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Admin

Assignment 2:

Due February 6 (1.5 weeks).
Start early, use Piazza.

Office hours time/location change for this week only:

2:15-3 on Friday in ICICS 193.
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Last Time: Structured Sparsity
Beyond sparsity, we can use regularization to encourage other patterns:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Overlapping group L1-regularization encourages sparsity in variable patterns.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

https://arxiv.org/pdf/1109.2397v2.pdf

These regularizers are not simple, but solvers are available:
Inexact proximal-gradient, ADMM, Frank-Wolfe, UV T parameterization.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
https://arxiv.org/pdf/1109.2397v2.pdf
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Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(x) =
1

n

n∑
i=1

fi(x),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
May increase f , but moves closer to x∗ for small αt in expectation.

Same O(1/ε) rate as deterministic subgradient method but n times faster.
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Last Time: Subgradients and Subgradient Method

Subgradients are a generalization of gradients for non-smooth optimization.

Slopes of linear underestimators, set of subgradients at x is sub-differential ∂f(x).

f(x)

If at a differentiable x, gradient is the only subgradient.
Subgradients exist everywhere for convex funcitons (except vertical asymptotes).
We can define them locally for non-convex functions.

Called “Clarke” or “Frechet” subgradients.
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Last Time: Calculating Subgradients

Computing general subgradient is complicated, but if f1 and f2 are convex then

d ∈ ∂(f1(x) + f2(x)) if d = d1 + d2 for d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x).

∂max{f1(x), f2(x)} =


∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

So for SVMs,

f(w) =
1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

we can get a sub-gradient by computing

1

n

n∑
i=1

gi + λw, with gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise
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What is the best subgradient?

We considered the deterministic subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −gt that minimizes directional derivative is minimum-norm subgradient,

gt = argmin
g∈∂f(xt)

||g||

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.
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Stochastic Subgradient with Sparse Features
We’ve discussed the number of iterations.
But a new issue arises regarding the iteration cost.

In high-level languages like Matlab, stochastic subgradient might be slow.
We need to deal with sparsity of features.

For many datasets, our feature vectors xi are very sparse:
“CPSC “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most k non-zeroes:
The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(k) cost.



Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most k non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If k << d, we can store the vector using O(k) storage instead of O(d):

Just store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store index of each non-zero (“pointer”):

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(k):

Compute αg in O(k) by computing αgvalue.
Compute (w− g) in O(k) for dense w by subracting gvalue from w at positions gpoint.
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Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each xi has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Calculating wt+1 is O(k) since these are sparse vector operations.

So stochastic subgradient is fast if k is small even if d is large.
This is how you “train on all e-mails”: each e-mail has a limited number of words.
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Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλw
t, where git is same as before

Problems is that wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλw
t

= (1− αtλ)wt︸ ︷︷ ︸
changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update
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Stochastic Subgradient with Sparse Features

Let’s write the update as two steps

wt+ 1
2 = (1− αtλ)wt, wt+1 = wt+ 1

2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we can use

βt+
1
2 = (1− αtλ)βt, vt+

1
2 = vt.

which costs O(1).

For the second step we can use

βt+1 = βt+
1
2 , vt+1 = vt+

1
2 − αt

βt+
1
2

git ,

which costs O(k).
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Stochastic Subgradient with Sparse Features

There exists efficient sparse updates in other scenarios too:

“Lazy updates” track cumulative effects of simple updates:

Soft-threshold operator with constant step-size α applies to each element,

wt+1
j = sign(wtj) max{0, |wtj | − αλ}.

If all that happens to wj for 10 iterations is the proximal operator, we can use

wt+10
j = sign(wtj) max{0, |wtj | − 10αλ}.
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Stochastic Subgradient Methods in Practice

Last time we argued that αt must go to zero for convergence.

Theory says using αt = 1/µt is close to optimal.

Except for some special cases, you should not do this.

Usually µ = O(1/n) or O(1/
√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Decreasing step-sizes are also hard to tune.

They also make hard to decide when to stop.
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Stochastic Subgradient Methods in Practice

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t,

or just use a constant step-size,
αt = γ,

which we showed converges linearly to O(γ)-ball around the solution.
2 Take a (weighted) average of the iterations or gradients:

x̄t =

t∑
k=1

ωkx
k,

where ωt is weight at iteration t.

Could weight all iterations equally.
Could ignore first half of the iterations then weight equally.
Could weight proportional to t.
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Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.
Gradient averaging improves constants in analysis.
αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).
Constant step size (αt = α) achieves linear rate to accuracy O(α).
In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.

These tricks usually help, but tuning is often required:

Stochastic subgradient is not a black box.
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Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

But some positive results exist.

Nesterov/Newton improve performance at start or if variance is small.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

AdaGrad method,

xt+1 = xt + αD∇fit(xt), with Djj =

√√√√ t∑
k=1

‖∇jfik(xt)‖2,

improves “regret” but not optimization error.

