CPSC 540: Machine Learning Stochastic Average Gradient, Kernel Methods

Mark Schmidt

University of British Columbia

Winter 2017

Kernel Methods

Admin

- Assignment 2:
 - Due February 6 (1.5 weeks).
 - Start early, use Piazza.
- Office hours time/location change for this week only:
 - 2:15-3 on Friday in ICICS 193.

Last Time: Structured Sparsity

- Beyond sparsity, we can use regularization to encourage other patterns:
 - Total-variation regularization encourages slow/sparse changes in w.
 - Nuclear-norm regularization encourages sparsity in rank of matrices.
 - Overlapping group L1-regularization encourages sparsity in variable patterns.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

https://arxiv.org/pdf/1109.2397v2.pdf

- These regularizers are not simple, but solvers are available:
 - Inexact proximal-gradient, ADMM, Frank-Wolfe, UV^T parameterization.

Kernel Methods

Last time: Stochastic sub-gradient

• We discussed minimizing finite sums,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x),$$

when n is very large.

• For non-smooth f_i , we discussed stochastic subgradient method,

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

- May increase f , but moves closer to x^{\ast} for small α_{t} in expectation.
- Same $O(1/\epsilon)$ rate as deterministic subgradient method but n times faster.

Last Time: Subgradients and Subgradient Method

- Subgradients are a generalization of gradients for non-smooth optimization.
 - Slopes of linear underestimators, set of subgradients at x is sub-differential $\partial f(x)$.

- If at a differentiable x, gradient is the only subgradient.
- Subgradients exist everywhere for convex funcitons (except vertical asymptotes).
- We can define them locally for non-convex functions.
 - Called "Clarke" or "Frechet" subgradients.

Last Time: Calculating Subgradients

 $\bullet\,$ Computing general subgradient is complicated, but if f_1 and f_2 are convex then

 $d \in \partial(f_1(x) + f_2(x))$ if $d = d_1 + d_2$ for $d_1 \in \partial f_1(x)$ and $d_2 \in \partial f_2(x)$.

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

• So for SVMs,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y^{i}(w^{T}x^{i})\} + \frac{\lambda}{2} ||w||^{2},$$

we can get a sub-gradient by computing

$$\frac{1}{n}\sum_{i=1}^{n}g_i + \lambda w, \text{ with } g_i = \begin{cases} -y^ix^i & \text{if } 1 - y^i(w^Tx^i) > 0\\ 0 & \text{otherwise} \end{cases}$$

What is the best subgradient?

• We considered the deterministic subgradient method,

$$x^{t+1} = x^t - \alpha_t g_t$$
, where $g_t \in \partial f(x^t)$,

under any choice of subgradient.

- But what is the "best" subgradient to use?
 - Convex functions have directional derivatives everywhere.
 - Direction $-g_t$ that minimizes directional derivative is minimum-norm subgradient,

$$g^t = \operatorname*{argmin}_{g \in \partial f(x^t)} ||g||$$

- This is the steepest descent direction for non-smooth convex optimization problems.
- You can compute this for L1-regularization, but not many other problems.
- Used in best deterministic L1-regularization methods, combined with Newton.

Kernel Methods

Outline

Practical Subgradient Methods

2 Stochastic Average Gradient

- We've discussed the number of iterations.
- But a new issue arises regarding the iteration cost.
 - In high-level languages like Matlab, stochastic subgradient might be slow.
 - We need to deal with sparsity of features.

"CPSC	"Expedia"	"vicodin"	<recipient name=""></recipient>	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	1	0	1	
1	0	1	1	

• For many datasets, our feature vectors x^i are very sparse:

- Consider case where d is huge but each row x^i has at most k non-zeroes:
 - The O(d) cost of stochastic subgradient might be too high.
 - $\bullet\,$ We can often modify stochastic subgradient to have O(k) cost.

