CPSC 540: Machine Learning Group L1-Regularization, Proximal-Gradient

Mark Schmidt

University of British Columbia

Winter 2017

Admin

• Assignment 1:

- 1 late day to hand it in tonight.
- 2 late days to hand it in next Monday.
- Assignment 2:
 - Out soon.
 - Due February 6.

Last Time: Convex Optimization Zoo

- We discussed the convex optimization zoo:
 - Iteration complexity of algorithms under different assumptions.

Assumption	Algorithm	Convex	Strongly-Convex
Subgradient bounded	Subgradient	$O(1/\epsilon^2)$	$O(1/\epsilon)$
Gradient is Lipschitz	Gradient	$O(1/\epsilon)$	$O\left(\frac{L}{\mu}\log(1/\epsilon)\right)$
Gradient is Lipschitz	Nesterov	$O(1/\sqrt{\epsilon})$	$O\left(\sqrt{\frac{L}{\mu}}\log(1/\epsilon)\right)$

- Smoothing gets faster rate only if you use Nesterov-style algorithms.
- Asymptotically-Newton methods get superlinear convergence.
 - Assuming strong-convexity, gradient is Lipschitz, and Hessian is Lipschitz.
 - Not achieved by O(d) time/space practical methods.

Last Time: Weaker Conditions for Linear Convergence

- We argued gradient descent converges linearly under weaker assumptions.
 - No need to know L, it holds for various step-size stragies.
- No need for "strong-smoothness.
 - Just need Lipschitz-continuous gradient,

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|.$$

 $\bullet~$ Or just for all t and some L that

$$L[f(x^{t+1}) - f(x^t)] \le -\frac{1}{2} \|\nabla f(x^t)\|^2.$$

• No need for "strong-convexity", we just need the PL inequality,

$$\mu[f(x) - f^*] \le \frac{1}{2} \|\nabla f(x)\|^2,$$

or if f is convex we can make it strongly-convex by addng L2-regularization.

Last Time: L1-Regularization

• We considered regularization by the L1-norm,

```
\operatorname*{argmin}_{x \in \mathbb{R}^d} g(x) + \lambda \|x\|_1.
```

- Encourages solution x^* to be sparse.
- Convex approach to regularization and pruning irrelevant features.
 - Not perfect, but very fast.
 - Could be used as filter, or to initialize NP-hard solver.
- Non-smooth, but non-smooth part is separable,

$$\lambda \|x\|_1 = \sum_{j=1}^d \lambda |x_j| = \sum_{j=1}^d h_j(x_j).$$

which allows coordinate optimization.

Last Time: Coordinate Optimization

- In coordinate optimization each iteration t only updates one variable.
- More efficient than gradient descent if the iterations are *d*-times cheaper.
- This holds for the problem class

$$f(x) = g(Ax) + \sum_{j=1}^{d} h_j(x_j) + \sum_{i=1}^{d} \sum_{j=1}^{d} g_{ij}(x_i, x_j),$$

for smooth g and g_{ij} (and where g costs O(n)).

• We usually analyze it assuming partial derivatives are Lipschitz,

$$|\nabla_j f(x) - \nabla_j f(y)| \le L|x_j - y_j|,$$

for some L whenever x and y only differ in coordinate j.

• This is often easier to compute than L for the full gradient.

Convergence Rate of Randomized Coordinate Optimization

- Last time we analyzed coordinate optimization assuming that:
 - $\bullet\,$ Partial derivative are Lipschitz and f satisfies PL inequality.
 - We choose coordinate to update j_t uniformly at random.
 - Given j_t , we take a gradient step on x_{j_t} with step-size $\alpha_t = 1/L$.
- We showed that this leads to the bound

$$\mathbb{E}[f(x^{t+1})] - f(x^*) \le \left(1 - \frac{\mu}{dL}\right) \left[f(x^t) - f(x^*)\right].$$

• By recursing we get linear convergence rate,

$$\mathbb{E}[\mathbb{E}[f(x^{t+1})]] - f(x^*) \leq \mathbb{E}[\left(1 - \frac{\mu}{dL}\right)[f(x^t) - f(x^*)]] \quad (\text{expectation wrt } j_{t-1})$$

$$\mathbb{E}[f(x^{t+1})] - f(x^*) \leq \left(1 - \frac{\mu}{dL}\right)\mathbb{E}[f(x^t) - f(x^*)] \quad (\text{iterated expectation})$$

$$\leq \left(1 - \frac{\mu}{dL}\right)^2[f(x^{t-1}) - f(x^*)]$$

Randomized Coordinate Optimization vs. Gradient Descent

• So our rate for coordinate optimization is

$$\mathbb{E}[f(x^{t}] - f(x^{*}) \le \left(1 - \frac{\mu}{dL}\right)^{t} [f(x^{0}) - f(x^{*})],$$

which means we need $O\left(d\frac{L}{\mu}\log(1/\epsilon)\right)$ iterations.

