CPSC 540: Machine Learning Structured Sparsity, Stochatic Subgradient

Mark Schmidt

University of British Columbia

Winter 2017

Convergence Rate

Admin

- Assignment 1:
 - 2 late days to hand it in today.
- Assignment 2:
 - Due February 6.

Convergence Rate

Last Time: Group L1-Regularization

• Last time we discussed group L1-regularization:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} \|x_g\|_2.$$

- Encourages sparsity in terms of groups g.
 - For example, if $G=\{\{1,2\},\{3,4\}\}$ then we have:

$$\sum_{g \in G} \|x_g\|_2 = \sqrt{x_1^2 + x_2^2} + \sqrt{x_3^2 + x_4^2}.$$

Variables x_1 and x_2 will either be both zero or both non-zero. Variables x_3 and x_4 will either be both zero or both non-zero.

• Relevant for feature selection when each feature affects multiple parameters.

Last Time: Projected-Gradient

• We discussed minimizing smooth functions with simple constraints,

 $\mathop{\rm argmin}_{x\in \mathcal{C}} f(x).$

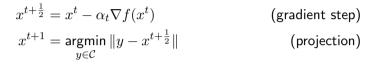
• With simple constraints, we can use projected-gradient:

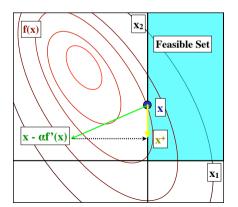
$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t \nabla f(x^t) & \text{(gradient step)} \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathcal{C}} \|y - x^{t+\frac{1}{2}}\| & \text{(projection)} \end{aligned}$$

- Examples of simple sets include:
 - Upper and lower bounds.
 - Small number of linear equalities or inequalities.
 - Discrete probability distributions.
 - Norm-balls or norm-cones for the standard norms.

Convergence Rate

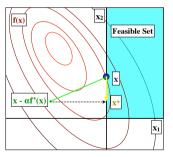
Last Time: Projected-Gradient





Line-Search for Projected Gradient

- There are two ways to do line-search for this algorithm:
 - Backtrack along the line between x^+ and x (search interior).
 - "Backtracking along the feasible direction", costs 1 projection per iteration.



- Backtrack by decreasing α and re-projecting (search boundary).
 - $\bullet\,$ "Backtracking along the projection arc", costs 1 projection per backtrack.

Last Time: Projected-Newton

• We discussed how the naive projected-Newton method,

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t [H_t]^{-1} \nabla f(x^t) & \text{(Newton-like step)} \\ x^{t+1} &= \underset{y \in \mathcal{C}}{\operatorname{argmin}} \|y - x^{t+\frac{1}{2}}\| & \text{(projection)} \end{aligned}$$

will not work.

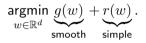
• The correct projected-Newton method uses

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t [H_t]^{-1} \nabla f(x^t) & \text{(Newton-like step)} \\ x^{t+1} &= \underset{y \in \mathcal{C}}{\operatorname{argmin}} \|y - x^{t+\frac{1}{2}}\|_{H_t} & \text{(projection under Hessian metric)} \end{aligned}$$

- This is expensive even if \mathcal{C} is simple.
 - Practical methods use diagonal H^t , two-metric projection, and inexact projection.

Last Time: Proximal-Gradient

• We discussed proximal-gradient methods for problems of the form



• These methods use the iteration

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t \nabla f(x^t) & (\text{gradient step}) \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - x^{t+\frac{1}{2}}\|^2 + \alpha_t r(y) \right\} & (\text{proximal step}) \end{aligned}$$

- Examples of simple functions include:
 - L1-regularization.
 - Group L1-regularization.

Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.

