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Last Time: Group L1-Regularization

Last time we discussed group L1-regularization:

argmin
x∈Rd

f(x) + λ
∑

g∈G
‖xg‖2.

Encourages sparsity in terms of groups g.

For example, if G = {{1, 2}, {3, 4}} then we have:

∑

g∈G
‖xg‖2 =

√
x21 + x22 +

√
x23 + x24.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

Relevant for feature selection when each feature affects multiple parameters.
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Last Time: Projected-Gradient

We discussed minimizing smooth functions with simple constraints,

argmin
x∈C

f(x).

With simple constraints, we can use projected-gradient:

xt+
1
2 = xt − αt∇f(xt) (gradient step)

xt+1 = argmin
y∈C

‖y − xt+ 1
2 ‖ (projection)

Examples of simple sets include:

Upper and lower bounds.
Small number of linear equalities or inequalities.
Discrete probability distributions.
Norm-balls or norm-cones for the standard norms.
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Last Time: Projected-Gradient

xt+
1
2 = xt − αt∇f(xt) (gradient step)

xt+1 = argmin
y∈C

‖y − xt+ 1
2 ‖ (projection)

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)
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Line-Search for Projected Gradient

There are two ways to do line-search for this algorithm:

Backtrack along the line between x+ and x (search interior).

“Backtracking along the feasible direction”, costs 1 projection per iteration.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)

Backtrack by decreasing α and re-projecting (search boundary).

“Backtracking along the projection arc”, costs 1 projection per backtrack.
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Last Time: Projected-Newton

We discussed how the naive projected-Newton method,

xt+
1
2 = xt − αt[Ht]

−1∇f(xt) (Newton-like step)

xt+1 = argmin
y∈C

‖y − xt+ 1
2 ‖ (projection)

will not work.

The correct projected-Newton method uses

xt+
1
2 = xt − αt[Ht]

−1∇f(xt) (Newton-like step)

xt+1 = argmin
y∈C

‖y − xt+ 1
2 ‖Ht (projection under Hessian metric)

This is expensive even if C is simple.
Practical methods use diagonal Ht, two-metric projection, and inexact projection.
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Last Time: Proximal-Gradient

We discussed proximal-gradient methods for problems of the form

argmin
w∈Rd

g(w)︸︷︷︸
smooth

+ r(w)︸︷︷︸
simple

.

These methods use the iteration

xt+
1
2 = xt − αt∇f(xt) (gradient step)

xt+1 = argmin
y∈Rd

{
1

2
‖y − xt+ 1

2 ‖2 + αtr(y)

}
(proximal step)

Examples of simple functions include:

L1-regularization.
Group L1-regularization.

Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.
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Proximal-Newton

We can define proximal-Newton methods using

xt+
1
2 = xt − αt[Ht]

−1∇f(xt) (gradient step)

xt+1 = argmin
y∈Rd

{
1

2
‖y − xt+ 1

2 ‖2Ht + αtr(y)

}
(proximal step)

This is expensive even for simple r like L1-regularization.

But there are analogous tricks to projected-Newton methods:

Diagonal or Barzilai-Borwein Hessian approximation.
“Orthant-wise” methods are analogues of two-metric projection.
Inexact methods use approximate proximal operator.
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Properties of Proximal-Gradient

Two convenient properties of proximal-gradient:

Proximal operators are non-expansive,

‖proxr(x)− proxr(y)‖ ≤ ‖x− y‖,

it only moves points closer together.
(including xk and x∗)

For f , only fixed points are global optima,

x∗ = proxr(x∗ − α∇f(x∗)),

for any α > 0.
(can test ‖xt − proxr(x

t −∇f(xt))‖ for convergence )

Proximal gradient/Newton has two line-searches (generalized projected variants):

Fix αt and search along direction to xt+1 (1 proximal operator, non-sparse iterates).
Vary αt values (multiple proximal operators per iteration, gives sparse iterations).
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Proximal-Gradient Line-Search and Convergence Rate

Simplest linear convergence proofs are based on the proximal-PL inequality,

1

2
Dr(x, L) ≥ µ(F (x)− F ∗),

where compared to PL inequality we’ve replaced ‖∇f(x)‖2 with

Dr(x, α) = −2αmin
y

[
∇g(x)T (y − x) +

α

2
‖y − x‖2 + r(y)− r(x)

]
,

and recall that F (x) = g(x) + r(x) (proof under proximal-PL in bonus slide).