- Remember that gradient descent needs $O\left(\frac{L}{\mu}\log(1/\epsilon)\right)$ iterations.
- So coordinate optimzation is slower?
 - $\bullet\,$ Yes, but remember we'll assume coordinate optimization steps are d-times cheaper.
 - So we should divide the coordinate optimization complexity by d.

Randomized Coordinate Optimization vs. Gradient Descent

• So for problems where coordinate steps are *d*-times cheaper we have

$$O\left(\frac{L}{\mu}\log(1/\epsilon)\right),$$

for both algorithms in terms of gradient descent iteration costs.

- So why prefer coordinate optimization?
- The Lipschitz constants are different.
 - Gradient descent uses L_f and coordinate optimization uses L_c .
- $L_c \leq L_f$, so coordinate optimization is faster when steps are d-times cheaper.

Lipschitz Sampling

- Can we do better than choosing j_t uniformly at random?
- You can go faster if you have an L_j for each coordinate:

$$|\nabla_j f(x + \gamma e_j) - \nabla_j f(x)| \le \underline{L}_j |\gamma|.$$

• Using L_{j_t} as the step-size and sampling j_t proportional to L_j gives

$$\mathbb{E}[f(x^{t})] - f(x^{*}) \le \left(1 - \frac{\mu}{d\bar{L}}\right)^{t} [f(x^{0}) - f(x^{*})],$$

where \overline{L} as the average Lipschitz constant (previously we used the maximum L_j).

• There are also greedy selection rules...

Proximal-Gradient

Gauss-Southwell Selection Rule

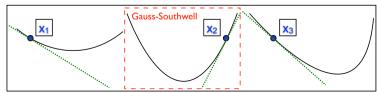
 $\bullet\,$ Our bound on the progress if we choose coordinate j_t is

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} |\nabla_{j_t} f(x^t)|^2.$$

• The "best" j_t according to the bound is

$$j_t \in \underset{j}{\operatorname{argmax}} \{ |\nabla_j f(x^t)| \},$$

which is called greedy selection or the Gauss-Southwell rule.



Proximal-Gradient

Gauss-Southwell Selection Rule

• Our bound on the progress if we choose coordinate j_t is

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} |\nabla_{j_t} f(x^t)|^2.$$

• The "best" j_t according to the bound is

$$j_t \in \underset{j}{\operatorname{argmax}} \{ |\nabla_j f(x^t)| \},$$

which is called greedy selection or the Gauss-Southwell rule.

- This gives a faster rate than uniformly at random.
 - You can prove this using that $|\nabla_{j_t} f(x^t)| = \|\nabla f(x^t)\|_{\infty}$.
 - $\bullet\,$ And measuring PL in the $\infty\text{-norm,}$

$$\mu[f(x) - f(x^*)] \le \frac{1}{2} \|f(x)\|_{\infty}^2$$

- But typically this can't be implemented d times faster than gradient descent.
 - You need an extra sparsity condition.

Gauss-Southwell-Lipschitz

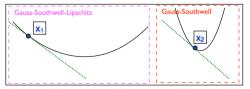
• Our bound on the progress with an L_j for each coordinate is

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L_{j_t}} |\nabla_{j_t} f(x^t)|^2.$$

• The best coordinate to update according to this bound is

$$j_t \in \underset{j}{\operatorname{argmax}} \frac{|\nabla_j f(x^t)|^2}{L_j}$$

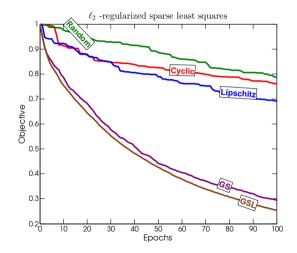
which is called the Gauss-Southwell-Lipschitz rule.



• This is the optimal update for quadratic functions.

Proximal-Gradient

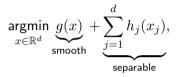
Numerical Comparison of Coordinate Selection Rules



Comparison on problem where Gauss-Southwell has similar cost to random:

Coordinate Optimization for Non-Smooth Objectives

• Last time we considered problems of the form



which includes L1-regularized least squares.

- Let's assume that
 - g is coordinate-wise Lipschitz continuous and μ -strongly convex.
 - h_j are general convex functions (could be non-smooth).
 - You do exact coordinate optimization.
- Then we can show that

$$\mathbb{E}[f(x^{t})] - f(x^{*}) \le \left(1 - \frac{\mu}{dL}\right)^{t} [f(x^{0}) - f(x^{*})],$$

the same convergence linear rate as if the non-smooth h_i were not there.

