Practical Subgradient Methods

Stochastic Average Gradient

CPSC 540: Machine Learning

Stochastic Average Gradient, Kernel Methods

Mark Schmidt

University of British Columbia

Winter 2017

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Admin

@ Assignment 2:

o Due February 6 (1.5 weeks).
o Start early, use Piazza.

e Office hours time/location change for this week only:
e 2:15-3 on Friday in ICICS 193.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last Time: Structured Sparsity

@ Beyond sparsity, we can use regularization to encourage other patterns:
o Total-variation regularization encourages slow/sparse changes in w.
o Nuclear-norm regularization encourages sparsity in rank of matrices.
e Overlapping group L1-regularization encourages sparsity in variable patterns.

Urssdas
Mo’

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

https://arxiv.org/pdf/1109.2397v2. pdf
@ These regularizers are not simple, but solvers are available:
o Inexact proximal-gradient, ADMM, Frank-Wolfe, UVT parameterization.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
https://arxiv.org/pdf/1109.2397v2.pdf

Practical Subgradient Methods Stochastic Average Gradient

Last time: Stochastic sub-gradient

@ We discussed minimizing finite sums,
1 n
J@) == fila),
i=1

when n is very large.

@ For non-smooth f;, we discussed stochastic subgradient method,

t+1 _ .t
T =T — Gy,

for some g;, € df;,(x') for some random i; € {1,2,...,n}.

e May increase f, but moves closer to z* for small a; in expectation.

@ Same O(1/e¢) rate as deterministic subgradient method but n times faster.

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last Time: Subgradients and Subgradient Method

@ Subgradients are a generalization of gradients for non-smooth optimization.
o Slopes of linear underestimators, set of subgradients at z is sub-differential f(z).

o If at a differentiable x, gradient is the only subgradient.
o Subgradients exist everywhere for convex funcitons (except vertical asymptotes).
o We can define them locally for non-convex functions.

o Called “Clarke” or “Frechet” subgradients.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Last Time: Calculating Subgradients

@ Computing general subgradient is complicated, but if f; and fs are convex then
d € O(f1(x) + fo(x)) if d = dy + dy for dy € Ofi(x) and dy € Dfa(x).
Vfi(z) fi(z) > fa(2)
Omax{ fi(z), fa(z)} = { V fa(z)
OV fi(z) + (1= 0)Vfa(z) fi(z)= fo(z)
@ So for SVMs,

1 — ; ; A
flw) = - ZmaX{O, 1—y'(w'a")} + gllez,
=1

we can get a sub-gradient by computing

{—yixi if 1 —y'(wla?) >0

1 n
fZgH-/\w, with g; = :
n 0 otherwise

i=1

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

What is the best subgradient?
@ We considered the deterministic subgradient method,

t+1

o =2t — ayg;, where gy € Of(21),

under any choice of subgradient.

@ But what is the "best” subgradient to use?

e Convex functions have directional derivatives everywhere.
e Direction —g; that minimizes directional derivative is minimum-norm subgradient,

g' = argmin ||g||
gedf(xt)

o This is the steepest descent direction for non-smooth convex optimization problems.

e You can compute this for L1-regularization, but not many other problems.
o Used in best deterministic L1-regularization methods, combined with Newton.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Outline

@ Practical Subgradient Methods

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient with Sparse Features

e We've discussed the number of iterations.

@ But a new issue arises regarding the iteration cost.
o In high-level languages like Matlab, stochastic subgradient might be slow.
o We need to deal with sparsity of features.

e For many datasets, our feature vectors ' are very sparse:
“CPSC “Expedia” ‘'vicodin” <recipient name>
1 0 0 0

= O O O

1 0
0 1
1 0
0 1

= = O O

@ Consider case where d is huge but each row x' has at most k non-zeroes:

e The O(d) cost of stochastic subgradient might be too high.
e We can often modify stochastic subgradient to have O(k) cost.

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods
Digression: Operations on Sparse Vectors

o Consider a vector g € R? with at most k non-zeroes:
g"=[0 00120 —05 0 0 0].

o If k << d, we can store the vector using O(k) storage instead of O(d):
e Just store the non-zero values:

Juae = [1 2 —0.5].
e Store index of each non-zero (“pointer”):

gg;int:[zl 5 7].

e With this representation, we can do standard vector operations in O(k):
o Compute ag in O(k) by computing aguaiue-
o Compute (w —g) in O(k) for dense w by subracting gyaiue from w at positions gpoint-

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features

@ Consider optimizing the hinge-loss,

1 <& . .
argmin — Z max{0, 1 — y'(w?z")},
weR? n i=1

when d is huge but each z' has at most k& non-zeroes.
@ A stochastic subgradient method could use
{—yixi if 1 —yi(wlz?) >0

t+1 _

w w' — ayg;,, where g; =

0 otherwise

e Calculating w'*! is O(k) since these are sparse vector operations.