Popular variations are RMSprop and Adam.
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Stochastic Subgradient for Infinite Datasets?

Our analysis of stochastic subgradient used two assumptions on git :

Unbiased approximation of subgradient: E[git ] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

We can achieve this in the general setting:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (optimal).

Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Almost always worse empirically than methods which do multiple passes.
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Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time
Stochastic methods:

O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε)) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?



Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

Deterministic method uses all n gradients,

∇f(xt) =
1

n

n∑
i=1

∇fi(xt).

Stochastic method approximates it with 1 sample,

∇fit(xt) ≈
1

n

n∑
i=1

∇fi(xt).

A common variant is to use larger sample Bt

1

|Bt|
∑
i∈Bt
∇fi(xt) ≈

1

n

n∑
i=1

∇fi(xt),

particularly useful for vectorization/parallelization.
For example, with 16 cores set |Bt| = 16 and compute 16 gradients at once.
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Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

Let’s view this as a “gradient method with error”,

xt+1 = xt − αt(∇f(xt) + et),

where et is the difference between approximate and true gradient.

The batch size |Bt| controls size of error et.
If we sample with replacement we get

E[‖et‖2] =
1

|Bt|σ
2,

where σ2 is the variance of the gradient norms.
Doubling the batch size cuts radius of O(α) ball in half.
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Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

Let’s view this as a “gradient method with error”,

xt+1 = xt − αt(∇f(xt) + et),

where et is the difference between approximate and true gradient.

The batch size |Bt| controls size of error et.
If we sample without replacement from a finite set we get

E[‖et‖2] =
n− |Bt|

n

1

|Bt|σ
2,

where σ2 is the variance of the gradient norms.
We drive the error to zero as the batch size approaches n.



Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

But we can grow |Bt| to achieve a linear rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.
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Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt
n

n∑
i=1

yti

Memory: yti = ∇fi(xt) from the last t where i was selected.

Stochastic variant of earlier increment aggregated gradient (IAG).

Key proof idea: yti → ∇fi(x∗) at the same rate that xt → x∗:

So variance of the gradient approximation et goes to 0.
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Stochastic Average Gradient

So SAG has a memory 
y1
y2
...
yn

 ,
where each yi keeps track of the last time we randomly picked example i.

On each iteration we:

Randomly choose one of the yi and update it to the current gradient.
We take a step in the direction of the avarge of these yi.
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Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t

C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:

Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(nLµ log(1/ε)).

Nesterov: O(n
√

L
µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)
(the L values are again different between algorithms)
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Comparing Deterministic and Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s 
O

p
ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s 
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG



Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

SAG Compared to Deterministic/Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:
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SAG Algorithm

Basic SAG algorithm (maintains d =
∑n

i=1 yi):

Set d = 0 and gradient approximation yi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute f ′

i(x).
d = d− yi + f ′

i(x).
yi = f ′

i(x).
x = x− α

n
d.

Iteration cost is O(d), but “lazy updates” allow O(k) with sparse gradients.

For linear models where fi(w) = g(wTxi), it only require O(n) memory:

∇fi(w) = ∇g(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.
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Discussion of SAG and Beyond

Implementation tricks:
Improve performance at start using 1

md instead of 1
nd.

m is the number of examples visited.

Common to use αt = 1/L and use adaptive L.

Start with L = 1 and double it whenever we don’t satisfiy

fit

(
xt − 1

L
∇fit(x

t)

)
≤ fit(x

t)− 1

2L
‖∇fit(x

t)‖2,

and ‖∇fit(xt)‖ is non-trivial. Costs O(1) for linear models in terms of n and d.

Can use ‖xt+1 − xt‖/α = 1
nd ≈ ‖∇f(xt)‖ to decide when to stop.

Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.
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Discussion of SAG and Beyond

There are now a bunch of stochastic algorithm with O(log(1/ε)) rates:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
Analyses for infinite data sets.

Some of the above get rid of the memory...



Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs
for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)︸ ︷︷ ︸

mean zero

).

xs+1 = xt.

Convergence properties similar to SAG (for m large enough).
(special case of what’s known as a “control variate”)

O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.
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Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = w0 + w1x
i + w2(x

i)2.

We can fit these models using a change of basis:

If X =


0.2
−0.5

1
4

 then let Z =


1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regulairzed least squares solution is

w = (ZTZ + λI)−1ZT y.

How can we do this when we have a lot of features?
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Motivation: Multi-Dimensional Polynomial Basis

Approach 1: use polynomial basis for each variable:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Z =

1 0.2 (0.2)2 0.3 (0.3)2

1 1 (1)2 0.5 (0.5)2

1 −0.5 (−0.5)2 −0.1 (−0.1)2


But this is restrictve:

We should allow terms like xi1x
i
2 that depend on feature interactions.