(and faster than the sublinear $O(1/\epsilon)$ for solving non-smooth strongly-convex problems)

Proximal-Gradient

Outline

1 Group Sparsity

- 2 Projected Gradient
- 3 Proximal-Gradient

Motivation for Group Sparsity

• Recall that multi-class logistic regression uses

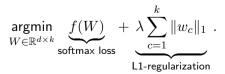
$$\hat{y}^i = \underset{c}{\operatorname{argmax}} \{ w_c^T x^i \},$$

where we have a parameter vector w_c for each class c.

• We typically use softmax loss and write our parameters as a matrix,

$$W = \begin{bmatrix} | & | & | & | \\ w_1 & w_2 & w_3 & \cdots & w_k \\ | & | & | & | \end{bmatrix}$$

• Suppose we want to use L1-regularization for feature selection,



• Unfortunately, setting elements of W to zero may not select features.

Motivation for Group Sparsity

 \bullet Suppose L1-regularization gives a sparse W with a non-zero in each row:

$$W = \begin{bmatrix} -0.83 & 0 & 0 & 0\\ 0 & 0 & 0.62 & 0\\ 0 & 0 & 0 & -0.06\\ 0 & 0.72 & 0 & 0 \end{bmatrix}.$$

- Even though it's very sparse, it uses all features.
 - Feature 1 is used in w_1 .
 - Feature 2 is used in w_3 .
 - Feature 3 is used in w_4 .
 - Feature 4 is used in w_2 .
- The classifier multiplies feature *j* by each value in row *j*.
- In order to remove a feature, we need its entire row to be zero.

Motivation for Group Sparsity

• What we want is group sparsity:

$$W = \begin{bmatrix} -0.77 & 0.04 & -0.03 & -0.09 \\ 0 & 0 & 0 & 0 \\ 0.04 & -0.08 & 0.01 & -0.06 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Each row is a group, and we want groups (rows) of variables that have all zeroes.
 If row j is zero, then x_j is not used by the model.
- Pattern arises in other settings where each row gives parameters for one feature:
 Multiple regression, multi-label classification, and multi-task classification.

Motivation for Group Sparsiy

- Categorical features are another setting where group sparsity is needed.
- Consider categorical features encoded as binary indicator features:

City	Age	Vancouver	Burnaby	Surrey	Age ≤ 20	20 < Age ≤ 30	Age > 30
Vancouver	22	1	0	0	0	1	0
Burnaby	35	0	1	0	0	0	1
Vancouver	28	1	0	0	0	1	0

• A linear model would use

$$\hat{y}^i = w_1 x_{\mathsf{van}} + w_2 x_{\mathsf{bur}} + w_3 x_{\mathsf{sur}} + w_4 x_{\leq 20} + w_5 x_{21-30} + w_6 x_{>30}.$$

• If we want feature selection of original categorical variables, we have 2 groups: • $\{w_1, w_2, w_3\}$ correspond to "City" and $\{w_4, w_5, w_6\}$ correspond to "Age".

Group L1-Regularization

- \bullet Consider a problem with a set of disjoint groups $\mathcal{G}.$
 - For example, $\mathcal{G} = \{\{1, 2\}, \{3, 4\}\}.$
- Minimizing a function f with group L1-regularization:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + \lambda \sum_{g \in \mathcal{G}} \|w_g\|_p,$$

where g refers to individual group indices and $\|\cdot\|_p$ is some norm.

- For certain norms, it encourages sparsity in terms of groups g.
 - Variables x_1 and x_2 will either be both zero or both non-zero.
 - Variables x_3 and x_4 will either be both zero or both non-zero.

Group L1-Regularization

- Why is it called group L1-regularization?
- Consider $G=\{\{1,2\},\{3,4\}\}$ and using L2-norm,

$$\sum_{g \in G} \|x_g\|_2 = \sqrt{x_1^2 + x_2^2} + \sqrt{x_3^2 + x_4^2}.$$

• If vector v contains the group norms, it's the L1-norm of v:

If
$$v \triangleq \begin{bmatrix} \|x_{12}\|_2 \\ \|x_{34}\|_2 \end{bmatrix}$$
 then $\sum_{g \in G} \|x_g\|_2 = \|x_{12}\|_2 + \|x_{34}\|_2 = v_1 + v_2 = |v_1| + |v_2| = \|v\|_1$.

So L1-regularization encourages sparsity in the group norms.
When the norm of the group is 0, all group elements are 0.