Proximal-Newton

• We can define proximal-Newton methods using

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^{t} - \alpha_{t} [H_{t}]^{-1} \nabla f(x^{t}) & (\text{gradient step}) \\ x^{t+1} &= \underset{y \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x^{t+\frac{1}{2}}\|_{H_{t}}^{2} + \alpha_{t} r(y) \right\} & (\text{proximal step}) \end{aligned}$$

- This is expensive even for simple r like L1-regularization.
- But there are analogous tricks to projected-Newton methods:
 - Diagonal or Barzilai-Borwein Hessian approximation.
 - "Orthant-wise" methods are analogues of two-metric projection.
 - Inexact methods use approximate proximal operator.

Properties of Proximal-Gradient

- Two convenient properties of proximal-gradient:
 - Proximal operators are non-expansive,

$$\|\mathsf{prox}_r(x)-\mathsf{prox}_r(y)\|\leq \|x-y\|,$$

it only moves points closer together.

(including x^k and x^*)

• For f, only fixed points are global optima,

$$x^* = \mathrm{prox}_r(x^* - \alpha \nabla f(x^*)),$$

for any $\alpha > 0$.

(can test $\|x^t - \operatorname{prox}_r(x^t - \nabla f(x^t))\|$ for convergence)

- Proximal gradient/Newton has two line-searches (generalized projected variants):
 - Fix α_t and search along direction to x^{t+1} (1 proximal operator, non-sparse iterates).
 - Vary α_t values (multiple proximal operators per iteration, gives sparse iterations).

Proximal-Gradient Line-Search and Convergence Rate

• Simplest linear convergence proofs are based on the proximal-PL inequality,

$$\frac{1}{2}\mathcal{D}_r(x,L) \ge \mu(F(x) - F^*),$$

where compared to PL inequality we've replaced $\| \nabla f(x) \|^2$ with

$$\mathcal{D}_r(x,\alpha) = -2\alpha \min_y \left[\nabla g(x)^T (y-x) + \frac{\alpha}{2} \|y-x\|^2 + r(y) - r(x) \right],$$

and recall that F(x) = g(x) + r(x) (proof under proximal-PL in bonus slide).

- This non-intuitive property holds for many important problems:
 - g strongly-convex, g + r satisfy PL, L1-regularized least squares, dual SVM problem.
- Can also be used to analyze of coordinate optimization for non-smooth h_j .
- But it's painful to show that functions satisfy this property.

Convergence Rate

Outline

1 Structured Sparsity

- 2 Stochastic Sub-Gradient
- 3 Convergence Rate

Structured Sparsity

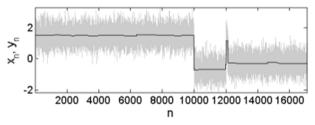
- There are many other patterns that regularization can encourage.
 - We call this structured sparsity.
- The three most common cases:
 - Total-variation regularization encourages slow/sparse changes in w.
 - Nuclear-norm regularization encourages sparsity in rank of matrices.
 - Overlapping group L1-regularization encourages sparsity in variable patterns.

Total-Variation Regularization

• 1D total-variation regularization ("fused LASSO") takes the form

$$\operatorname{argmin}_{w \in \mathbb{R}^d} g(w) + \lambda \sum_{j=1}^{d-1} |w_j - w_{j+1}|.$$

- Encourages consecutive parameters to have same value.
- Often used for time-series data.



http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here x^i is the time and y^i is noisy signal value, while w_i is mean at time *i*.

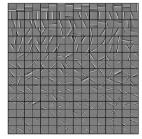
Total-Variation Regularization

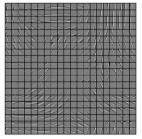
• We can also define a 2D version when we have matrix parameters,

$$\underset{W \in \mathbb{R}^{d \times k}}{\operatorname{argmin}} g(W) + \lambda \sum_{i=1}^{d-1} \sum_{j=1}^{k-1} |w_{ij} - w_{i+1,j+1}|,$$

and this is popular for image denoising.

- We could penalize differences on general graph between variables.
- Comparison of latent-factors discovered with/without TV regularization:





http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Nuclear Norm Regularization

• With matrix parameters an alternative is nuclear norm regularization,

 $\mathop{\mathrm{argmin}}_{W \in \mathbb{R}^{d \times k}} g(W) + \lambda \|W\|_*,$

where $\|W\|_*$ is the sum of singular values.

