
Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

CPSC 540: Machine Learning
Stochastic Average Gradient, Kernel Methods

Mark Schmidt

University of British Columbia

Winter 2017

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Admin

Assignment 2:

Due February 6 (1.5 weeks).
Start early, use Piazza.

Office hours time/location change for this week only:

2:15-3 on Friday in ICICS 193.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last Time: Structured Sparsity
Beyond sparsity, we can use regularization to encourage other patterns:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Overlapping group L1-regularization encourages sparsity in variable patterns.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

https://arxiv.org/pdf/1109.2397v2.pdf

These regularizers are not simple, but solvers are available:
Inexact proximal-gradient, ADMM, Frank-Wolfe, UV T parameterization.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
https://arxiv.org/pdf/1109.2397v2.pdf

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last time: Stochastic sub-gradient

We discussed minimizing finite sums,

f(x) =
1

n

n∑
i=1

fi(x),

when n is very large.

For non-smooth fi, we discussed stochastic subgradient method,

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
May increase f , but moves closer to x∗ for small αt in expectation.

Same O(1/ε) rate as deterministic subgradient method but n times faster.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last Time: Subgradients and Subgradient Method

Subgradients are a generalization of gradients for non-smooth optimization.

Slopes of linear underestimators, set of subgradients at x is sub-differential ∂f(x).

f(x)

If at a differentiable x, gradient is the only subgradient.
Subgradients exist everywhere for convex funcitons (except vertical asymptotes).
We can define them locally for non-convex functions.

Called “Clarke” or “Frechet” subgradients.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last Time: Calculating Subgradients

Computing general subgradient is complicated, but if f1 and f2 are convex then

d ∈ ∂(f1(x) + f2(x)) if d = d1 + d2 for d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x).

∂max{f1(x), f2(x)} =


∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

So for SVMs,

f(w) =
1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

we can get a sub-gradient by computing

1

n

n∑
i=1

gi + λw, with gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

What is the best subgradient?

We considered the deterministic subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −gt that minimizes directional derivative is minimum-norm subgradient,

gt = argmin
g∈∂f(xt)

||g||

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Outline

1 Practical Subgradient Methods

2 Stochastic Average Gradient

3 Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features
We’ve discussed the number of iterations.
But a new issue arises regarding the iteration cost.

In high-level languages like Matlab, stochastic subgradient might be slow.
We need to deal with sparsity of features.

For many datasets, our feature vectors xi are very sparse:
“CPSC “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most k non-zeroes:
The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(k) cost.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most k non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If k << d, we can store the vector using O(k) storage instead of O(d):

Just store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store index of each non-zero (“pointer”):

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(k):

Compute αg in O(k) by computing αgvalue.
Compute (w− g) in O(k) for dense w by subracting gvalue from w at positions gpoint.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)},

when d is huge but each xi has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Calculating wt+1 is O(k) since these are sparse vector operations.

So stochastic subgradient is fast if k is small even if d is large.
This is how you “train on all e-mails”: each e-mail has a limited number of words.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features

But consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑
i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλw
t, where git is same as before

Problems is that wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλw
t

= (1− αtλ)wt︸ ︷︷ ︸
changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features

Let’s write the update as two steps

wt+ 1
2 = (1− αtλ)wt, wt+1 = wt+ 1

2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we can use

βt+
1
2 = (1− αtλ)βt, vt+

1
2 = vt.

which costs O(1).

For the second step we can use

βt+1 = βt+
1
2 , vt+1 = vt+

1
2 − αt

βt+
1
2

git ,

which costs O(k).

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features

There exists efficient sparse updates in other scenarios too:

“Lazy updates” track cumulative effects of simple updates:

Soft-threshold operator with constant step-size α applies to each element,

wt+1
j = sign(wtj) max{0, |wtj | − αλ}.

If all that happens to wj for 10 iterations is the proximal operator, we can use

wt+10
j = sign(wtj) max{0, |wtj | − 10αλ}.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient Methods in Practice

Last time we argued that αt must go to zero for convergence.

