β^t and vector v^t .

• For the first step we can use

$$\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) \beta^t, \quad v^{t+\frac{1}{2}} = v^t.$$

which costs O(1).

• For the second step we can use

$$\beta^{t+1} = \beta^{t+\frac{1}{2}}, \quad v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}}g_{i_t},$$

which costs O(k).