- It's "L1-regularization of the singular values" :
 - Encourages parameter matrix to have low-rank: can write $W = UV^T$.
- Consider a multi-class logistic regression with a huge number of features/labels,

$$W = \begin{bmatrix} | & | & & | \\ w_1 & w_2 & \cdots & w_k \\ | & | & & | \end{bmatrix} = UV^T, \quad \text{with} \quad U = \begin{bmatrix} | & | \\ u_1 & u_2 \\ | & | \end{bmatrix}, V = \begin{bmatrix} | & | \\ v_1 & v_2 \\ | & | \end{bmatrix},$$

U and V can be much smaller, and $XW = (XU)V^T$ can be computed faster: • O(ndr + nrk) for rank r instad of O(ndk), which is faster if r < d and r < k.

• Overlapping group L1-regularization is exactly what it sounds like,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} g(w) + \sum_{g \in \mathcal{G}} \lambda_g \| w_g \|_p,$$

where now the groups g can overlap.

- Why is this interesting?
 - \bullet Consider the case of two groups, $\{1\}$ and $\{1,2\},$

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} g(w) + \lambda_1 |w_1| + \lambda_2 \sqrt{w_1^2 + w_2^2}.$$

- The third term encourages both w_1 and w_2 to be zero.
- But if $w_2 \neq 0$, we still pay a λ_1 penalty for making w_1 non-zero.
- But if $w_1 \neq 0$, the third term is smooth and doesn't encourage w_2 to be zero.
- So there are only 3 possible non-zero patterns: {}, { w_2 }, { w_1 , w_2 }.
 - We've won't have $w_1 \neq 0$ and $w_2 = 0$.

- Consider a problem with matrix parameters W.
- We want W to be "band-limited":
 - Non-zeroes only on the main diagonals.

- We can enforce this with overlapping group L1-regularization:
 - Only allow non-zeroes on ± 1 diagonal if you are non-zero on main diagonal.
 - $\bullet\,$ Only allow non-zeroes on ± 2 diagonal if you are non-zero on ± 1 diagonal.
 - Only allow non-zeroes on ± 3 diagonal if you are non-zero on ± 2 diagonal.

• Consider a linear model with higher-order terms,

 $\hat{y}^{i} = w_{0} + w_{1}\hat{x}_{1}^{i} + w_{2}\hat{x}_{2}^{i} + w_{3}\hat{x}_{3}^{i} + w_{12}\hat{x}_{1}^{i}\hat{x}_{2}^{i} + w_{13}\hat{x}_{1}^{i}\hat{x}_{3}^{i} + w_{23}\hat{x}_{2}^{i}\hat{x}_{3}^{i} + w_{123}\hat{x}_{1}^{i}\hat{x}_{2}^{i}\hat{x}_{3}^{i}.$

- If d is non-trivial, then the number of higher-order terms is too large.
- We can use overlapping group L1-regularization to enforce a hierarchy.
 - We only allow $w_{12} \neq 0$ if $w_1 \neq 0$ and $w_2 \neq 0$.
 - Enforce this using the groups $\{\{w_1, w_{12}\}, \{w_2, w_{12}\}, \{w_{12}\}\}$.
 - We only allow $w_{123} \neq 0$ if $w_{12} \neq 0$, $w_{13} \neq 0$, and $w_{23} \neq 0$.

Fig 9: Power set of the set $\{1, \ldots, 4\}$: in blue, an authorized set of selected subsets. In red, an example of a group used within the norm (a subset and all of its descendants in the DAG).

http://arxiv.org/pdf/1109.2397v2.pdf

• For certain bases, you can work with the full hierarchy in polynomial time.