Digression: Operations on Sparse Vectors

• Consider a vector $g \in \mathbb{R}^d$ with at most k non-zeroes:

$$g^T = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 0 & -0.5 & 0 & 0 \end{bmatrix}.$$

- If $k \ll d$, we can store the vector using O(k) storage instead of O(d):
 - Just store the non-zero values:

$$g_{\text{value}}^T = \begin{bmatrix} 1 & 2 & -0.5 \end{bmatrix}.$$

• Store index of each non-zero ("pointer"):

$$g_{\mathsf{point}}^T = \begin{bmatrix} 4 & 5 & 7 \end{bmatrix}.$$

- With this representation, we can do standard vector operations in O(k):
 - Compute αg in O(k) by computing αg_{value} .
 - Compute (w-g) in O(k) for dense w by subracting g_{value} from w at positions g_{point} .

• Consider optimizing the hinge-loss,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i(w^T x^i)\},$$

when d is huge but each x^i has at most k non-zeroes.

• A stochastic subgradient method could use

$$w^{t+1} = w^t - \alpha_t g_{i_t}, \text{ where } g_i = \begin{cases} -y^i x^i & \text{if } 1 - y^i (w^T x^i) > 0\\ 0 & \text{otherwise} \end{cases}$$

• Calculating w^{t+1} is O(k) since these are sparse vector operations.

- So stochastic subgradient is fast if k is small even if d is large.
 - This is how you "train on all e-mails": each e-mail has a limited number of words.

• But consider the L2-regularized hinge-loss in the same setting,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{t+1} = w^t - \alpha_t g_{i_t} - \frac{\alpha_t \lambda w^t}{\lambda w^t}$$
, where g_{i_t} is same as before

- Problems is that w^t could have d non-zeroes:
 - So adding L2-regularization increases cost from O(k) to O(d)?
- To use L2-regularization and keep O(k) cost, re-write iteration as

$$w^{t+1} = w^t - lpha_t g_{i_t} - rac{lpha_t \lambda w^t}{lpha_t \lambda w^t} = \underbrace{(1 - rac{lpha_t \lambda}{lpha_t \lambda}) w^t}_{ ext{changes scale of } w^t} - \underbrace{lpha_t g_{i_t}}_{ ext{sparse update}}$$

• Let's write the update as two steps

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}.$$

• We can implement both steps in O(k) if we re-parameterize as

$$w^t = \beta^t v^t$$

for some scalar β^t and vector v^t .

• For the first step we can use

$$\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t, \quad v^{t+\frac{1}{2}} = v^t.$$

which costs O(1).

• For the second step we can use

$$\beta^{t+1} = \beta^{t+\frac{1}{2}}, \quad v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}}g_{i_t},$$

which costs O(k).

- There exists efficient sparse updates in other scenarios too:
- "Lazy updates" track cumulative effects of simple updates:
 - Soft-threshold operator with constant step-size α applies to each element,

$$w_j^{t+1} = \operatorname{sign}(w_j^t) \max\{0, |w_j^t| - \alpha \lambda\}.$$

• If all that happens to w_j for 10 iterations is the proximal operator, we can use

$$w_j^{t+10} = \operatorname{sign}(w_j^t) \max\{0, |w_j^t| - 10\alpha\lambda\}.$$

Stochastic Subgradient Methods in Practice

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ is close to optimal.
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: 1/t gets small very quickly.
 - Convergence rate slows dramatically if $\boldsymbol{\mu}$ isn't accurate.
 - No adaptation to "easier" problems than worst case.
- Decreasing step-sizes are also hard to tune.
- They also make hard to decide when to stop.

Stochastic Subgradient Methods in Practice

- Tricks that can improve theoretical and practical properties:
 - Use smaller initial step-sizes, that go to zero more slowly:

$$\alpha_t = \gamma/\sqrt{t},$$

or just use a constant step-size,

$$\alpha_t = \gamma,$$

which we showed converges linearly to $O(\gamma)$ -ball around the solution.