@ So stochastic subgradient is fast if k is small even if d is large.
e This is how you “train on all e-mails”: each e-mail has a limited number of words.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features
@ But consider the L2-regularized hinge-loss in the same setting,
argmln—Zmax{O 1—y(whah)y + = HwH2
weR?

using a stochastic subgradient method,

w'™ = w — ayg;, —), where g;, is same as before

@ Problems is that w' could have d non-zeroes:
e So adding L2-regularization increases cost from O(k) to O(d)?

@ To use L2-regularization and keep O(k) cost, re-write iteration as

witt = wt — LG, — a w'
¢
= (1-aw — og,.
— SN—~—

changes scale of w! sparse update

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features
@ Let's write the update as two steps
wtts = (1—aMut, wtt= wtts — L Gi, -
@ We can implement both steps in O(k) if we re-parameterize as
wt = gt
for some scalar 3¢ and vector v'.
@ For the first step we can use

575—‘,-% = (1 -), ot = ot
which costs O(1).
@ For the second step we can use

Bl = gits g+l — ity at
?

v .
t+% g’Lt7

which costs O(k).

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient with Sparse Features

@ There exists efficient sparse updates in other scenarios too:

@ “Lazy updates” track cumulative effects of simple updates:
o Soft-threshold operator with constant step-size « applies to each element,

witt = sign(w}) max{0, |w}| — aA}.

o If all that happens to w; for 10 iterations is the proximal operator, we can use

410 _ o ¢ ¢
w; " = sign(w;) max{0, |wj| — 10aA}.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Subgradient Methods in Practice

@ Last time we argued that a; must go to zero for convergence.

@ Theory says using ay = 1/ut is close to optimal.
o Except for some special cases, you should not do this.

Usually u = O(1/n) or O(1/+/n) so initial steps are huge.
Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if p isn’t accurate.
No adaptation to “easier” problems than worst case.

@ Decreasing step-sizes are also hard to tune.

@ They also make hard to decide when to stop.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Subgradient Methods in Practice

@ Tricks that can improve theoretical and practical properties:
@ Use smaller initial step-sizes, that go to zero more slowly:

O = ’Y/\/%v

or just use a constant step-size,
oy =7,

which we showed converges linearly to O(+y)-ball around the solution.

@ Take a (weighted) average of the iterations or gradients:

t
= E wkxk,
k=1

where w; is weight at iteration .
o Could weight all iterations equally.
e Could ignore first half of the iterations then weight equally.
e Could weight proportional to t.

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Speeding up Stochastic Subgradient Methods

@ Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.
Gradient averaging improves constants in analysis.

oy = O(1/t7) for B € (0.5,1) more robust than oy, = O(1/t).
Constant step size (a; = a) achieves linear rate to accuracy O(a).
In smooth case, iterate averaging is asymptotically optimal:

@ Achieves same rate as optimal stochastic Newton method.

@ These tricks usually help, but tuning is often required:
e Stochastic subgradient is not a black box.

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Newton Methods?

@ Should we use Nesterov/Newton-like stochastic methods?
o These do not improve the O(1/¢€) convergence rate.

@ But some positive results exist.

o Nesterov/Newton improve performance at start or if variance is small.

o Two-phase Newton-like method achieves O(1/¢) without strong-convexity.

o AdaGrad method,

:1;t+1 = xt + OéDVfit (J?t), with Djj = Z ||V flk ||2

improves “regret” but not optimization error.
@ Popular variations are RMSprop and Adam.

Kernel Methods

Stochastic Average Gradient Kernel Methods

Practical Subgradient Methods

Stochastic Subgradient for Infinite Datasets?

@ Our analysis of stochastic subgradient used two assumptions on g;,:
o Unbiased approximation of subgradient: E[g;,] = ¢:.
e Variance is bounded: E[||g;, ||?] < B2
@ We can achieve this in the general setting:
argmin E[f;(z)].

z€Rd

@ We can use stochastic subgradient on IID samples from infinite dataset:

o In this setting, we are directly optimizing test loss and cannot overfit.
o We require O(1/€) samples to reach test loss accuracy of e (optimal).