This non-intuitive property holds for many important problems:

g strongly-convex, g + r satisfy PL, L1-regularized least squares, dual SVM problem.

Can also be used to analyze of coordinate optimization for non-smooth hj .

But it’s painful to show that functions satisfy this property.
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Structured Sparsity

There are many other patterns that regularization can encourage.

We call this structured sparsity.

The three most common cases:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Overlapping group L1-regularization encourages sparsity in variable patterns.
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Total-Variation Regularization
1D total-variation regularization (“fused LASSO”) takes the form

argmin
w∈Rd

g(w) + λ

d−1∑

j=1

|wj − wj+1|.

Encourages consecutive parameters to have same value.
Often used for time-series data.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here xi is the time and yi is noisy signal value, while wi is mean at time i.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html
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Total-Variation Regularization
We can also define a 2D version when we have matrix parameters,

argmin
W∈Rd×k

g(W ) + λ

d−1∑

i=1

k−1∑

j=1

|wij − wi+1,j+1|,

and this is popular for image denoising.
We could penalize differences on general graph between variables.
Comparison of latent-factors discovered with/without TV regularization:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf


Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Nuclear Norm Regularization

With matrix parameters an alternative is nuclear norm regularization,

argmin
W∈Rd×k

g(W ) + λ‖W‖∗,

where ‖W‖∗ is the sum of singular values.

It’s “L1-regularization of the singular values”:
Encourages parameter matrix to have low-rank: can write W = UV T .

Consider a multi-class logistic regression with a huge number of features/labels,

W =


w1 w2 · · · wk


 = UV T , with U =


u1 u2


 , V =


v1 v2


 ,

U and V can be much smaller, and XW = (XU)V T can be computed faster:
O(ndr + nrk) for rank r instad of O(ndk), which is faster if r < d and r < k.



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Overlapping Group L1-Regularization

Overlapping group L1-regularization is exactly what it sounds like,

argmin
w∈Rd

g(w) +
∑

g∈G
λg‖wg‖p,

where now the groups g can overlap.

Why is this interesting?
Consider the case of two groups, {1} and {1, 2},

argmin
w∈Rd

g(w) + λ1|w1|+ λ2

√
w2

1 + w2
2.

The third term encourages both w1 and w2 to be zero.
But if w2 6= 0, we still pay a λ1 penalty for making w1 non-zero.
But if w1 6= 0, the third term is smooth and doesn’t encourage w2 to be zero.

So there are only 3 possible non-zero patterns: {}, {w2}, {w1, w2}.
We’ve won’t have w1 6= 0 and w2 = 0.
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Overlapping Group L1-Regularization

Consider a problem with matrix parameters W .

We want W to be “band-limited”:

Non-zeroes only on the main diagonals.

We can enforce this with overlapping group L1-regularization:

Only allow non-zeroes on ±1 diagonal if you are non-zero on main diagonal.
Only allow non-zeroes on ±2 diagonal if you are non-zero on ±1 diagonal.
Only allow non-zeroes on ±3 diagonal if you are non-zero on ±2 diagonal.
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Overlapping Group L1-Regularization

Consider a linear model with higher-order terms,

ŷi = w0 + w1x̂
i
1 + w2x̂

i
2 + w3x̂

i
3 + w12x̂

i
1x̂

i
2 + w13x̂

i
1x̂

i
3 + w23x̂

i
2x̂

i
3 + w123x̂

i
1x̂

i
2x̂

i
3.