Theory says using αt = 1/µt is close to optimal.

Except for some special cases, you should not do this.

Usually µ = O(1/n) or O(1/
√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Decreasing step-sizes are also hard to tune.

They also make hard to decide when to stop.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient Methods in Practice

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t,

or just use a constant step-size,
αt = γ,

which we showed converges linearly to O(γ)-ball around the solution.
2 Take a (weighted) average of the iterations or gradients:

x̄t =

t∑
k=1

ωkx
k,

where ωt is weight at iteration t.

Could weight all iterations equally.
Could ignore first half of the iterations then weight equally.
Could weight proportional to t.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.
Gradient averaging improves constants in analysis.
αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).
Constant step size (αt = α) achieves linear rate to accuracy O(α).
In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.

These tricks usually help, but tuning is often required:

Stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

But some positive results exist.

Nesterov/Newton improve performance at start or if variance is small.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.

AdaGrad method,

xt+1 = xt + αD∇fit(xt), with Djj =

√√√√ t∑
k=1

‖∇jfik(xt)‖2,

improves “regret” but not optimization error.

Popular variations are RMSprop and Adam.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient for Infinite Datasets?

Our analysis of stochastic subgradient used two assumptions on git :

Unbiased approximation of subgradient: E[git] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

We can achieve this in the general setting:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) samples to reach test loss accuracy of ε (optimal).

Often used to justify doing one “pass” through data of stochastic subgradient:

If you only look at data point once, can be viewed as IID test sample.
Almost always worse empirically than methods which do multiple passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Outline

1 Practical Subgradient Methods

2 Stochastic Average Gradient

3 Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Better Methods for Smooth Objectives and Finite Datasets?

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time
Stochastic methods:

O(1/ε) iterations but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:
O(log(1/ε)) iterations but requires n gradients per iteration.
The faster rate is possible because n is finite.

For finite n, can we design a better method?

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

Deterministic method uses all n gradients,

∇f(xt) =
1

n

n∑
i=1

∇fi(xt).

Stochastic method approximates it with 1 sample,

∇fit(xt) ≈
1

n

n∑
i=1

∇fi(xt).

A common variant is to use larger sample Bt

1

|Bt|
∑
i∈Bt
∇fi(xt) ≈

1

n

n∑
i=1

∇fi(xt),

particularly useful for vectorization/parallelization.
For example, with 16 cores set |Bt| = 16 and compute 16 gradients at once.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

Let’s view this as a “gradient method with error”,

xt+1 = xt − αt(∇f(xt) + et),

where et is the difference between approximate and true gradient.

The batch size |Bt| controls size of error et.
If we sample with replacement we get

E[‖et‖2] =
1

|Bt|σ
2,

where σ2 is the variance of the gradient norms.
Doubling the batch size cuts radius of O(α) ball in half.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

Let’s view this as a “gradient method with error”,

xt+1 = xt − αt(∇f(xt) + et),

where et is the difference between approximate and true gradient.

The batch size |Bt| controls size of error et.
If we sample without replacement from a finite set we get

E[‖et‖2] =
n− |Bt|

n

1

|Bt|σ
2,

where σ2 is the variance of the gradient norms.
We drive the error to zero as the batch size approaches n.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑
i∈Bt

fi(x
t).

For a fixed sample size |Bt|, the rate is sublinear.

But we can grow |Bt| to achieve a linear rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Another approach: at some point switch from stochastic to deterministic:

Often after a small number of passes.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Average Gradient

Growing |Bt| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , n} and compute ∇fit(xt).

xt+1 = xt − αt
n

n∑
i=1

yti

Memory: yti = ∇fi(xt) from the last t where i was selected.

Stochastic variant of earlier increment aggregated gradient (IAG).

Key proof idea: yti → ∇fi(x∗) at the same rate that xt → x∗:

So variance of the gradient approximation et goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Average Gradient

So SAG has a memory 
y1
y2
...
yn

 ,
where each yi keeps track of the last time we randomly picked example i.