@ Often used to justify doing one “pass” through data of stochastic subgradient:

e If you only look at data point once, can be viewed as IID test sample.
o Almost always worse empirically than methods which do multiple passes.

Outline

@ Practical Subgradient Methods
© Stochastic Average Gradient

© Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Better Methods for Smooth Objectives and Finite Datasets?

=

ce)

S

Q

o)

4)

Y stochastic

g

N— . . .
% deterministic
= | hybrid

time

@ Stochastic methods:
e O(1/e) iterations but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.
@ Deterministic methods:
o O(log(1/e)) iterations but requires n gradients per iteration.
e The faster rate is possible because n is finite.

@ For finite n, can we design a better method?

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ Deterministic method uses all n gradients,

1 n
- 33V
n “
=1
@ Stochastic method approximates it with 1 sample,
V(') ~ = Z Vfi(x

@ A common variant is to use larger sample Bt
1 n
~ t
vaz NEZVfZ(x)7
zeBt =1

particularly useful for vectorization/parallelization.
o For example, with 16 cores set |B¢| = 16 and compute 16 gradients at once.

Practical Subgradient Methods Stochastic Average Gradient

Approach 1: Batching
@ The SG method with a sample B! uses iterations
t+1 _
ot =gt]Bt\ Z fi(zx
icBt

@ Let's view this as a “gradient method with error”,

' =2t — (Vf(2h) + €,

where e! is the difference between approximate and true gradient.

@ The batch size |B| controls size of error €.
o If we sample with replacement we get

1
t 2
Elle'|°] = g7

where o2 is the variance of the gradient norms.
e Doubling the batch size cuts radius of O(«) ball in half.

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient

Approach 1: Batching
@ The SG method with a sample B! uses iterations
t+1 ot Qi ot
T =a" — B Z fi(x").
i€eBt
@ Let's view this as a “gradient method with error”,

' =t — (V') +),

where ¢! is the difference between approximate and true gradient.

@ The batch size | B| controls size of error €.

o If we sample without replacement from a finite set we get
n—|BY 1
E t)12 — 2
7] = "= = e

where o2 is the variance of the gradient norms.

e We drive the error to zero as the batch size approaches n.

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient

Kernel Methods

Approach 1: Batching

@ The SG method with a sample B! uses iterations

t+1 _

z - ’Bt Zfl

ieBt
e For a fixed sample size |B!], the rate is sublinear

@ But we can grow |BY| to achieve a linear rate

o Early iterations are cheap like SG iterations.
o Later iterations can use a Newton-like method

@ Another approach: at some point switch from stochastic to deterministic
o Often after a small number of passes

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Average Gradient

e Growing |B| eventually requires O(n) iteration cost.

e Can we have 1 gradient per iteration and only O(log(1/¢)) iterations?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i; from {1,2,...,n} and compute V f;, (z*).

n
t4+1 t Qg t
gl =g - ="yl
n “
i=1

o Memory: y! = Vfi(z") from the last ¢ where i was selected.
e Stochastic variant of earlier increment aggregated gradient (IAG).

o Key proof idea: y! — Vfi(z*) at the same rate that 2! — z*:
@ So variance of the gradient approximation e’ goes to 0.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Stochastic Average Gradient

@ So SAG has a memory

- W
— ¥

— yn —

where each y; keeps track of the last time we randomly picked example 1.

@ On each iteration we:

e Randomly choose one of the y; and update it to the current gradient.
o We take a step in the direction of the avarge of these y;.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods
Convergence Rate of SAG

If each f! is L—continuous and f is strongly-convex, with a; = 1/16L SAG has

E[f(z!) - /(")) < (1 _ e {m"L ;n})c

where
2

0 =[£(") - @ + e’ — I + o

@ Number of f] evaluations to reach e:

e Stochastic: O(ﬁ(l/e)) (Best when n is enormous)
o Gradient: O(n% log(1/€)).

o Nesterov: O(n\/glog(l/e)). (Best when n is small and L/ is big)
e SAG: O(max{n, %}log(l/e)). (Best when n is big and L/u is big)

(the L values are again different between algorithms)

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Comparing Deterministic and Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Objective minus Optimum

SAG Compared to Deterministic/Stochastic Methods

@ Two benchmark L2-regularized logistic regression datasets:

T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

Stochastic Average Gradient

SAG Algorithm

@ Basic SAG algorithm (maintains d = >, y;):
e Set d = 0 and gradient approximation y; =0 fori =1,2,...,n.
o while(1)
e Sample ¢ from {1,2,...,n}.
Compute f(z).
d=d—y:+ fi(z).
yi = fi(z).