I Take a (weighted) average of the iterations or gradients:

$$\bar{x}^t = \sum_{k=1}^t \omega_k x^k,$$

where ω_t is weight at iteration t.

- Could weight all iterations equally.
- Could ignore first half of the iterations then weight equally.
- Could weight proportional to t.

Speeding up Stochastic Subgradient Methods

- Results that support using large steps and averaging:
 - Averaging later iterations achieves O(1/t) in non-smooth case.
 - Gradient averaging improves constants in analysis.
 - $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.
 - Constant step size $(\alpha_t = \alpha)$ achieves linear rate to accuracy $O(\alpha)$.
 - In smooth case, iterate averaging is asymptotically optimal:
 - Achieves same rate as optimal stochastic Newton method.
- These tricks usually help, but tuning is often required:
 - Stochastic subgradient is not a black box.

Stochastic Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These do not improve the $O(1/\epsilon)$ convergence rate.
- But some positive results exist.
 - Nesterov/Newton improve performance at start or if variance is small.
 - Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.
 - AdaGrad method,

$$x^{t+1} = x^t + \alpha D \nabla f_{i_t}(x^t), \text{ with } D_{jj} = \sqrt{\sum_{k=1}^t \|\nabla_j f_{i_k}(x^t)\|^2},$$

improves "regret" but not optimization error.

• Popular variations are RMSprop and Adam.

Stochastic Subgradient for Infinite Datasets?

- \bullet Our analysis of stochastic subgradient used two assumptions on g_{it} :
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{i_t}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{i_t}\|^2] \leq B^2$.
- We can achieve this in the general setting:

 $\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}[f_i(x)].$

- We can use stochastic subgradient on IID samples from infinite dataset:
 - In this setting, we are directly optimizing test loss and cannot overfit.
 - We require $O(1/\epsilon)$ samples to reach test loss accuracy of ϵ (optimal).
- Often used to justify doing one "pass" through data of stochastic subgradient:
 - If you only look at data point once, can be viewed as IID test sample.
 - Almost always worse empirically than methods which do multiple passes.

Kernel Methods

Outline

Practical Subgradient Methods

2 Stochastic Average Gradient

Better Methods for Smooth Objectives and Finite Datasets?

- Stochastic methods:
 - $O(1/\epsilon)$ iterations but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\log(1/\epsilon))$ iterations but requires n gradients per iteration.
 - The faster rate is possible because n is finite.
- For finite *n*, can we design a better method?

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- Deterministic method uses all n gradients,

$$\nabla f(x^t) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

• Stochastic method approximates it with 1 sample,

$$\nabla f_{i_t}(x^t) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

• A common variant is to use larger sample \mathcal{B}^t

$$\frac{1}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} \nabla f_i(x^t) \approx \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t),$$

particularly useful for vectorization/parallelization.

• For example, with 16 cores set $|\mathcal{B}^t| = 16$ and compute 16 gradients at once.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha_t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

• Let's view this as a "gradient method with error",

$$x^{t+1} = x^t - \alpha_t (\nabla f(x^t) + e^t),$$

where e^t is the difference between approximate and true gradient.

- The batch size $|\mathcal{B}^t|$ controls size of error e^t .
 - If we sample with replacement we get

$$\mathbb{E}[\|e^t\|^2] = \frac{1}{|\mathcal{B}^t|}\sigma^2,$$

where σ^2 is the variance of the gradient norms.

• Doubling the batch size cuts radius of ${\cal O}(\alpha)$ ball in half.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha_t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

• Let's view this as a "gradient method with error",

$$x^{t+1} = x^t - \alpha_t (\nabla f(x^t) + e^t),$$

where e^t is the difference between approximate and true gradient.

- The batch size $|\mathcal{B}^t|$ controls size of error e^t .
 - If we sample without replacement from a finite set we get

$$\mathbb{E}[\|e^t\|^2] = \frac{n - |\mathcal{B}^t|}{n} \frac{1}{|\mathcal{B}^t|} \sigma^2,$$

where σ^2 is the variance of the gradient norms.