On each iteration we:

Randomly choose one of the yi and update it to the current gradient.
We take a step in the direction of the avarge of these yi.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex, with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8n

})t

C,

where

C = [f(x0)− f(x∗)] +
4L

n
‖x0 − x∗‖2 +

σ2

16L
.

Number of f ′i evaluations to reach ε:

Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(nLµ log(1/ε)).

Nesterov: O(n
√

L
µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)). (Best when n is big and L/µ is big)
(the L values are again different between algorithms)

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Comparing Deterministic and Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

SAG Compared to Deterministic/Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

SAG Algorithm

Basic SAG algorithm (maintains d =
∑n

i=1 yi):

Set d = 0 and gradient approximation yi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute f ′

i(x).
d = d− yi + f ′

i(x).
yi = f ′

i(x).
x = x− α

n
d.

Iteration cost is O(d), but “lazy updates” allow O(k) with sparse gradients.

For linear models where fi(w) = g(wTxi), it only require O(n) memory:

∇fi(w) = ∇g(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Discussion of SAG and Beyond

Implementation tricks:
Improve performance at start using 1

md instead of 1
nd.

m is the number of examples visited.

Common to use αt = 1/L and use adaptive L.

Start with L = 1 and double it whenever we don’t satisfiy

fit

(
xt − 1

L
∇fit(x

t)

)
≤ fit(x

t)− 1

2L
‖∇fit(x

t)‖2,

and ‖∇fit(xt)‖ is non-trivial. Costs O(1) for linear models in terms of n and d.

Can use ‖xt+1 − xt‖/α = 1
nd ≈ ‖∇f(xt)‖ to decide when to stop.

Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Discussion of SAG and Beyond

There are now a bunch of stochastic algorithm with O(log(1/ε)) rates:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
Analyses for infinite data sets.

Some of the above get rid of the memory...

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

Start with x0
for s = 0, 1, 2 . . .

∇f(xs) = 1
n

∑n
i=1∇fi(xs)

x0 = xs
for t = 0, 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , n}
xt+1 = xt − αt(∇fit(xt)−∇fit(xs) +∇f(xs)︸ ︷︷ ︸

mean zero

).

xs+1 = xt.

Convergence properties similar to SAG (for m large enough).
(special case of what’s known as a “control variate”)

O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Outline

1 Practical Subgradient Methods

2 Stochastic Average Gradient

3 Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = w0 + w1x
i + w2(x

i)2.

We can fit these models using a change of basis:

If X =


0.2
−0.5

1
4

 then let Z =


1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regulairzed least squares solution is

w = (ZTZ + λI)−1ZT y.

How can we do this when we have a lot of features?

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Motivation: Multi-Dimensional Polynomial Basis

Approach 1: use polynomial basis for each variable:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Z =

1 0.2 (0.2)2 0.3 (0.3)2

1 1 (1)2 0.5 (0.5)2

1 −0.5 (−0.5)2 −0.1 (−0.1)2


But this is restrictve:

We should allow terms like xi1x
i
2 that depend on feature interactions.

But number of terms in Xpoly would be huge:

Degree-5 polynomial basis has O(d5) terms:

(xi1)
5, (xi1)

4xi2, (x1)
4xi3, . . . , (x

i
1)

3(xi2)
2, (xi1)

3(xi2)
2, . . . , (xi1)

3xi2x
i
3, . . .

If n is not too big, we can do this efficiently using the kernel trick.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Equivalent Form of Ridge Regression

Recall the L2-regularized least squares model with basis Z,

argmin
w∈Rd

1

2
‖Zw − y‖2 +

λ

2
‖w‖2.

We showed that the solution is

w = (ZTZ︸ ︷︷ ︸
d by d

+λId)−1ZT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

w = ZT (ZZT︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma (bonus slide).
Computing w with this formula is faster if n << d:

ZZT is n by n while ZTZ is d by d.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:

ŷ = Ẑw

= ẐZT (ZZT + λIn)−1y

If we define K = ZZT (Gram matrix) and K̂ = ẐZT , then we have

ŷ = K̂(K + λIn)−1y.

