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Admin

Auditting/registration forms:

Add/drop deadline is tomorrow.
We can discuss/sign the remaining ones at the end class.

Assignment 1:

Due tonight.
1 late day to hand it in Wednesday.
2 late days to hand it in next Monday.

Assignment 2:

Out soon.
Due February 6 (3 weeks).
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Last Time: Gradient Descent

Gradient descent:

Iterative algorithm for finiding stationary point of differentiable function.
For convex functions if finds a global minimum.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Start with x0, apply

xt+1 = xt − αt∇f(xt),

for step-size αt.

Cost of algorithm scales linearly with number of variables d.

Costs O(ndt) for t iterations for least squares and logistic regression.
For t < d, faster than O(nd2 + d3) of normal equations or Newton’s method.
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Last Time: Convergence Rate of Gradient Descent

We introduced the iteration complexity of an algorithm for a problem class:

“How many iterations t before we guarantee an accuracy ε”?

We assumed strong-convexity and strong-smoothness,

µI � ∇2f(x) � LI

for all x and 0 < µ ≤ L <∞
(eigenvalues bounded between positive constants everywhere)

By using multiviate second-order Taylor expansion,

f(y) = f(x) +∇T f(x)(y − x) +
1

2
(y − x)T∇2f(z)(y − x),

we showed gradient descent has linear convergene rate which implies t = log(1/ε).
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Last Time: Gradient Descent Practical Issues

Optimization has both a theoretical and practical component:

We can use theory to justify/guide our choice of method.
But bounds tend to be loose, so we need to experiment.

In practice you don’t need L and probably don’t want it:

Adaptive step-size, Armijo line-search.

We overviewed methods with better performance:

Nesterov’s accelerated gradient method (better in theory, sometimes in practice)
Approximations to Newton’s method that only need O(d)-cost operations.

Diagonal scaling, Barzilai-Borwein, Hessian-free, limited-memory quasi-Newton.
Typically these are the best methods in practice for large d.

(Take Michael Friedlander’s classes for more details.)
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Differentiability Classes and Lipschitz Continuity

We’ll find it convenient to define differentiability classes:

C0 is the set of continuous functions.
C1 is the set of once-differentiable functions.
C2 is the set of twice-differentiable functions.

Our (1− µ/L) convergence rate holds for C2 functions.

But it can be generalized to C1 functions.

To show this, we’ll say that a function is Lipschitz-continuous if

‖g(x)− g(y)‖ ≤ L‖x− y‖,

for some constant L for all x and y (g can have multiple inputs and outputs).

It means that g can’t change too quickly.
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Convergence Rate for C1 Functions

Consider functions f with a Lipschitz-continuous gradient,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

For C2 functions, this is equivalent to strong-smoothness.

For C1 functions, this implies the descent lemma (bonus slide),

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2.

This is the upper bound we used in our convergence proof.

We can weaken strong smoothness to Lipschitz-continuous gradient.
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Convergence Rate for C1 Functions

We can define strong-convexity for C0 (not necessarily differentiable) functions

Function f is strongly-convex if the function

x 7→ f(x)− µ

2
‖x‖2,

is convex for some µ > 0.

For C2 functions, this is equivalent to our previous definition.

For C1 functions, this implies that (bonus slide)

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2.

This is the lower-bound used in our proof (we don’t need twice-differentiability).
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Strong-Convexity and Regularization

We can define strong-convexity for C0 (not necessarily differentiable) functions

Function f is strongly-convex if the function

x 7→ f(x)− µ

2
‖x‖2,

is convex for some µ > 0.

Useful implication:

If f is convex, then f + λ
2 ‖x‖2 is strongly-convex with µ ≥ λ.

So adding L2-regularization to a convex function makes it strongly-convex.

We converge faster and guarantee that a unique solution exists.
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First-Order Oracle Model of Computation

Should we be happy with an algorithm that takes O(log(1/ε)) iterations?

Is it possible that algorithms exist that solve the problem faster?

To answer this question, need a class of functions.

For example, strongly-convex with Lipschitz-continuous gradient.

We also need a model of computation: what operations are allowed?

We will typically use a first-order oracle model of computation:

On iteration t, algorithm choose an xt and receives f(xt) and ∇f(xt).
To choose xt, algorithm can do anything that doesn’t involve f .

Common variation is zero-order oracle where algorithm only receives f(xt).
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Complexity of Minimizing Real-Valued Functions

Consider minimizing real-valued functions over the unit hyper-cube,

min
x∈[0,1]d

f(x).

You can use any algorithm you want.
(simulated annealing, gradient descent + random restarts, genetic algorithms, Bayesian optimization,. . . )

How many zero-order oracle calls t before we can guarantee f(xt)− f(x∗) ≤ ε?
Impossible!

Given any algorithm, we can construct an f where f(xt)− f(x∗) > ε forever.