• We drive the error to zero as the batch size approaches n.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha_t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- But we can grow $|\mathcal{B}^t|$ to achieve a linear rate:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a Newton-like method.
- Another approach: at some point switch from stochastic to deterministic:
 - Often after a small number of passes.

Stochastic Average Gradient

- Growing $|\mathcal{B}^t|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, \ldots, n\}$ and compute $\nabla f_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n y_i^t$$

- Memory: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected.
- Stochastic variant of earlier increment aggregated gradient (IAG). • Key proof idea: $y_i^t \rightarrow \nabla f_i(x^*)$ at the same rate that $x^t \rightarrow x^*$:
 - So variance of the gradient approximation e^t goes to 0.

Kernel Methods

Stochastic Average Gradient

• So SAG has a memory

where each y_i keeps track of the last time we randomly picked example *i*.

- On each iteration we:
 - Randomly choose one of the y_i and update it to the current gradient.
 - We take a step in the direction of the avarge of these y_i .

Convergence Rate of SAG

If each f_i' is L-continuous and f is strongly-convex, with $\alpha_t=1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{n} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(n\frac{\dot{L}}{\mu}\log(1/\epsilon)).$
 - Nesterov: $O(n\sqrt{\frac{L}{\mu}}\log(1/\epsilon)).$
 - SAG: $O(\max\{n, \frac{L}{\mu}\}\log(1/\epsilon))$.

(Best when n is enormous)

(Best when n is small and L/μ is big) (Best when n is big and L/μ is big) (the L values are again different between algorithms)

Comparing Deterministic and Stochastic Methods

• Two benchmark L2-regularized logistic regression datasets:

SAG Compared to Deterministic/Stochastic Methods

• Two benchmark L2-regularized logistic regression datasets:

SAG Algorithm

- Basic SAG algorithm (maintains $d = \sum_{i=1}^{n} y_i$):
 - Set d = 0 and gradient approximation $y_i = 0$ for i = 1, 2, ..., n.
 - while(1)
 - Sample *i* from {1, 2, ..., n}.
 Compute f'_i(x). *d* = *d* y_i + f'_i(x).
 y_i = f'(x).

•
$$x = x - \frac{\alpha}{n}d$$
.

- Iteration cost is O(d), but "lazy updates" allow O(k) with sparse gradients.
- For linear models where $f_i(w) = g(w^T x^i)$, it only require O(n) memory:

$$\nabla f_i(w) = \underbrace{\nabla g(w^T x^i)}_{\text{scalar}} \underbrace{x^i}_{\text{data}}.$$

Discussion of SAG and Beyond

- Implementation tricks:
 - Improve performance at start using $\frac{1}{m}d$ instead of $\frac{1}{n}d$.
 - *m* is the number of examples visited.
 - Common to use $\alpha_t = 1/L$ and use adaptive L.
 - Start with L = 1 and double it whenever we don't satisfy

$$f_{i_t}\left(x^t - \frac{1}{L}\nabla f_{i_t}(x^t)\right) \le f_{i_t}(x^t) - \frac{1}{2L} \|\nabla f_{i_t}(x^t)\|^2,$$

and $\|\nabla f_{i_t}(x^t)\|$ is non-trivial. Costs O(1) for linear models in terms of n and d.

- Can use $\|x^{t+1} x^t\|/\alpha = \frac{1}{n}d \approx \|\nabla f(x^t)\|$ to decide when to stop.
- Lipschitz sampling of examples improves convergence rate:
 - As with coordinate descent, sample the ones that can change quickly more often.

Discussion of SAG and Beyond

- There are now a bunch of stochastic algorithm with $O(\log(1/\epsilon))$ rates:
 - SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
 - Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
 - Analyses for infinite data sets.
- Some of the above get rid of the memory...