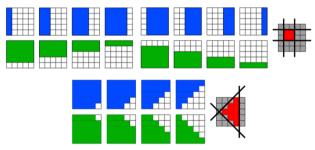
- Overlapping group-L1 can encourage any intersection-closed sparsity pattern.
 - Set formed from taking $\cap_{g \in \mathcal{G}'} g$ for any $\mathcal{G}' \subset \mathcal{G}$.
- Example is enforcing convex non-zero patterns:

Fig 3: (Left) The set of blue groups to penalize in order to select contiguous patterns in a sequence. (Right) In red, an example of such a nonzero pattern with its corresponding zero pattern (hatched area).

https://arxiv.org/pdf/1109.2397v2.pdf

• There is also a variant ("over-LASSO") that considers unions of groups.

- Overlapping group-L1 can encourage any intersection-closed sparsity pattern.
 - Set formed from taking $\cap_{g \in \mathcal{G}'} g$ for any $\mathcal{G}' \subset \mathcal{G}$.
- Example is enforcing convex non-zero patterns:



https://arxiv.org/pdf/1109.2397v2.pdf

• There is also a variant ("over-LASSO") that considers unions of groups.

- Overlapping group-L1 can encourage any intersection-closed sparsity pattern.
 - Set formed from taking $\cap_{g \in \mathcal{G}'} g$ for any $\mathcal{G}' \subset \mathcal{G}$.
- Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

• There is also a variant ("over-LASSO") that considers unions of groups.

Structured Sparsity

- There are many other patterns that regularization can encourage.
 - We call this structured sparsity.
- The three most common cases:
 - Total-variation regularization encourages slow/sparse changes in w.
 - Nuclear-norm regularization encourages sparsity in rank of matrices.
 - Overlapping group L1-regularization encourages sparsity in variable patterns.
- Unfortunately, these regularizers are not "simple".

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximal operator for:
 - Total-variation regularization.
 - Nuclear-norm regularization.
 - Overlapping group L1-regularization.
- For total-variation and overlapping group-L1, we use Dykstra's algorithm
 - Iterative method that computes proximal operator for sum of "simple" functions.
- For nuclear-norm regularization, many method approximate top singular vectors.
- Inexact proximal-gradient methods:
 - Use an approximation to the proximal operator.
 - If approximation error decreases fast enough, same convergence rate:
 - To get $O(\rho^t)$ rate, error must be in $o(\rho^t)$.

Alternating Direction Method of Multipliers

- For total-variation and overlapping group-L1, ADMM is also popular.
- Alternating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternates between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{w} \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1 \quad \Leftrightarrow \quad \min_{v = Xw} \frac{1}{2} \|v - y\|^2 + \lambda \|w\|_1.$$

$$\min_{x} f(x) + \|Ax\|_1 \quad \Leftrightarrow \quad \min_{v=Ax} f(x) + \|v\|_1.$$

- If prox can not be computed exactly: linearized ADMM.
 - But ADMM rate depends on tuning parameter(s) and iterations aren't sparse.

Frank-Wolfe Method

• In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute.

• Frank-Wolfe step is sometimes cheaper:

$$\bar{x^t} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y-x^t) \right\},$$

requires compact C, algorithm takes convex combination of x^t and \bar{x}^t .

https://www.youtube.com/watch?v=24e08AX9Eww

• O(1/t) rate for smooth convex objectives, some linear convergence results for smooth and strongly-convex.

UV^T Parameterization for Matrix Problems

• Nuclear norm regularization problems,

 $\underset{W \in \mathbb{R}^{d \times k}}{\operatorname{argmin}} f(W) + \lambda \|W\|_*,$

have solution that with low rank representation $W = UV^T$.

- But standard algorithms are too costly in many applications.
 - Sometimes we can't even store W.
- Many recent approaches directly minimize under UV^T parameterization,

$$\underset{U \in \mathbb{R}^{d \times R}, V \in \mathbb{R}^{k \times R}}{\operatorname{argmin}} f(UV^T) + \lambda_U \|U\|_F^2 + \lambda_V \|V\|_F^2,$$

and just regularize U and V (here we're using the Frobenius matrix norm).