Group L1-Regularization: Choice of Norm

• The group L1-regularizer is sometimes written as a "mixed" norm,

$$\|w\|_{1,p} \triangleq \sum_{g \in \mathcal{G}} \|w_g\|_p.$$

- The most common choice for the norm is the L2-norm:
 - If $\mathcal{G}=\{\{1,2\},\{3,4\}\}$ we obtain

$$\|w\|_{1,2} = \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2 + w_4^2}.$$

• Another common choice is the $L\infty$ -norm,

$$||w||_{1,\infty} = \max\{|w_1|, |w_2|\} + \max\{|w_3|, |w_4|\}.$$

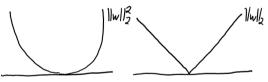
• But note that the L1-norm does not give group sparsity,

$$||w||_{1,1} = |w_1| + |w_2| + |w_3| + |w_4| = ||w||_1,$$

as it's equivalent to non-group L1-reuglarization.

Sparsity from the L2-Norm?

- Didn't we say sparsity comes from the L1-norm and not the L2-norm?
 - Yes, but we were using the squared L2-norm.
- Squared vs. non-squared L2-norm in 1D:



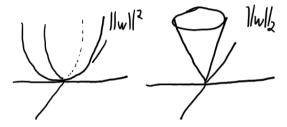
- Non-squared L2-norm is absolute value.
 - It will set w = 0 for some finite λ .
- Squaring the L2-norm gives a smooth function and destorys sparsity.

Projected Gradient

Proximal-Gradient

Sparsity from the L2-Norm?

• Squared vs. non-squared L2-norm in 2D:

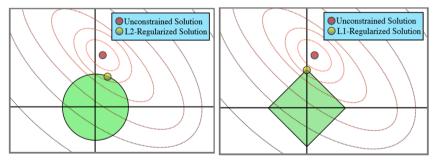


- The squared L2-norm is smooth and has no sparsity.
- For some finite λ , non-squared L2-norm simultaneously sets all variables to zero.

L1-Regularization vs. L2-Regularization

• Last time we looked at sparsity using our constraint trick,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + \lambda \|w\|_p \quad \Leftrightarrow \quad \underset{w \in \mathbb{R}^d, \tau \in \mathbb{R}}{\operatorname{argmin}} f(w) + \lambda \tau \text{ with } \tau \geq \|w\|_p.$$



- Note that we're also minimizing the radius τ .
 - If τ shrinks to zero, all w are set to zero.
 - But if τ is squared there is virtually no penalty for having τ non-zero.

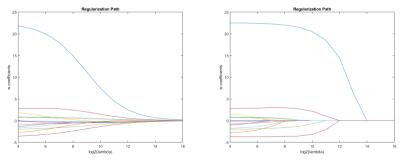
Proximal-Gradient

L2 and L1 Regularization Paths

• The regularization path is the set of w values as λ varies,

$$w^{\lambda} = \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w) + \lambda r(w),$$

• Squared L2-regularization path vs. L1-regularization path:



With r(w) = ||w||², each w_j gets close to 0 but is never exactly 0.
With r(w) = ||w||₁, each w_j gets set to exactly zero for a finite λ.

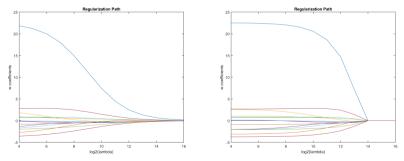
Proximal-Gradient

L2² and L2 Regularization Paths

• The regularization path is the set of w values as λ varies,

$$w^{\lambda} = \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w) + \lambda r(w),$$

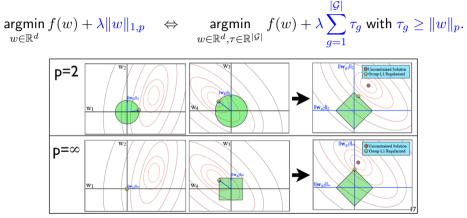
• Squared L2-regularization path vs. non-squared path:



With r(w) = ||w||², each w_j gets close to 0 but is never exactly 0.
With r(w) = ||w||₂, all w_j get set to exactly zero for same finite λ.

Group L1-Regularization

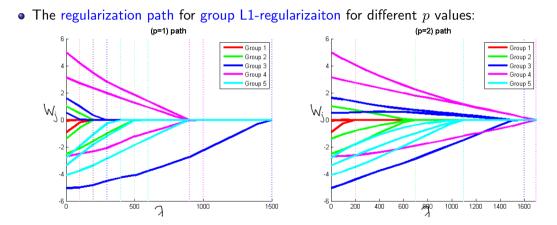
• Minimizing a function f with group L1-regularization,



• We're minimizing f(w) plus the radiuses τ_g for each group g.

• If τ_g shrinks to zero, all w_g are set to zero.