r=x— 2d.
n

e lIteration cost is O(d), but “lazy updates” allow O(k) with sparse gradients.
e For linear models where f;(w) = g(wTz?), it only require O(n) memory:

~~
data

Vfi(w) = Vg(wz?) o

scalar

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Discussion of SAG and Beyond

@ Implementation tricks:
o Improve performance at start using --d instead of Ld.
@ m is the number of examples visited.
e Common to use oy = 1/L and use adaptive L.
e Start with L = 1 and double it whenever we don't satisfiy

i (o = TR < Fule) = IV GO,

and ||V fi, (z")|| is non-trivial. Costs O(1) for linear models in terms of n and d.
o Can use [|z"™! — af||/a = Ld ~ ||V f(z")| to decide when to stop.
e Lipschitz sampling of examples improves convergence rate:
@ As with coordinate descent, sample the ones that can change quickly more often.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Discussion of SAG and Beyond

@ There are now a bunch of stochastic algorithm with O(log(1/¢)) rates:

e SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
o Accelerated/Newton-like/coordinate-wise/proximal /ADMM versions.
e Analyses for infinite data sets.

@ Some of the above get rid of the memory...

Practical Subgradient Methods Stochastic Average Gradient

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

e Start with zg
o fors=0,1,2.
° vf(‘qu = n Z;L 1vfl ‘LQ)

o x' =y
o fort=0,1,2,...m
e Randomly pick i € {1,2,...,n}
o o' =1’ —a(Vfi (') = Vi, (w) + V().

mean zero

o T 1 =2t

Convergence properties similar to SAG (for m large enough).

Kernel Methods

(special case of what's known as a “control variate”)

O(d) storage at cost of 2 gradients per iteration and n gradients every O(m) iterations.

Outline

@ Practical Subgradient Methods
© Stochastic Average Gradient

© Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient

Motivation: Multi-Dimensional Polynomial Basis

@ Recall using polynomial basis when we only have one features (2 € R):

gt = wo + wiz’ 4+ wo(x?)?.

@ We can fit these models using a change of basis:

0.2 1 02 (0.2)?
_|-05 |1 -0.5 (-0.5)
If X = 1 then let Z = 11 |
4 1 4 (42)

and L2-regulairzed least squares solution is
w=(Z'Z+ X)) Z1y.

@ How can we do this when we have a lot of features?

Kernel Methods

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Motivation: Multi-Dimensional Polynomial Basis

@ Approach 1: use polynomial basis for each variable:

02 0.3 1 02 (022 03 (0.3)?
X=]1 05|=2Z=|1 1 (1)2 05 (0.5)?
-0.5 —0.1 1 -05 (-0.5)2 —0.1 (-0.1)2

@ But this is restrictve:

o We should allow terms like {2} that depend on feature interactions.
e But number of terms in X, would be huge:

o Degree-5 polynomial basis has O(d®) terms:
($§)57 (:1’:71)4.’17;, (.’1}1)4$§, R (xi):;(x%)za (le)s(x;)27 cee (.’271)3113%%?3, s

@ If n is not too big, we can do this efficiently using the kernel trick.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Equivalent Form of Ridge Regression
@ Recall the L2-regularized least squares model with basis Z,
.1 A
argmin | 7w — | + 5]
weR?
@ We showed that the solution is
— T —-1-,T
w=(Z"Z+Ny) " Z" vy,
d by d
where I; is the d by d identity matrix.
@ An equivalent way to write the solution is:
w=2Y(7272" +)I,)" 1y,
n by n

by using a variant of the matrix inversion lemma (bonus slide).
@ Computing w with this formula is faster if n << d:
o ZZ" isn by n while ZTZ is d by d.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Predictions using Equivalent Form

o Given test data X, we predict § using:

I
N

w

272Y(277 + A1) Yy

Y

o If we define K = ZZ" (Gram matrix) and K = ZZ”, then we have
§=K(K+ \,)™ 1.

@ Key observation behind kernel trick:
o If we have the K and K, we don't need the features.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Gram Matrix

@ The Gram matrix K is defined by:

_ T
Z1
N I S T
K=77" = . Z1 k9 Z3
7 o
— 2z,
Z?Zl Z?ZQ s lezn
T T T
T T T
Zp 21 ZpR2 tt ZpZn

@ K contains the inner products between all training examples in basis z

@ K contains the inner products between training and test examples.
o Kernel trick: if we can compute k(z',27) = 2l z;, we don't need z; and z;.