If d is non-trivial, then the number of higher-order terms is too large.

We can use overlapping group L1-regularization to enforce a hierarchy.
We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.

Enforce this using the groups {{w1, w12}, {w2, w12}, {w12}}.
We only allow w123 6= 0 if w12 6= 0, w13 6= 0, and w23 6= 0.

http://arxiv.org/pdf/1109.2397v2.pdf

For certain bases, you can work with the full hierarchy in polynomial time.

http://arxiv.org/pdf/1109.2397v2.pdf
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Overlapping Group L1-Regularization

Overlapping group-L1 can encourage any intersection-closed sparsity pattern.

Set formed from taking ∩g∈G′g for any G′ ⊂ G.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

There are many other patterns that regularization can encourage.

We call this structured sparsity.

The three most common cases:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Overlapping group L1-regularization encourages sparsity in variable patterns.

Unfortunately, these regularizers are not “simple”.
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Inexact Proximal-Gradient Methods

We can efficiently approximate the proximal operator for:

Total-variation regularization.
Nuclear-norm regularization.
Overlapping group L1-regularization.

For total-variation and overlapping group-L1, we use Dykstra’s algorithm

Iterative method that computes proximal operator for sum of “simple” functions.

For nuclear-norm regularization, many method approximate top singular vectors.

Inexact proximal-gradient methods:

Use an approximation to the proximal operator.
If approximation error decreases fast enough, same convergence rate:

To get O(ρt) rate, error must be in o(ρt).
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Alternating Direction Method of Multipliers

For total-variation and overlapping group-L1, ADMM is also popular.

Alternating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f(x) + r(y).

Alternates between prox-like operators with respect to f and r.

Can introduce constraints to convert to this form:

min
w

1

2
‖Xw − y‖2 + λ‖w‖1 ⇔ min

v=Xw

1

2
‖v − y‖2 + λ‖w‖1.

min
x
f(x) + ‖Ax‖1 ⇔ min

v=Ax
f(x) + ‖v‖1.

If prox can not be computed exactly: linearized ADMM.
But ADMM rate depends on tuning parameter(s) and iterations aren’t sparse.
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Frank-Wolfe Method

In some cases the projected gradient step

xt+1 = argmin
y∈C

{
f(xt) +∇f(xt)T (y − xt) +

1

2αt
‖y − xt‖2

}
,

may be hard to compute.

Frank-Wolfe step is sometimes cheaper:

x̄t = argmin
y∈C

{
f(xt) +∇f(xt)T (y − xt)

}
,

requires compact C, algorithm takes convex combination of xt and x̄t.
https://www.youtube.com/watch?v=24e08AX9Eww

O(1/t) rate for smooth convex objectives, some linear convergence results for
smooth and strongly-convex.

https://www.youtube.com/watch?v=24e08AX9Eww
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UV T Parameterization for Matrix Problems

Nuclear norm regularization problems,

argmin
W∈Rd×k

f(W ) + λ‖W‖∗,

have solution that with low rank representation W = UV T .

But standard algorithms are too costly in many applications.

Sometimes we can’t even store W .

Many recent approaches directly minimize under UV T parameterization,

argmin
U∈Rd×R,V ∈Rk×R

f(UV T ) + λU‖U‖2F + λV ‖V ‖2F ,

and just regularize U and V (here we’re using the Frobenius matrix norm).
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UV T Parameterization for Matrix Problems

Many recent approaches directly minimize under UV T parameterization,

argmin
U∈Rd×R,V ∈Rk×R

f(UV T ) + λU‖U‖2F + λV ‖V ‖2F ,

and just regularize U and V (here we’re using the Frobenius matrix norm).