But number of terms in Xpoly would be huge:

Degree-5 polynomial basis has O(d5) terms:

(xi1)
5, (xi1)

4xi2, (x1)
4xi3, . . . , (x

i
1)

3(xi2)
2, (xi1)

3(xi2)
2, . . . , (xi1)

3xi2x
i
3, . . .

If n is not too big, we can do this efficiently using the kernel trick.
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Equivalent Form of Ridge Regression

Recall the L2-regularized least squares model with basis Z,

argmin
w∈Rd

1

2
‖Zw − y‖2 +

λ

2
‖w‖2.

We showed that the solution is

w = (ZTZ︸ ︷︷ ︸
d by d

+λId)−1ZT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

w = ZT (ZZT︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma (bonus slide).
Computing w with this formula is faster if n << d:

ZZT is n by n while ZTZ is d by d.
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Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:

ŷ = Ẑw

= ẐZT (ZZT + λIn)−1y

If we define K = ZZT (Gram matrix) and K̂ = ẐZT , then we have

ŷ = K̂(K + λIn)−1y.

Key observation behind kernel trick:

If we have the K and K̂, we don’t need the features.
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Gram Matrix

The Gram matrix K is defined by:

K = ZZT =


— zT1 —
— zT2 —

...
— zTn —


z1 z2 z3



=


zT1 z1 zT1 z2 · · · zT1 zn
zT2 z1 zT2 z2 · · · zT2 zn

...
...

. . .
...

zTn z1 zTn z2 · · · zTn zn


K contains the inner products between all training examples in basis z

K̂ contains the inner products between training and test examples.

Kernel trick: if we can compute k(xi, xj) = zTi zj , we don’t need zi and zj .
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Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, x
i
2), xj = (xj1, x

j
2).

Consider a particular degree-2 basis:

zi =
(

(xi1)
2,
√

2xi1x
i
2, (x

i
2)

2
)
.

We can compute inner product zTi zj without forming zi and zj ,

zTi zj =
[
(xi1)

2
√

2xi1x
i
2 (xi2)

2
]
zj

= (xi1)
2(xj1)

2 + 2xi1x
i
2x

j
1x

j
2 + (xi2)

2(xj2)
2

= (xi1x
j
1 + xi2x

j
2)

2 (completing the square)

= ((xi)Txj)2.
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Polynomial Kernel with Higher Degrees

If we want all degree-4 “monomials”, raise it to 4th power:

zTi zj = ((xi)Txj)4,

with two variables zi is weighted version of
(xi1)

4, (xi1)
3xi2, (x

i
1)

2(xi2)
2, xi1(x

i
2)

3, (xi2)
4.

If you want bias or lower-order terms like xi1, add constant inside power:

(1 + (xi)Txj)2 = 1 + 2(xi)Txj + ((xi)Txj)2

=
[
1 2xi1 2xi2 (xi1)

2
√

2xi1x
i
2 (xi2)

2
]


1

2xj1
2xj2

(xj1)
2

√
2xj1x

j
2

(xj2)
2


= zTi zj ,

This pattern still works for any dimension of the xi.
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Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + (xi)Txj)p, k̂(x̂i, xj) = (1 + (x̂i)Txj)p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick:

We have kernel function k(xi, xj) that gives element (i, j) of K or K̂.
Skip forming Z and directly form K and K̂.
Size of K is n by n even if Z has exponential or infinite columns.
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Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖x

i − xj‖2
2σ2

)
.

What features zi would lead to this as the inner-product?
To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp

(
−1

2
(xi)2 + xixj − 1

2
(xj)2

)
= exp

(
−1

2
(xi)2

)
exp(xixj) exp

(
−1

2
(xj)2

)
,

so we need zi = exp(− 1
2 (xi)2)vi where vivj = exp(xixj).

For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(xixj) =

∞∑
k=0

(xi)k(xj)k

k!
,

then we obtain

zi = exp

(
−1

2
(xi)2

)[
1 1√

1!
xi 1√

2!
(xi)2 1√

3!
(xi)3 · · ·

]
.



Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Kernel Trick for Structured Data

Kernel trick is useful for structured data:
Consider that doesn’t look like this:

X =


0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =


+1
−1
−1
+1

 ,
but instead looks like this:

X =


Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =


+1
−1
−1
+1

 .
We could convert sentences to features, or define kernel between sentences.
For example, “string” kernels:

Weighted frequency of common subsequences (dynamic programming).

There are also “graph kernels”, “image kernels”, and so on...
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Summary

Stochastic subgradient methods:

βtvt representation and lazy updates allow sparse datasets.
Different step-size strategies and averaging significantly improve performance.
Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

SVRG removes the memory requirement.

Kernel trick: allows working with “similarity” instead of features.

Also allows exponential- or infinite-sized feature spaces.

Next time: when can we use kernel methods, and what are valid kernels?
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Bonus Slide: Equivalent Form of Ridge Regression
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