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

- Start with x_0
- for s = 0, 1, 2...• $\nabla f(x_s) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x_s)$ • $x^0 = x_s$ • for t = 0, 1, 2, ..., m• Randomly pick $i_t \in \{1, 2, ..., n\}$ • $x^{t+1} = x^t - \alpha_t (\nabla f_{i_t}(x^t) - \underbrace{\nabla f_{i_t}(x_s) + \nabla f(x_s)}_{\text{mean zero}}).$ • $x_{s+1} = x^t$.

Convergence properties similar to SAG (for m large enough).

(special case of what's known as a "control variate")

O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Kernel Methods

Outline

Practical Subgradient Methods

2 Stochastic Average Gradient

Motivation: Multi-Dimensional Polynomial Basis

• Recall using polynomial basis when we only have one features $(x^i \in \mathbb{R})$:

$$\hat{y}^i = w_0 + w_1 x^i + w_2 (x^i)^2.$$

• We can fit these models using a change of basis:

If
$$X = \begin{bmatrix} 0.2 \\ -0.5 \\ 1 \\ 4 \end{bmatrix}$$
 then let $Z = \begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 1 & 4 & (4^2) \end{bmatrix}$

and L2-regulairzed least squares solution is

$$w = (Z^T Z + \lambda I)^{-1} Z^T y.$$

• How can we do this when we have a lot of features?

Motivation: Multi-Dimensional Polynomial Basis

• Approach 1: use polynomial basis for each variable:

$$X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix} \Rightarrow Z = \begin{bmatrix} 1 & 0.2 & (0.2)^2 & 0.3 & (0.3)^2 \\ 1 & 1 & (1)^2 & 0.5 & (0.5)^2 \\ 1 & -0.5 & (-0.5)^2 & -0.1 & (-0.1)^2 \end{bmatrix}$$

- But this is restrictve:
 - We should allow terms like $x_1^i x_2^i$ that depend on feature interactions.
 - But number of terms in X_{poly} would be huge:
 - Degree-5 polynomial basis has $O(d^5)$ terms:

 $(x_1^i)^5, (x_1^i)^4 x_2^i, (x_1)^4 x_3^i, \dots, (x_1^i)^3 (x_2^i)^2, (x_1^i)^3 (x_2^i)^2, \dots, (x_1^i)^3 x_2^i x_3^i, \dots$

• If n is not too big, we can do this efficiently using the kernel trick.

Kernel Methods

Equivalent Form of Ridge Regression

• Recall the L2-regularized least squares model with basis Z,

$$\underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2} \|Zw - y\|^{2} + \frac{\lambda}{2} \|w\|^{2}.$$

• We showed that the solution is

$$w = (\underbrace{Z^T Z}_{d \text{ by } d} + \lambda I_d)^{-1} Z^T y,$$

where I_d is the d by d identity matrix.

• An equivalent way to write the solution is:

$$w = Z^T (\underbrace{ZZ^T}_{n \text{ by } n} + \lambda I_n)^{-1} y,$$

by using a variant of the matrix inversion lemma (bonus slide).

- Computing w with this formula is faster if n << d :
 - ZZ^T is n by n while Z^TZ is d by d.

Kernel Methods

Predictions using Equivalent Form

• Given test data \hat{X} , we predict \hat{y} using:

$$\hat{y} = \hat{Z}w$$
$$= \hat{Z}Z^T(ZZ^T + \lambda I_n)^{-1}y$$

• If we define $K = ZZ^T$ (Gram matrix) and $\hat{K} = \hat{Z}Z^T$, then we have

$$\hat{y} = \hat{K}(K + \lambda I_n)^{-1}y.$$

- Key observation behind kernel trick:
 - $\bullet~$ If we have the K and $\hat{K},$ we don't need the features.