We used this approach in 340 for latent-factor models,

f(W,Z) =
1

2
‖ZW −X‖2F +

λ1
2
‖Z‖2F +

λ2
2
‖W‖2F .

We can sometimes prove this non-convex gives global solution.

Including PCA.

In other cases, people are working hard on finding assumptions where this is true.

It works well enough in practice that practitioners don’t seem to care.
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Big-N Problems

We can write our standard regularized optimization problem as

min
x∈Rd

1

n

n∑

i=1

fi(x) + r(x)

data fitting term + regularizer

Gradient methods are effective when d is very large.

What if number of training examples n is very large?

E.g., ImageNet has ≈ 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f(x) = 1
n

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt∇f(xt) = xt − αt

n

n∑

i=1

∇fi(xt).
Iteration cost is linear in n.
Convergence with constant αt or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:
Random selection of it from {1, 2, . . . , n}.

xt+1 = xt − αt∇fit(xt).
Direction is an unbiased estimate of true gradient,

E[f ′it(x)] =
1

n

n∑

i=1

∇fi(x) = ∇f(x).

Iteration cost is independent of n.
Convergence requires αt → 0.
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Stochastic vs. Deterministic Gradient Methods
We consider minimizing f(x) = 1

n

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Stochastic

Convex O(1/
√
ε) O(1/ε2)

Strongly O(log(1/ε)) O(1/ε)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable with “unbiased gradient approximation” oracle.

Oracle returns a gt satisfying E[gt] = ∇f(xt).

Nesterov and Newton-like methods do not improve rates in stochastic case.



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine (SVM) objective:

f(w) =

n∑

i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/ε2) O(1/ε2)
Strongly O(1/ε) O(1/ε)

Other black-box methods (cutting plane, bundle methods) are not faster.
In “high-dimensional” setting.

So for non-smooth problems:
Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).
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Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

At differentiable x:

Only subgradient is ∇f(x).

At non-differentiable x:

We can have a set of subgradients called the sub-differential, ∂f(x).
Sub-differential is always non-empty for (almost) all convex functions.

Note that 0 ∈ ∂f(x) iff x is a global minimum (generalizes ∇f(x) = 0).
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Sub-Differential of Absolute Function

Sub-differential of absolute value function:

∂|x| =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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Sub-Differential of Common Operations
Sub-differential of absolute value function:

∂|x| =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)

Sub-differential of sum of convex f1 and f2:

∂(f1(x) + f2(x)) = d1 + d2 for any d1 ∈ ∂f1(x), d2 ∈ ∂f2(x).

Sub-differential of max of differentiable convex f1 and f2:

∂max{f1(x), f2(x)} =





∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any “convex combination” of the gradients of the argmax)
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Subgradient Method
The basic subgradient method:

xt+1 = xt − αtgt,

for some gt ∈ ∂f(xt).

This can increase the objective even for small αt.
But, distance to solution decreases:

‖xt+1 − x∗‖ < ‖xt − x∗‖ for small enough αt.
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Subgradient Method

The basic subgradient method:

xt+1 = xt − αtgt,

for some gt ∈ ∂f(xt).

Decreases distance to solution for small enough αt.

The basic stochastic subgradient method:

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough αt.
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Convergence Rate of Stochastic Subgradient Method

The basic stochastic subgradient method:

xt+1 = xt − αgit ,
for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
Since function value may not decrease, we analyze distance to x∗:

‖xt − x∗‖2 = ‖(xt−1 − αtgit)− x∗‖2

= ‖(xt−1 − x∗)− αtgit‖2

= ‖xt−1 − x∗‖2 − 2αtg
T
it(x

t−1 − x∗) + α2
t ‖git‖2.

