CPSC 540: Machine Learning

Mark Schmidt
University of British Columbia, Winter 2017
www.cs.ubc.ca/~schmidtm/Courses/540-W17

Some images from this lecture are taken from Google Image Search.
Big Data Phenomenon

• We are **collecting and storing data** at an unprecedented rate.

• Examples:
 – News articles and blog posts.
 – YouTube, Facebook, and WWW.
 – Credit cards transactions and Amazon purchases.
 – Gene expression data and protein interaction assays.
 – Maps and satellite data.
 – Large hadron collider and surveying the sky.
 – Phone call records and speech recognition results.
 – Video game worlds and user actions.
Machine Learning

• What do you do with all this data?
 – Too much data to search through it manually.

• But there is valuable information in the data.
 – Can we use it for fun, profit, and/or the greater good?

• Machine learning: use computers to automatically detect patterns in data and make predictions or decisions.

• Most useful when:
 – Don’t have a human expert.
 – Humans can’t explain patterns.
 – Problem is too complicated.
Machine Learning vs. Statistics

• Machine learning (ML) is very similar to statistics.
 – A lot of topics overlap.

• But ML places more emphasis on:
 1. Computation and large datasets.
 2. Predictions rather than descriptions.
 4. Models that work across domains.

• The field is growing very fast:
 – Influence of $$ $$, too.
Applications

• Spam filtering.
• Credit card fraud detection.
• Product recommendation.
• Motion capture.
• Machine translation.
• Speech recognition.
• Face detection.
• Object detection.
• Sports analytics.
• Cancer subtype discovery.
Applications

- Gene localization/functions/editing.
- Personal Assistants.
- Medical imaging.
- Self-driving cars.
- Scene completion.
- Image search and annotation.
- Artistic rendering.
- Physical simulations.
- Image colourization.
CPSC 340 and CPSC 540

• There are two ML classes: CPSC 340 and 540.
 – They are structured as one full-year course: 540 starts where 340 ends.

• CPSC 340:
 – Introductory course on data mining and ML.
 – Emphasis on applications of ML.
 – Covers implementation of methods based on counting and gradient descent.
 – Most useful techniques that you can apply to your research/work.

• CPSC 540:
 – Research-level ML methods and theory.
 – Not an introductory course:
 • Assumes familiarity with basic ML concepts.
 • Stronger math/CS background
 • Much more work.
CPSC 340 and CPSC 540

• If you can only take one class, take CPSC 340:
 – 340 covers the most useful methods.

• If want to work in ML you should take both courses:
 – There is not a lot of overlap between the topics, 540 is missing a lot important topics:
 • Learning theory, random forests, clustering, collaborative filtering, data visualization, and so on.
 – 540 is NOT an “advanced” version of 340.
 • It just covers the methods that require more advanced math/CS background.

• It is much better to do CPSC 340 first:
 – Many people have taken CPSC 340 after CPSC 540 (not recommended).

• There will be less overlap between 340 and 540 this year:
 – 340 now requires multivariate calculus, so many topics were moved from 540 to 340.
 – 540 will only cover the “diff” between 340 in 2015 and 2016.
 • If you took 340 before 2015, you should consider re-taking it – it is much more advanced now.
Course Outline

• 2-4 lectures on each of the following:
 – Large-scale machine learning.
 – Density estimation.
 – Graphical models.
 – Bayesian methods.
 – Causal, active, and online learning (time permitting).
 – Reinforcement learning (time permitting).

• For an overview of topics covered in 340 and 540 see here:
Math Prerequisites

• Research-level ML involves a lot of math.

• You should be comfortable with:
 – Linear algebra: vectors, matrices, eigenvalues.
 – Probability: conditional probability, expectations.
 – Multivariate calculus: gradients, optima.
 – Proof strategies and filling in derivation details.

• Suggested courses: Math 200, 220, 221, and 302.

• “I didn't really feel prepared for this course. I had never really done vector calculus before.”
Computer Science Prerequisites

• ML places a big emphasis on computation.
• You should be comfortable with:
 – Data structures: pointers, trees, heaps, hashes, graphs.
 – Algorithms and complexity:
 • Big-O, divide + conquer, randomized algorithms, dynamic programming, NP-completeness.
 – Scientific computing: matrix factorization, gradient descent, condition number.
• Suggested courses: CPSC 221, 302, and 320:
 – “I have programming experience in my work/research/courses” is not enough.

• “It is taught in a manner very hard and intimidating for those who are not in computer science.”
Stat/ML Prerequisites

• This is not an introductory ML course.
 – CPSC 340 is a fast-paced 35-lecture course that skips a few details in order to cover the most fundamental and practically-useful topics.

• You should be comfortable with all topics in CPSC 340.
 – Cross-validation, generative models, non-parametric models, ensemble methods, non-parametric bases, stochastic gradient, kernel methods, maximum likelihood estimation, L1-regularization, softmax loss, PCA, sparse matrix factorization, collaborative filtering, multi-dimensional scaling, neural networks, deep learning, and so on.