UV^T Parameterization for Matrix Problems

 $\bullet\,$ Many recent approaches directly minimize under UV^T parameterization,

$$\underset{U \in \mathbb{R}^{d \times R}, V \in \mathbb{R}^{k \times R}}{\operatorname{argmin}} f(UV^T) + \lambda_U \|U\|_F^2 + \lambda_V \|V\|_F^2,$$

and just regularize U and V (here we're using the Frobenius matrix norm).

• We used this approach in 340 for latent-factor models,

$$f(W,Z) = \frac{1}{2} \|ZW - X\|_F^2 + \frac{\lambda_1}{2} \|Z\|_F^2 + \frac{\lambda_2}{2} \|W\|_F^2$$

- We can sometimes prove this non-convex gives global solution.
 - Including PCA.
- In other cases, people are working hard on finding assumptions where this is true.
 - It works well enough in practice that practitioners don't seem to care.

Convergence Rate

Outline

1 Structured Sparsity

- 2 Stochastic Sub-Gradient
- 3 Convergence Rate

Big-N Problems

• We can write our standard regularized optimization problem as

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) + r(x)$$

lata fitting term + regularizer

- \bullet Gradient methods are effective when d is very large.
- What if number of training examples n is very large?
 - E.g., ImageNet has ≈ 14 million annotated images.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

- Iteration cost is linear in *n*.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i_t from $\{1, 2, \ldots, n\}$.

$$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$

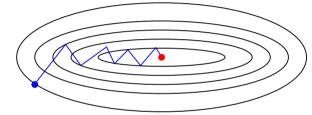
• Direction is an unbiased estimate of true gradient,

$$\mathbb{E}[f_{i_t}'(x)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x) = \nabla f(x).$$

- Iteration cost is independent of n.
- Convergence requires $\alpha_t \to 0$.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:



• Stochastic gradient method [Robbins & Monro, 1951]:



Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations are needed?

• If ∇f is Lipschitz continuous then we have:

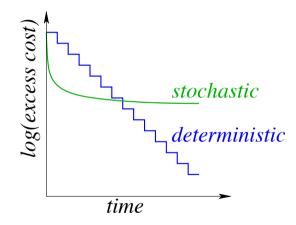
Assumption	Deterministic	Stochastic
Convex	$O(1/\sqrt{\epsilon})$	$O(1/\epsilon^2)$
Strongly	$O(\log(1/\epsilon))$	$O(1/\epsilon)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable with "unbiased gradient approximation" oracle.
 - Oracle returns a g_t satisfying $\mathbb{E}[g_t] = \nabla f(x^t)$.

• Nesterov and Newton-like methods do not improve rates in stochastic case.

Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:



Stochastic will be superior for low-accuracy/time situations.

Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine (SVM) objective:

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} ||w||^2.$$

• Rates for subgradient methods for non-smooth objectives:

Assumption	Deterministic	Stochastic
Convex	$O(1/\epsilon^2)$	$O(1/\epsilon^2)$
Strongly	$O(1/\epsilon)$	$O(1/\epsilon)$

- Other black-box methods (cutting plane, bundle methods) are not faster.
 - In "high-dimensional" setting.
- So for non-smooth problems:
 - Deterministic methods are not faster than stochastic method.
 - So use stochastic subgradient (iterations are *n* times faster).

Convergence Rate

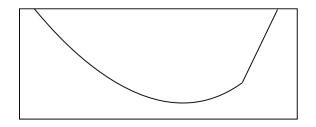
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

A vector d is a subgradient of a convex function f at x if

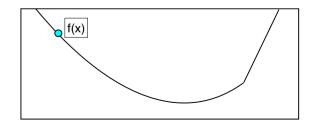
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

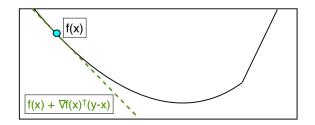
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

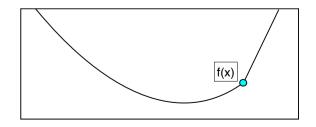
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

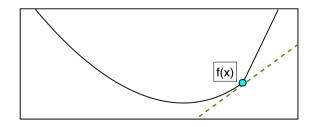
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