Group L1-Regularization Paths

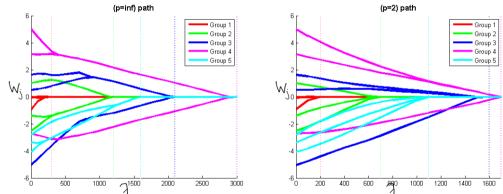


• With p = 1 there is no grouping effect.

• With p = 2 the groups become zero at the same time.

Group L1-Regularization Paths

• The regularization path for group L1-regularization for different \boldsymbol{p} values:



- With p = 1 there is no grouping effect.
- With p = 2 the groups become zero at the same time.
- With $p = \infty$ the groups converge to same magnitude which then goes to 0.

Outline

2 Projected Gradient

3 Proximal-Gradient

Solving Group L1-Regularization Problems

- The group L1-regularizer is non-differentiable for any norm.
- It's also non-separable, so we can't apply coordinate optimization.
 - You can do block coordinate optimization, but that won't work for other problems.
- A different problem structure we can use is

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \underbrace{g(x)}_{\operatorname{smooth}} + \underbrace{r(x)}_{\text{"simple"}},$$

that it's the sum of a smooth function and a "simple" function.

- We'll define "simple" later, but simple functions can be non-smooth.
- We can efficiently solve such problems with proximal-gradient methods.
 - A generalization of projected gradient methods.

Projected-Gradient for Non-Negative Constraints

• We used projected gradient in 340 for NMF to find non-negative solutions,

 $\mathop{\rm argmin}_{x\geq 0} f(x).$

• In this case the algorithm has a simple form,

$$x^{t+1} = \max\{0, x^t - \alpha_t \nabla f(x^t)\},\$$

where the \max is taken element-wise.

- "Do a gradient descent step, set negative values to 0."
- An obvious algorithm to try, and works as well as unconstrained gradient descent.

Broken "Projected-Gradient" Algorithms

• Based on our intuition, maybe we can go faster using a Newton-like step,

$$x^{t+1} = \max\{0, x^t - \alpha_t [\nabla^2 f(x^t)]^{-1} \nabla f(x^t)\},\$$

• We might also think that if we want x to be a probability

 $\underset{x \ge 0, \ \mathbf{1}^T x = \mathbf{1}}{\operatorname{argmin}} f(x),$

we could take a gradient step, set negative values to zero, and divide by the sum.

• Both of the above algorithms will NOT work.

Optimization with Simple Constraints

• Recall that we can view gradient descent as a minimizing quadratic approximation

$$x^{t+1} \in \operatorname*{argmin}_{y} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

where we have a general step-size α_t instead of 1/L.

• Now we want to optimize x over some convex set C,

$$\underset{x \in \mathcal{C}}{\operatorname{argmin}} f(x).$$

• We could minimize quadratic approximation to f subject to the constraints,

$$x^{t+1} \in \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y-x^t) + \frac{1}{2\alpha_t} \|y-x^t\|^2 \right\},$$

• We can re-write this iteration as

$$\begin{split} x^{t+1} &\in \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\} \\ &\equiv \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ \alpha_t f(x^t) + \alpha_t \nabla f(x^t)^T (y - x^t) + \frac{1}{2} \|y - x^t\|^2 \right\} \quad (\text{multiply by } \alpha_t) \\ &\equiv \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ \frac{\alpha_t^2}{2} \|\nabla f(x^t)\|^2 + \alpha_t \nabla f(x^t)^T (y - x^t) + \frac{1}{2} \|y - x^t\|^2 \right\} \quad (\text{add constant}) \\ &\equiv \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ \|(y - x^t) + \alpha_t \nabla f(x^t)\|^2 \right\} \quad (\text{complete the square}) \\ &\equiv \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ \|y - \underbrace{(x^t - \alpha_t \nabla f(x^t))}_{\text{gradient descent}} \| \right\}, \end{split}$$

and this is called the projected-gradient algorithm.

- We can view the projected-gradient algorithm as having two steps:
 - Perform an unconstrained gradient descent step,

$$x^{t+\frac{1}{2}} = x^t - \alpha_t \nabla f(x^t).$$

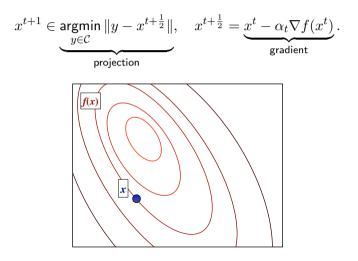
2 Computed the projection onto the set \mathcal{C} ,

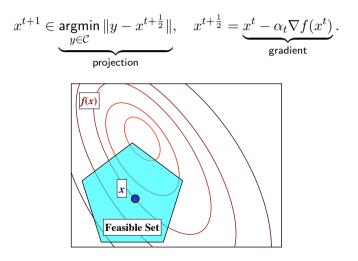
$$x^{t+1} \in \operatorname*{argmin}_{y \in \mathcal{C}} \|y - x^{t+\frac{1}{2}}\|.$$