Gram Matrix

• The Gram matrix K is defined by:

$$K = ZZ^{T} = \begin{bmatrix} - & z_{1}^{T} & - \\ - & z_{2}^{T} & - \\ \vdots & \\ - & z_{n}^{T} & - \end{bmatrix} \begin{bmatrix} | & | & | \\ z_{1} & z_{2} & z_{3} \\ | & | & | \end{bmatrix}$$
$$= \begin{bmatrix} z_{1}^{T}z_{1} & z_{1}^{T}z_{2} & \cdots & z_{1}^{T}z_{n} \\ z_{2}^{T}z_{1} & z_{2}^{T}z_{2} & \cdots & z_{2}^{T}z_{n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n}^{T}z_{1} & z_{n}^{T}z_{2} & \cdots & z_{n}^{T}z_{n} \end{bmatrix}$$

- $\bullet~K$ contains the inner products between all training examples in basis z
- \hat{K} contains the inner products between training and test examples.
 - Kernel trick: if we can compute $k(x^i, x^j) = z_i^T z_j$, we don't need z_i and z_j .

Polynomial Kernel

• Consider two examples x^i and x^j for a two-dimensional dataset:

$$x^{i} = (x_{1}^{i}, x_{2}^{i}), \quad x^{j} = (x_{1}^{j}, x_{2}^{j}).$$

• Consider a particular degree-2 basis:

$$z_i = \left((x_1^i)^2, \sqrt{2}x_1^i x_2^i, (x_2^i)^2 \right).$$

• We can compute inner product $z_i^T z_j$ without forming z_i and z_j ,

$$\begin{split} z_i^T z_j &= \begin{bmatrix} (x_1^i)^2 & \sqrt{2} x_1^i x_2^i & (x_2^i)^2 \end{bmatrix} z_j \\ &= (x_1^i)^2 (x_1^j)^2 + 2x_1^i x_2^i x_1^j x_2^j + (x_2^i)^2 (x_2^j)^2 \\ &= (x_1^i x_1^j + x_2^i x_2^j)^2 \\ &= ((x^i)^T x^j)^2. \end{split}$$
(completing the square)

Polynomial Kernel with Higher Degrees

 \bullet If we want all degree-4 "monomials", raise it to 4^{th} power:

$$z_i^T z_j = ((x^i)^T x^j)^4,$$

with two variables z_i is weighted version of $(x_1^i)^4, (x_1^i)^3 x_2^i, (x_1^i)^2 (x_2^i)^2, x_1^i (x_2^i)^3, (x_2^i)^4.$

• If you want bias or lower-order terms like x_1^i , add constant inside power:

$$(1 + (x^{i})^{T}x^{j})^{2} = 1 + 2(x^{i})^{T}x^{j} + ((x^{i})^{T}x^{j})^{2}$$
$$= \begin{bmatrix} 1 & 2x_{1}^{i} & 2x_{2}^{i} & (x_{1}^{i})^{2} & \sqrt{2}x_{1}^{i}x_{2}^{i} & (x_{2}^{i})^{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2x_{1}^{j} \\ 2x_{2}^{j} \\ (x_{1}^{j})^{2} \\ \sqrt{2}x_{1}^{j}x_{2}^{j} \\ (x_{2}^{j})^{2} \end{bmatrix} = z_{i}^{T}z_{j},$$

• This pattern still works for any dimension of the x^i .

Kernel Trick

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \hat{K} which have elements:

$$k(x^i, x^j) = (1 + (x^i)^T x^j)^p, \quad \hat{k}(\hat{x}^i, x^j) = (1 + (\hat{x}^i)^T x^j)^p.$$

• Make predictions using:

$$\hat{y} = \hat{K}(K + \lambda I)^{-1}y.$$

- Cost is $O(n^2d + n^3)$ even though number of features is $O(d^p)$.
- Kernel trick:
 - We have kernel function $k(x^i, x^j)$ that gives element (i, j) of K or \hat{K} .
 - Skip forming Z and directly form K and \hat{K} .
 - Size of K is n by n even if Z has exponential or infinite columns.