Practical Subgradient Methods Stochastic Average Gradient

Polynomial Kernel

o Consider two examples z* and 7 for a two-dimensional dataset:

z' = (21,2), 2’ = (21,23).

o Consider a particular degree-2 basis:
2 = <(a:11)2, V2xixh, (3322)2> .

@ We can compute inner product z! z; without forming 2; and z;,

Kernel Methods

gz = [(21)° V2aiah (25)] %
= (21)*(«])® + 2aiahala) + (25)*(x})?
= (zia] + w2x2)2 (completing the square)
= (@)Y

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Polynomial Kernel with Higher Degrees
o If we want all degree-4 “monomials”, raise it to 4" power:
T T, .j\4
Tz = (")),
with two variables z; is weighted version of
(29)*, (21)%2, (29)?(29)?, 2 (25)%, (29)*.

o If you want bias or lower-order terms like %, add constant inside power:

(1+ (@) "2?)? =1+ 2(a") a7 + ((2")"a7)?

_ T,
= Zi %j,

=[1 22} 22} (2} V22ia} (a5)]

@ This pattern still works for any dimension of the .

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Kernel Trick

@ Using polynomial basis of degree ‘p’ with the kernel trick:
e Compute K and K which have elements:

k', 27) = 1+ (@) TP, k(@ 27) = (14 @) Tad)P.
e Make predictions using: A
g=K(K+)!
o Cost is O(n?d + n3) even though number of features is O(dP).

o Kernel trick:

o We have kernel function k(z*,27) that gives element (i,7) of K or K.
e Skip forming Z and directly form K and K.
e Size of K is n by n even if Z has exponential or infinite columns.

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

o i |2
k(z',29) = exp (_mell) ,

202

@ What features z; would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,

k(z',27) = exp (—;(xi)2 A~ ;(acj)2> = exp (-i(ﬂf) exp(zz’) exp (—;(xj)2> ,

so we need z; = exp(—1(2%)?)v; where v;v; = exp(z'z?).
o For this to work for all z* and :vj, z; must be infinite-dimensional.
o If we use that

o0 (i VE (4)k
exp(z'a?) = Z%,

S
(=)

then we obtain

1 i i i
ziexp<2(x)2> {1 ﬁ:ﬂ ﬁ(xf ﬁ(z)g]

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Kernel Trick for Structured Data

@ Kernel trick is useful for structured data:
o Consider that doesn't look like this:

0.5377 0.3188 3.5784 +1

X — 1.8339 —1.3077 2.7694 -1
T |-22588 —0.4336 —1.3499| YT |-1|"

0.8622 0.3426 3.0349 +1

but instead looks like this:

Do you want to go for a drink sometime? +1
J'achéte du pain tous les jours. -1

X = : Y=
Fais ce que tu veux. -1
There are inner products between sentences? +1

e We could convert sentences to features, or define kernel between sentences.
e For example, “string” kernels:
o Weighted frequency of common subsequences (dynamic programming).

o There are also “graph kernels”, “image kernels”, and so on...

Kernel Methods

Summary

Stochastic subgradient methods:

o [tv! representation and lazy updates allow sparse datasets.
o Different step-size strategies and averaging significantly improve performance.
o Algorithm works with infinite training examples.

Stochastic average gradient: O(log(1/€)) iterations with 1 gradient per iteration.
e SVRG removes the memory requirement.

Kernel trick: allows working with “similarity” instead of features.
e Also allows exponential- or infinite-sized feature spaces.

Next time: when can we use kernel methods, and what are valid kernels?

Practical Subgradient Methods Stochastic Average Gradient Kernel Methods

Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX +AD7XT = XT(XXT 4 A~ (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(F-FH'G)'FHY = E7'F(H - GE™*F)~L.

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHAD) ' XT = (MHXTX) T XT = WHXTIX)7XT = (I =-XT(=DX) ' XT = - A= XT (=D X) ' X7 (-1)
Now apply the matrix inversion with £ = Al (so E=* = (}) 1), F = X7, H = —I (so H™! = —I t00), and
G=X:))
(M = XT(-DX)'XT(-I) = —(X)IXT(—I -X (X) Xt
Now use that (1/a)A™! = (@A)~!, to push the (—1/)) inside the sum as —\,
1

1
7(X)IXT(7I -X (A

) XMy = XTA+ XXT) 7 = XT(XXT 4 A1)~

	Practical Subgradient Methods
	Stochastic Average Gradient
	Kernel Methods