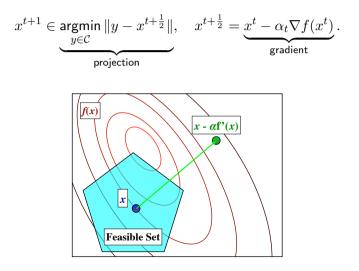
- Projection is the closest point that satisfies the constraints.
 - Generalizes "projection" from linear algebra.
 - \bullet We'll also write projection of x onto ${\mathcal C}$ as

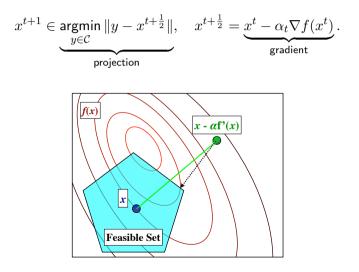
$$\operatorname{proj}_{\mathcal{C}}[x] = \operatorname{argmin}_{y \in \mathcal{C}} \|y - x\|,$$

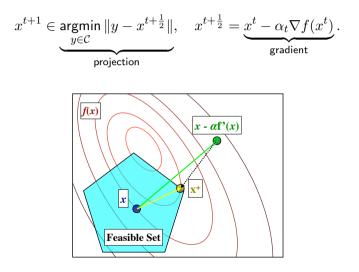
and for convex \mathcal{C} it's unique.











Convergence Rate of Projected Gradient

• Iteration complexity of projection-gradient:

Assumption	Algorithm	Convex	Strongly-Convex
Subgradient bounded	Subgradient	$O(1/\epsilon^2)$	$O(1/\epsilon)$
Gradient is Lipschitz	Gradient	$O(1/\epsilon)$	$O\left(\frac{L}{\mu}\log(1/\epsilon)\right)$
Gradient is Lipschitz	Nesterov	$O(1/\sqrt{\epsilon})$	$O\left(\sqrt{\frac{L}{\mu}}\log(1/\epsilon)\right)$

• These are the same rates we had for unconstrained optimization.

• Other nice properties:

- With $\alpha_t < 2/L$, guaranteed to decrease objective.
- $\bullet\,$ For convex f the only "fixed points" are optimal solutions,

$$x^* = \operatorname{proj}_{\mathcal{C}}[x^* - \alpha \nabla f(x^*)],$$

for any step-size $\alpha > 0$:

Simple Convex Sets

- Projected-gradient is only efficient if the projection is cheap.
- We say that C is simple if the projection is cheap.
 - For example, if it costs O(d) then it adds no cost to the algorithm.
- For example, if want $x \ge 0$ then projection sets negative values to 0.
 - Non-negative constraints are "simple".
- Another example if $x \ge 0$ and $x^T 1 = 1$, the probability simplex.
 - There are O(d) algorithm to compute this projection.

Simple Convex Sets

- Other examples of simple convex sets:
 - Having upper and lower bounds on the variables, $LB \leq x \leq UB$.
 - Having a linear equality constraint, $a^T x = b$, or a small number of them.
 - Having a half-space constraint, $a^T x \leq b$, or a small number of them.
 - Having a norm-ball constraint, $||x||_p \leq \tau$, for $p = 1, 2, \infty$ (fixed τ).
 - Having a norm-cone constraint, $||x||_p \leq \tau$, for $p = 1, 2, \infty$ (variable τ).

Group L1-Regularization

• We can convert the non-smooth group L1-regularization problem,

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} g(x) + \lambda \sum_{g \in G} \|x_g\|_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \underbrace{g(x) + \lambda \sum_{g \in G} r_g, \text{ subject to } r_g \geq \|x_g\|_2 \text{ for all } g.}_{f}$$

• Here the constraitnts are separable:

- We can project onto each norm-cone separately.
- Since norm-cones are simple we can solve this with projected-gradient,

Faster Projected-Gradient Methods

• Accelerated projected-gradient method has the form

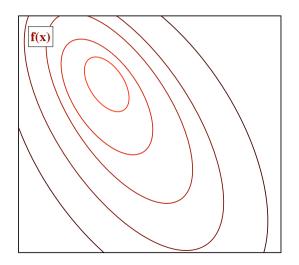
$$x^{t+1} = \operatorname{proj}_{\mathcal{C}}[y^t - \alpha_t \nabla f(x^t)]$$
$$y^{t+1} = x^t + \beta_t (x^{t+1} - x^t).$$

- We could alternately use the Barzilai-Borwein step-size.
 - Known as spectral projected-gradient.
- The naive Newton-like methods with Hessian approximation H_t ,

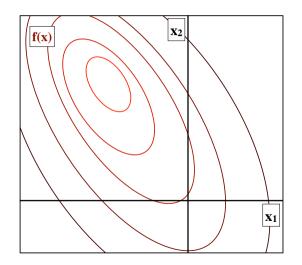
$$x^{t+1} = \operatorname{proj}_{\mathcal{C}}[x^t - \alpha_t[H_t]^{-1}\nabla f(x^t)],$$

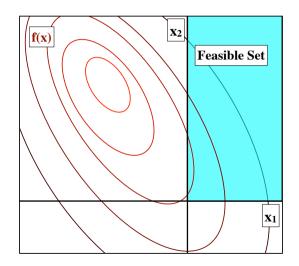
does NOT work.