Key observation behind kernel trick:

If we have the K and K̂, we don’t need the features.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Gram Matrix

The Gram matrix K is defined by:

K = ZZT =


— zT1 —
— zT2 —

...
— zTn —


z1 z2 z3



=


zT1 z1 zT1 z2 · · · zT1 zn
zT2 z1 zT2 z2 · · · zT2 zn

...
...

. . .
...

zTn z1 zTn z2 · · · zTn zn


K contains the inner products between all training examples in basis z

K̂ contains the inner products between training and test examples.

Kernel trick: if we can compute k(xi, xj) = zTi zj , we don’t need zi and zj .

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, x
i
2), xj = (xj1, x

j
2).

Consider a particular degree-2 basis:

zi =
(

(xi1)
2,
√

2xi1x
i
2, (x

i
2)

2
)
.

We can compute inner product zTi zj without forming zi and zj ,

zTi zj =
[
(xi1)

2
√

2xi1x
i
2 (xi2)

2
]
zj

= (xi1)
2(xj1)

2 + 2xi1x
i
2x

j
1x

j
2 + (xi2)

2(xj2)
2

= (xi1x
j
1 + xi2x

j
2)

2 (completing the square)

= ((xi)Txj)2.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Polynomial Kernel with Higher Degrees

If we want all degree-4 “monomials”, raise it to 4th power:

zTi zj = ((xi)Txj)4,

with two variables zi is weighted version of
(xi1)

4, (xi1)
3xi2, (x

i
1)

2(xi2)
2, xi1(x

i
2)

3, (xi2)
4.

If you want bias or lower-order terms like xi1, add constant inside power:

(1 + (xi)Txj)2 = 1 + 2(xi)Txj + ((xi)Txj)2

=
[
1 2xi1 2xi2 (xi1)

2
√

2xi1x
i
2 (xi2)

2
]


1

2xj1
2xj2

(xj1)
2

√
2xj1x

j
2

(xj2)
2


= zTi zj ,

This pattern still works for any dimension of the xi.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + (xi)Txj)p, k̂(x̂i, xj) = (1 + (x̂i)Txj)p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick:

We have kernel function k(xi, xj) that gives element (i, j) of K or K̂.
Skip forming Z and directly form K and K̂.
Size of K is n by n even if Z has exponential or infinite columns.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖x

i − xj‖2
2σ2

)
.

What features zi would lead to this as the inner-product?
To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp

(
−1

2
(xi)2 + xixj − 1

2
(xj)2

)
= exp

(
−1

2
(xi)2

)
exp(xixj) exp

(
−1

2
(xj)2

)
,

so we need zi = exp(− 1
2 (xi)2)vi where vivj = exp(xixj).

For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(xixj) =

∞∑
k=0

(xi)k(xj)k

k!
,

then we obtain

zi = exp

(
−1

2
(xi)2

)[
1 1√

1!
xi 1√

2!
(xi)2 1√

3!
(xi)3 · · ·

]
.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Kernel Trick for Structured Data

Kernel trick is useful for structured data:
Consider that doesn’t look like this:

X =


0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =


+1
−1
−1
+1

 ,
but instead looks like this:

X =


Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =


+1
−1
−1
+1

 .
We could convert sentences to features, or define kernel between sentences.
For example, “string” kernels:

Weighted frequency of common subsequences (dynamic programming).

There are also “graph kernels”, “image kernels”, and so on...

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Summary

Stochastic subgradient methods:

βtvt representation and lazy updates allow sparse datasets.
Different step-size strategies and averaging significantly improve performance.
Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

SVRG removes the memory requirement.

Kernel trick: allows working with “similarity” instead of features.

Also allows exponential- or infinite-sized feature spaces.

Next time: when can we use kernel methods, and what are valid kernels?

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Bonus Slide: Equivalent Form of Ridge Regression

	Practical Subgradient Methods
	Stochastic Average Gradient
	Kernel Methods