Guasian-RBF Kernels

• The most common kernel is the Gaussian-RBF (or 'squared exponential') kernel,

$$k(x^{i}, x^{j}) = \exp\left(-\frac{\|x^{i} - x^{j}\|^{2}}{2\sigma^{2}}\right)$$

• What features z_i would lead to this as the inner-product?

• To simplify, assume d = 1 and $\sigma = 1$,

$$k(x^{i}, x^{j}) = \exp\left(-\frac{1}{2}(x^{i})^{2} + x^{i}x^{j} - \frac{1}{2}(x^{j})^{2}\right) = \exp\left(-\frac{1}{2}(x^{i})^{2}\right)\exp(x^{i}x^{j})\exp\left(-\frac{1}{2}(x^{j})^{2}\right),$$

so we need $z_i = \exp(-\frac{1}{2}(x^i)^2)v_i$ where $v_iv_j = \exp(x^ix^j)$.

• For this to work for all x^i and x^j , z_i must be infinite-dimensional.

• If we use that

$$\exp(x^i x^j) = \sum_{k=0}^{\infty} \frac{(x^i)^k (x^j)^k}{k!},$$

then we obtain

$$z_i = \exp\left(-\frac{1}{2}(x^i)^2\right) \begin{bmatrix} 1 & \frac{1}{\sqrt{1!}}x^i & \frac{1}{\sqrt{2!}}(x^i)^2 & \frac{1}{\sqrt{3!}}(x^i)^3 & \cdots \end{bmatrix}.$$

Kernel Trick for Structured Data

- Kernel trick is useful for structured data:
 - Consider that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

but instead looks like this:

 $X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}.$

- We could convert sentences to features, or define kernel between sentences.
 For example, "string" kernels:
 - Weighted frequency of common subsequences (dynamic programming).
- There are also "graph kernels", "image kernels", and so on...

Summary

- Stochastic subgradient methods:
 - $\beta^t v^t$ representation and lazy updates allow sparse datasets.
 - Different step-size strategies and averaging significantly improve performance.
 - Algorithm works with infinite training examples.
- Stochastic average gradient: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.
 - SVRG removes the memory requirement.
- Kernel trick: allows working with "similarity" instead of features.
 - Also allows exponential- or infinite-sized feature spaces.
- Next time: when can we use kernel methods, and what are valid kernels?

Bonus Slide: Equivalent Form of Ridge Regression

Note that \hat{X} and Y are the same on the left and right side, so we only need to show that

$$(X^{T}X + \lambda I)^{-1}X^{T} = X^{T}(XX^{T} + \lambda I)^{-1}.$$
(1)

A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is

$$(E - FH^{-1}G)^{-1}FH^{-1} = E^{-1}F(H - GE^{-1}F)^{-1}.$$

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write the left side of (1) as

$$(X^{T}X + \lambda I)^{-1}X^{T} = (\lambda I + X^{T}X)^{-1}X^{T} = (\lambda I + X^{T}IX)^{-1}X^{T} = (\lambda I - X^{T}(-I)X)^{-1}X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I)X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T} = -($$

Now apply the matrix inversion with $E = \lambda I$ (so $E^{-1} = \left(\frac{1}{\lambda}\right) I$), $F = X^T$, H = -I (so $H^{-1} = -I$ too), and G = X:

$$-(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I) = -(\frac{1}{\lambda})IX^{T}(-I - X\left(\frac{1}{\lambda}\right)X^{T})^{-1}.$$

Now use that $(1/\alpha)A^{-1} = (\alpha A)^{-1}$, to push the $(-1/\lambda)$ inside the sum as $-\lambda$,

$$-\left(\frac{1}{\lambda}\right)IX^{T}(-I-X\left(\frac{1}{\lambda}\right)X^{T})^{-1} = X^{T}(\lambda I + XX^{T})^{-1} = X^{T}(XX^{T} + \lambda I)^{-1}.$$