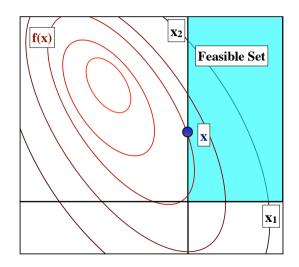
Proximal-Gradient

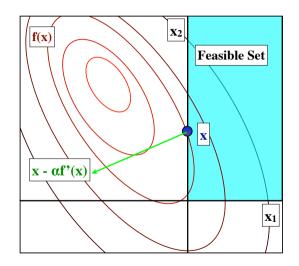


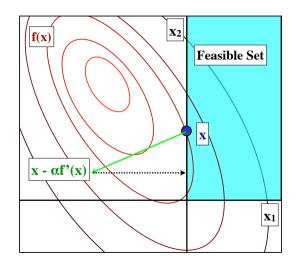
Proximal-Gradient

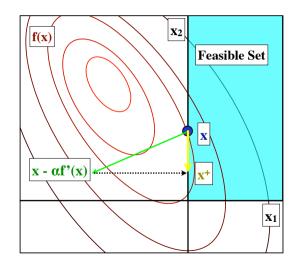


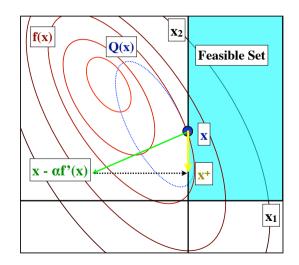


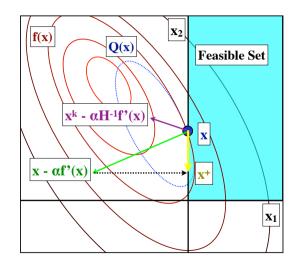


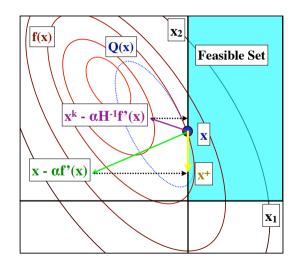


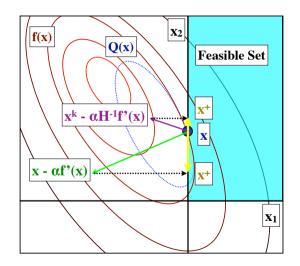












Projected-Newton Method

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H_t \approx \nabla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H_t(y - x^t) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H_t(y - x^t) \right\}.$$

• Equivalently, we project Newton step under different Hessian-defined norm,

$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \|y - (x^t - \alpha_t H_t^{-1} \nabla f(x^t))\|_{H_t},$$

where general "quadratic norm" is $||z||_A = \sqrt{z^T A z}$ for $A \succ 0$.

Discussion of Projected-Newton

• Projected-Newton iteration is given by

$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H_t(y - x^t) \right\}.$$

- But this is expensive even when $\mathcal C$ is simple.
- There are a variety of practical alternatives:
 - If H_t is diagonal then this is typically simple to solve.
 - Two-metric projection methods are special algorithms for upper/lower bounds.
 - Fix problem of naive method in this case by making H_t partially diagonal.
 - Inexact projected-Newton: solve the above approximately.
 - Useful when f is very expensive but H_t and C are simple.
 - "Costly functions with simple constraints".

Proximal-Gradient

Outline

1 Group Sparsity

- 2 Projected Gradient
- 3 Proximal-Gradient

Should we use projected-gradient for non-smooth problems?

- We converted non-smooth problem into smooth with simple constraints.
- But transforming might make problem harder:
 - For L1-regularization least squares,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1,$$

we can re-write as a smooth problem with bound constraints,

$$\underset{w_+ \ge 0, w_- \ge 0}{\operatorname{argmin}} \|X(w_+ - w_-) - y\|^2 + \lambda \sum_{j=1}^d (w_+ + w_-).$$

• Transformed problem is not strongly convex even if the original was.