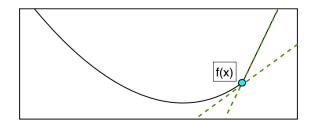
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

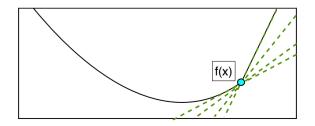
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



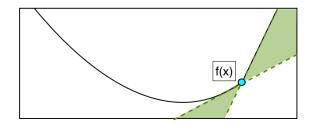
Convergence Rate

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Convergence Rate

Sub-Gradients and Sub-Differentials

Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

A vector d is a subgradient of a convex function f at x if

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

- At differentiable *x*:
 - Only subgradient is $\nabla f(x)$.
- At non-differentiable x:
 - We can have a set of subgradients called the sub-differential, $\partial f(x)$.
 - Sub-differential is always non-empty for (almost) all convex functions.

• Note that $0 \in \partial f(x)$ iff x is a global minimum (generalizes $\nabla f(x) = 0$).

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

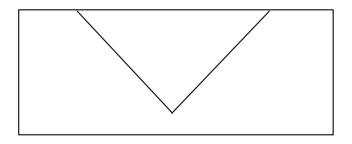
$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

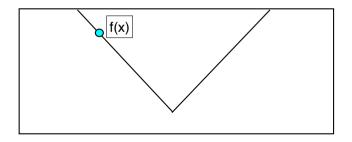


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

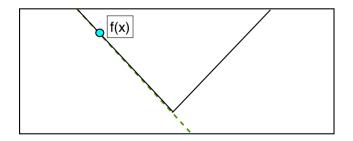


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

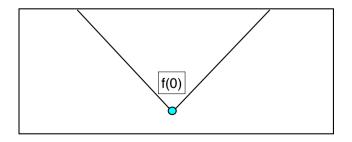


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

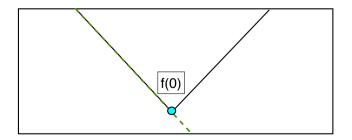


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

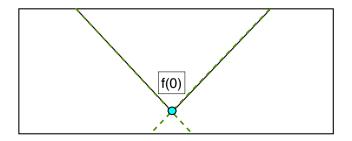


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

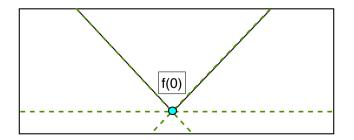


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

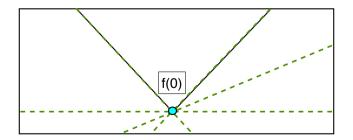


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

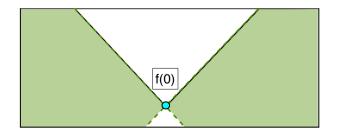


Convergence Rate

Sub-Differential of Absolute Function

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



Sub-Differential of Common Operations

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in [-1,1] at 0)

• Sub-differential of sum of convex f_1 and f_2 :

 $\partial(f_1(x)+f_2(x))=d_1+d_2 \quad \text{for any} \quad d_1\in \partial f_1(x), d_2\in \partial f_2(x).$

• Sub-differential of max of differentiable convex f_1 and f_2 :

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

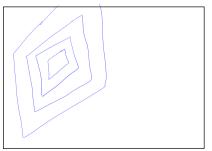
(any "convex combination" of the gradients of the argmax)

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- This can increase the objective even for small α_t .
- But, distance to solution decreases:

•
$$||x^{t+1} - x^*|| < ||x^t - x^*||$$
 for small enough α_t .

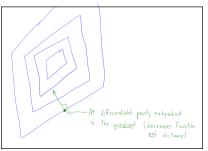


• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- This can increase the objective even for small α_t .
- But, distance to solution decreases:

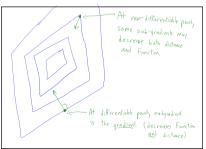
•
$$||x^{t+1} - x^*|| < ||x^t - x^*||$$
 for small enough α_t .



• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t$$

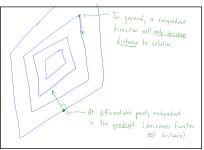
- This can increase the objective even for small α_t .
- But, distance to solution decreases:
 - $||x^{t+1} x^*|| < ||x^t x^*||$ for small enough α_t .



• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- This can increase the objective even for small α_t .
- But, distance to solution decreases:
 - $||x^{t+1} x^*|| < ||x^t x^*||$ for small enough α_t .



• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

for some $g_t \in \partial f(x^t)$.

- Decreases distance to solution for small enough α_t .
- The basic stochastic subgradient method:

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

- Stochastic subgradient is n times faster with similar convergence properties.
- Decreases expected distance to solution for small enough α_t .

Convergence Rate

Outline

1 Structured Sparsity

- 2 Stochastic Sub-Gradient
- 3 Convergence Rate

Convergence Rate of Stochastic Subgradient Method

• The basic stochastic subgradient method:

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

• Since function value may not decrease, we analyze distance to x^* :

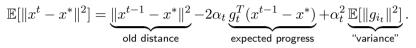
$$\begin{aligned} |x^{t} - x^{*}||^{2} &= \|(x^{t-1} - \alpha_{t}g_{i_{t}}) - x^{*}\|^{2} \\ &= \|(x^{t-1} - x^{*}) - \alpha_{t}g_{i_{t}}\|^{2} \\ &= \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}g_{i_{t}}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}\|g_{i_{t}}\|^{2} \end{aligned}$$

• Take expectation with respect to *i_t*:

$$\begin{split} \mathbb{E}[\|x^{t} - x^{*}\|^{2}] &= \mathbb{E}[\|x^{t-1} - x^{*}\|] - 2\alpha_{t}\mathbb{E}[g_{i_{t}}^{T}(x^{t-1} - x^{*})] + \alpha_{t}^{2}\mathbb{E}[\|g_{i_{t}}\|^{2}] \\ &= \underbrace{\|x^{t-1} - x^{*}\|^{2}}_{\text{old distance}} - 2\alpha_{t}\underbrace{g_{t}^{T}(x^{t-1} - x^{*})}_{\text{expected progress}} + \alpha_{t}^{2}\underbrace{\mathbb{E}[\|g_{i_{t}}\|^{2}]}_{\text{"variance"}}. \end{split}$$

Convergence Rate of Stochastic Subgradient

$$\bullet$$
 Our expected distance given x^{t-1} is



- Step-size α_t controls how fast we move towards solution.
- But squared step-size α_t^2 controls how much variance moves us away.
- Standard assumption is that the variance is bounded by constant B^2 .
- It follows from strong-convexity that (bonus slide),

$$g_t^T(x^{t-1} - x^*) \ge \mu \|x^{t-1} - x^*\|^2,$$

which gives

$$\mathbb{E}[\|x^{t} - x^{*}\|^{2}] \leq \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}\mu\|x^{t-1} - x^{*}\|^{2} + \alpha_{t}^{2}B^{2}$$
$$= (1 - 2\alpha_{t}\mu)\|x^{t-1} - x^{*}\|^{2} + \alpha_{t}^{2}B^{2}.$$

Convergence Rate

Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha_t \mu) \|x^{t-1} - x^*\|^2 + \alpha_t^2 B^2.$$

- If α_t is *small* enough, shows distance to solution decreases.
- With constant $\alpha_t = \alpha$ and applying recursively we get

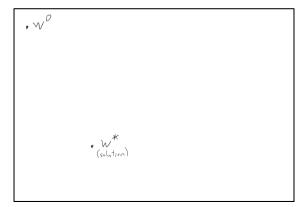
$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu},$$

after some of math (last term comes from bounding a geometric series).