Take expectation with respect to it:

E[‖xt − x∗‖2] = E[‖xt−1 − x∗‖]− 2αtE[gTit(x
t−1 − x∗)] + α2

tE[‖git‖2]
= ‖xt−1 − x∗‖2︸ ︷︷ ︸

old distance

−2αt g
T
t (xt−1 − x∗)︸ ︷︷ ︸
expected progress

+α2
t E[‖git‖2]︸ ︷︷ ︸

“variance”

.
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Convergence Rate of Stochastic Subgradient

Our expected distance given xt−1 is

E[‖xt − x∗‖2] = ‖xt−1 − x∗‖2︸ ︷︷ ︸
old distance

−2αt g
T
t (xt−1 − x∗)︸ ︷︷ ︸
expected progress

+α2
t E[‖git‖2]︸ ︷︷ ︸

“variance”

.

Step-size αt controls how fast we move towards solution.

But squared step-size α2
t controls how much variance moves us away.

Standard assumption is that the variance is bounded by constant B2.

It follows from strong-convexity that (bonus slide),

gTt (xt−1 − x∗) ≥ µ‖xt−1 − x∗‖2,
which gives

E[‖xt − x∗‖2] ≤ ‖xt−1 − x∗‖2 − 2αtµ‖xt−1 − x∗‖2 + α2
tB

2

= (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.
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Stochastic Gradient with Constant Step Size

Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.

If αt is small enough, shows distance to solution decreases.

With constant αt = α and applying recursively we get

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
,

after some of math (last term comes from bounding a geometric series).

First term looks like linear convergence, but second term does not go to zero.
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Stochastic Gradient with Decreasing Step Size

To get convergence, we need a decreasing step size.

We need effect of variance to go to 0, but we still need to make progress.
Classic approach is to choose αt such that

∞∑

t=1

αt =∞,
∞∑

t=1

α2
t <∞,

which suggests setting αt = O(1/t).
We can obtain convergence rates with decreasing steps:

If αt = 1
µt

we can show

E[f(x̄t)− f(x∗)] = O(log(t)/t) (non-smooth f)

= O(1/t) (smooth f)

for the average iteration x̄t = 1
k

∑T
k=1 xk−1.

Note that O(1/t) error implies O(1/ε) iterations required.
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Summary

Structured sparsity encourages more-general patterns in variables.

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Stochastic subgadient method: same rate but n times cheaper.

Constant step-size: subgradient quickly converges to approximate solution.
Decreasing step-size: subgradient slowly converges to exact solution.

Next time: what if n =∞?
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Bonus Slide: Proximal-Gradient Convergence under Proximal-PL

By Lipschitz continuity of g we have

F (xk+1) = g(xk+1) + r(xk) + r(xk+1)− r(xk)

≤ F (xk) + 〈∇g(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2 + r(xk+1)− r(xk)

≤ F (xk)− 1

2L
Dr(xk, L)

≤ F (xk)− µ

L
[F (xk)− F ∗],

and then we can take our usual steps.
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Bonus Slide: Strong-Convexity Inequalities for Non-Differentiable f
A “first-order” relationship between subgradient and strong-convexity:

If f is µ-strongly convex then for all x and y we have

f(y) ≥ f(x) + f ′(y)T (y − x) +
µ

2
‖y − x‖2,

for f ′(y) ∈ ∂f(x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.
Reversing y and x we can write

f(x) ≥ f(y) + f ′(x)T (x− y) +
µ

2
‖x− y‖2,

for f ′(x) ∈ ∂f(x).
Adding the above together gives

(f ′(y)− f ′(x))T (y − x)) ≥ µ‖y − x‖2.
Applying this with y = xt−1 and subgradient gt and x = x∗ (which has f ′(x∗) = 0
for some subgradient) gives

(gt − 0)T (xt−1 − x∗) ≥ µ‖xt−1 − x∗‖2.



Structured Sparsity Stochastic Sub-Gradient Convergence Rate

Bonus Slide: Faster Rate for Proximal-Gradient

It’s possible to show a slightly faster rate for proximal-gradient using
αt = 2/(µ+ L).

See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_

ProximalGradient.pdf

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
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