• Proximal-gradient methods apply to analogous non-smooth problems,

argmin g(w) + r(w). $w \in \mathbb{R}^d$ smooth simple

Gradient Method

• We want to solve a smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x).$$

• Iteration x^t works with a quadratic approximation to f:

$$\begin{split} f(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2, \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

and the solution is the gradient algorithm:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

 $\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) + r(x).$

• Iteration x^t works with a quadratic approximation to f:

$$f(y) + r(y) \approx f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{1}{2\alpha_{t}} ||y - x^{t}||^{2} + r(y),$$
$$x^{t+1} = \underset{y \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{1}{2\alpha_{t}} ||y - x^{t}||^{2} + r(y) \right\}$$

We can equivalently write this as the proximal optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 + \alpha_t r(y) \right\},$$

and the solution is the proximal-gradient algorithm:

$$x^{t+1} = \operatorname{prox}_{\alpha r}[x^t - \alpha_t \nabla f(x^t)].$$

Proximal-Gradient

Proximal-Gradient Method

• So proximal-gradient step takes the form:

$$\begin{split} x^{t+\frac{1}{2}} &= x^t - \alpha_t \nabla f(x^t) \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - x^{t+\frac{1}{2}}\|^2 + \alpha_t r(y) \right\}. \end{split}$$

- Second part is called the proximal operator with respect to $\alpha_t r$.
- Convergence rates are still the same as for minimizing f alone:
 - E.g, if ∇f is $L\text{-Lipschitz},\ f$ is $\mu\text{-strongly convex and }r$ is convex, then

$$F(x^{t}) - F(x^{*}) \le \left(1 - \frac{\mu}{L}\right)^{t} \left[F(x^{0}) - F(x^{*})\right],$$

where F(x) = f(x) + r(x).

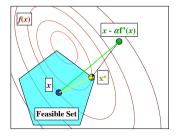
Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(y) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}, \quad (\text{indicator function for convex set } \mathcal{C}) \end{cases}$$

gives

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \ \frac{1}{2} \|y - x\|^2 + r(y) = \operatorname*{argmin}_{y \in \mathcal{C}} \ \frac{1}{2} \|y - x\|^2 = \operatorname*{argmin}_{y \in \mathcal{C}} \ \|y - x\|.$$



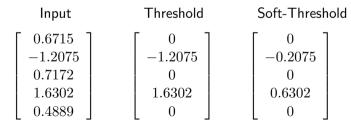
Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \operatorname*{argmin}_{y \in \mathbb{R}^d} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

• If $r(y) = \lambda \|y\|_1$, proximal operator is soft-threshold:

- Apply $x_j = \operatorname{sign}(x_j) \max\{0, |x_j| \lambda\}$ element-wise.
- An example with $\lambda = 1$:



• Has the nice property that iterations x^t are sparse.

Proximal-Gradient for L1-Regularization

 $\bullet\,$ The proximal operator for L1-regularization when using step-size $\alpha_t,$

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \|y\|_1 \right\},$$

applies soft-threshold element-wise,

$$x_j = \frac{x_j}{|x_j|} \max\{0, |x_j| - \alpha_t \lambda\}.$$

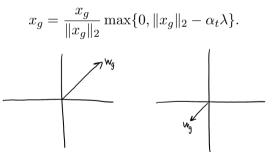
- w_j with absolute values below $\alpha_t \lambda$ get set to 0.
- w_j with absolute values above $\alpha_t \lambda$ get shrunk by $\alpha_t \lambda$.

Proximal-Gradient for Group L1-Regularization

• The proximal operator for group L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \sum_{g \in G} \|y\|_2 \right\},$$

applies a soft-threshold group-wise,



• So we can solve group L1-regularization problems as fast as smooth problems.

Proximal-Gradient for Group L1-Regularization

• The proximal operator for group L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \sum_{g \in G} \|y\|_2 \right\},$$

applies a soft-threshold group-wise,

$$x_{g} = \frac{x_{g}}{\|x_{g}\|_{2}} \max\{0, \|x_{g}\|_{2} - \alpha_{t}\lambda\}.$$

• So we can solve group L1-regularization problems as fast as smooth problems.

Proximal-Gradient for Group L1-Regularization

• The proximal operator for group L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \sum_{g \in G} \|y\|_2 \right\},$$

applies a soft-threshold group-wise,

$$x_g = \frac{x_g}{\|x_g\|_2} \max\{0, \|x_g\|_2 - \alpha_t \lambda\}.$$

• So we can solve group L1-regularization problems as fast as smooth problems.

Summary

- Group L1-regularization encourages sparsity in variable groups.
- Projected-gradient allows optimization with simple constraints.
- Projected-Newton: even faster rates in special cases.
- Proximal-gradient: linear rates for sum of smooth and simple non-smooth.
- Next time: what if the number of training examples n is huge?