Stochastic Gradient with Constant Step Size

• Our bound on expected distance with constant step-size:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$

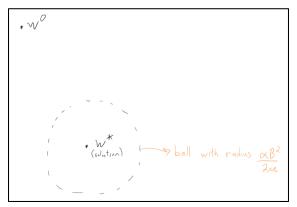


Convergence Rate

Stochastic Gradient with Constant Step Size

• Our bound on expected distance with constant step-size:

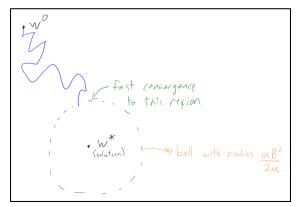
$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$



Stochastic Gradient with Constant Step Size

• Our bound on expected distance with constant step-size:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$

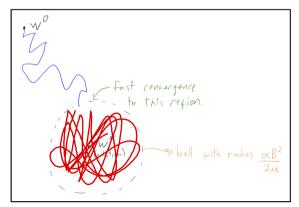


Convergence Rate

Stochastic Gradient with Constant Step Size

• Our bound on expected distance with constant step-size:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$



Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - We need effect of variance to go to 0, but we still need to make progress.
 - Classic approach is to choose α_t such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty,$$

which suggests setting $\alpha_t = O(1/t)$.

• We can obtain convergence rates with decreasing steps:

• If
$$lpha_t = rac{1}{\mu t}$$
 we can show

.

$$\mathbb{E}[f(\bar{x}^t) - f(x^*)] = O(\log(t)/t) \qquad (\text{non-smooth } f)$$
$$= O(1/t) \qquad (\text{smooth } f)$$

for the average iteration $\bar{x}^t = \frac{1}{k} \sum_{k=1}^T x_{k-1}$. • Note that O(1/t) error implies $O(1/\epsilon)$ iterations required.

Summary

- Structured sparsity encourages more-general patterns in variables.
- Subgradients: generalize gradients for non-smooth convex functions.
- Subgradient method: optimal but very-slow general non-smooth method.
- Stochastic subgadient method: same rate but n times cheaper.
 - Constant step-size: subgradient quickly converges to approximate solution.
 - Decreasing step-size: subgradient slowly converges to exact solution.
- Next time: what if $n = \infty$?

Bonus Slide: Proximal-Gradient Convergence under Proximal-PL

 $\bullet\,$ By Lipschitz continuity of g we have

$$\begin{aligned} F(x_{k+1}) &= g(x_{k+1}) + r(x_k) + r(x_{k+1}) - r(x_k) \\ &\leq F(x_k) + \langle \nabla g(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2 + r(x_{k+1}) - r(x_k) \\ &\leq F(x_k) - \frac{1}{2L} \mathcal{D}_r(x_k, L) \\ &\leq F(x_k) - \frac{\mu}{L} [F(x_k) - F^*], \end{aligned}$$

and then we can take our usual steps.

Bonus Slide: Strong-Convexity Inequalities for Non-Differentiable f

- A "first-order" relationship between subgradient and strong-convexity:
 - If f is $\mu\text{-strongly convex then for all }x$ and y we have

$$f(y) \ge f(x) + f'(y)^T (y - x) + \frac{\mu}{2} ||y - x||^2,$$

for $f'(y) \in \partial f(x)$.

- The first-order definition of strong-convexity, but with subgradient replacing gradient.
- Reversing \boldsymbol{y} and \boldsymbol{x} we can write

$$f(x) \ge f(y) + f'(x)^T (x - y) + \frac{\mu}{2} ||x - y||^2,$$

for $f'(x) \in \partial f(x)$.

• Adding the above together gives

$$(f'(y) - f'(x))T(y - x)) \ge \mu ||y - x||^2.$$

• Applying this with $y = x^{t-1}$ and subgradient g_t and $x = x^*$ (which has $f'(x^*) = 0$ for some subgradient) gives

$$(g_t - 0)^T (x^{t-1} - x^*) \ge \mu ||x^{t-1} - x^*||^2.$$

Bonus Slide: Faster Rate for Proximal-Gradient

- It's possible to show a slightly faster rate for proximal-gradient using $\alpha_t=2/(\mu+L).$
- See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ ProximalGradient.pdf