• This course starts where CPSC 340 ends:
 – I’m not covering any of the above, and assume you already know these concepts.
 – If you don’t know all the above, you will fall behind quickly and should instead take 340.

• Quotes from people who probably should have taken CPSC 340 first:
 – “I did Coursera and have done well in Kaggle competitions.”
 – “I’ve used SVMs, PCA, and L1-regularization in my work.”
 – “I want to apply machine learning in my research.”
 – “I took a machine learning course at my old school.”
Prerequisite Form

• All students must submit the prerequisite form.
 – CS and ECE grad students: submit in class/tutorial by January 13.
 – All others: submit to enroll in course.
 • I’ll sign enrollment forms between lectures once I have this form.
Reasons Not to Take This Course

• **High workload:**
 – “This course's workload was a bit more than I would have liked. It seems like this course takes twice the amount of time as another course.”

• **Inexperienced instructor:**
 – Teachers improve the most over their first 3 years, I’m not there yet.

• **Haven’t taken CPSC 340:**
 – You’ll be missing half of the story, you won’t know many of the most important methods, and a lot of stuff will seem random.

• **Missing prerequisites:**
 – If you are missing MATH or CPSC prerequisites, it’s probably better to fill-in/strengthen your background first and then take this course.
 – “I know too much math” said nobody ever.
Auditing and Recording

• **Auditing** 540, an excellent option:
 – Pass/fail on transcript rather than grade.
 – Do 1 assignment or write a 2-page report on one technique from class or attend > 90% of classes.
 – But please do this officially:
 • http://students.ubc.ca/enrolment/courses/academic-planning/audit

• About recording lectures:
 – Do not record without permission.
 – All class material will be available online.
 – Videos of material from first month of last year’s course are here:
 • https://www.youtube.com/watch?v=p4EnVHSml4U
Textbook and Other Optional Reading

• No textbook covers all course topics.
• The closest is Kevin Murphy’s “Machine Learning”.
 – But we’re using a very different order.

• For each lecture:
 – I’ll give relevant sections from this book.
 – I’ll give other related online material.
• There is a list of related courses on the webpage.
Grading

• Course grades will be split evenly between:
 – 5 assignments (written and Matlab programming).
 – Final (date will be placed here when known).
 – Course project (date will be placed here when known).

• A Matlab license is available for all UBC students:
 – https://it.ubc.ca/services/desktop-print-services/software-licensing/matlab

• No, you can’t do the assignments in Python, R, and so on.
 – You might be able to do them in Octave/Julia, but no guarantees.
Assignments

• Due any time on days where we have lectures:
 – A1: January 16 (1.5 weeks), February 6, February 27, March 15, April 3.
 (Due dates might be pushed back.)

• Start early, the assignments are a lot of work:
 – Previous students estimated that each assignments takes 6-25 hours:
 • The was heavily correlated with satisfying prereqs.
 • Please look through the assignment in previous offerings to see length/difficulty.

• You can do assignments in groups of 1 to 3.
 – Hand in one assignment for the group.
 – But each member should still know the material.
Late Assignment Policy

• You have up to 4 total “late classes”.
 – Cannot use more than 2 “late classes” on any one assignment.
 – Beyond 2 late classes for one assignment, or 4 total, you receive a 0.
 – You can use late days on the assignments/project, but not the exam.

• Number of late classes for a group:
 • If each member has c_i late classes, group can use at most $\text{ceil}(\text{mean}(c_i))$.

• Example:
 – Assignment 1 is due Monday January 16.
 – You can use 1 late class to hand it in January 18.
 – You can use 2 late classes to hand it in January 23.
 – If you need late days for Assignment 1, consider dropping the course.
Getting Help

- **Piazza** for assignment/course questions:
 - https://piazza.com/ubc.ca/winterterm22016/cpsc540

- **Instructor office-hours/help-sessions:**
 - Fridays 1:00-2:30 (ICICS 238) or by appointment (starting this week).

- **Weekly tutorials:**
 - Run by TAs covering related material.
 - Fridays 4:00-5:30 (DMP 101, starting next week).

- **Teaching Assistants:**
 - Jason Hartford.
 - Robbie Rolin.
 - Sharan Vaswani.
Exam and Course Project

• Final exam details:
 – Date will be written here, hopefully during exam period.
 – Closed book, four-page double-sided “cheat sheet”.
 – Given a list of things you need to know how to do.
 – Mostly minor variants on assignment questions.
 – No requirement to pass the final.

• Do not miss the final.

• Course projects can be done in groups of 2-3 and have 3 parts:
 1. Project proposal (due with Assignment 4).
 2. Literature review (due with Assignment 5).
 3. Coding, experiments, application, or theory (due late April).
 • More details coming later in term.