Make f(x) = 0 except at x∗ where f(x) = −ε− 2whatever.
(the x∗ is algorithm-specific)

To say anything in oracle model we need assumptions on f .
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Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.
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Complexity of Minimizing Lipschitz-Continuous Functions

One of the simplest assumptions is that f is Lipschitz-continuous,

|f(x)− f(y)| ≤ L‖x− y‖.

Function can’t change arbitrarily fast as you change x.

Under only this assumption, any algorithm requires at least Ω(1/εd) iterations.

An optimal O(1/εd) worst-case rate is achieved by a grid-based search method.

You can also achieve optimal rate in expectation by random guesses.

Lipschitz-continuity implies there is a ball of ε-optimal solutions around x∗.
The radius of the ball is Ω(ε) so its area is Ω(εd).
If we succeed with probability Ω(εd), we expect to need O(1/εd) trials.

(mean of geometric random variable)
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Complexity of Minimizing Convex Functions

Life gets better if we assume convexity.

We’ll consider first-order oracles and rates with no dependence on d.

Subgradient methods (next week) can minimize convex functions in O(1/ε2).

This is optimal in dimension-independent setting.

If the gradient is Lipschitz continuous, gradient descent requires O(1/ε).

With Nesterov’s algorithm, this improves to O(1/
√
ε) which is optimal.

Here we don’t yet have strong-convexity.

What about the CPSC 340 approach of smoothing non-smooth functions?

Gradient descent still requires O(1/ε2) in terms of solving original problem.
Nesterov improves to O(1/ε) in terms of original problem.
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Complexity of Minimizing Strongly-Convex Functions

For strongly-convex functions:

Sub-gradient methods achieve optimal rate of O(1/ε).
If ∇f is Lipschitz continuous, we’ve shown that gradient descent has O(log(1/ε)).

Nesterov’s algorithms improves this from O(Lµ log(1/ε)) to O(
√

L
µ log(1/ε)).

It’s close to optimal.
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Sublinear vs. Linear vs. Superlinear Convergence

Having t = O(1/ε2) means that ε = O(1/
√
t) after t iterations.

Having t = O(1/ε) means that ε = O(1/t) after t iterations.

Having t = O(1/
√
ε) means that ε = O(1/t2) after t iterations.

These are sublinear rates, time increases exponentially in digits of accuracy.

Having t = O(log(1/ε)) means that ε = O(ρt) after t iterations.

This is a called a linear rate, time increases polynomially in digits of accuracy.

Superlinear means we have ε = O(
∏t
k=1 ρk) where ρk converges to 0.

An example is quadratic convergence where t = O(log log(1/ε)).
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Sublinear vs. Linear vs. Superlinear Convergence

Iteation complexity measures number of iterations.

Total time complexity will be iteration complexity times cost of iterations.

Usually, cost of iterations is simpler to compute.

For logistic regression:

Iteration complexity for gradient descent is O(log(1/ε)) iterations.
Iteration cost for gradient descent is O(nd) time.
So total time is O(nd log(1/ε)).

Note the different use of sublinear/superlinear in the two settings:

Sublinear convergence is bad and superlinear convergence is good.
Sublinear cost is good and superlinear cost is bad.
We ideally want superlinear convergence with sublinear cost.
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Superlinear Convergence in Practice?

You get local superlinear convergence if:

Gradient is Lipschitz-continuous and f is strongly-convex.
Function is in C2 and Hessian is Lipschitz continuous.
Oracle is second-order and method asymptotically uses Newton’s direction.

But the practical Newton-like methods don’t achieve this:

Diagonal scaling, Barzilai-Borwein, and L-BFGS don’t converge to Newton.
Hessian-free uses conjugate gradient which isn’t superlinear in high-dimensions.

Full quasi-Newton methods achieve this, but require Ω(d2) memory/time.
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Linear Convergence with Alternate Step-Sizes

Linear convergence is possibly the best we can hope for in large-scale settings.

Can we weaken our previous assumptions and still get linear convergence?

We used constant αt = 1/L.

Proof will work for any constant αt < 2/L, so we just need small enough step-size.
Proof works if you find the optimal step-sizse,

Value of f with optimal step-size cannot be greater than with 1/L.
You can compute this for quadratics: just minimizing a 1D quadratic.

Proof can be modified to work adaptive L or backtracking

Rate is slightly uglier/slower.
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Linear Convergence with Non-Lipschitz Gradient

Instead of Lipschitz-continuous gradient we really only need that

f(xt+1) ≤ f(xt)− 1

2L
‖∇f(xt)‖2,

for all xt and some L.

For example, in covariance matrix estimation (later in course) ∇f is not Lipschitz.
For differentiable functions, this is a very weak assumption.

Instead of strong-convexity we really only need for some µ that

f(x∗) ≥ f(x)− 1

2µ
‖∇f(xt)‖2.

This is called the Polyak- Lojasiewicz (PL) inequality.

Some non-convex funtions satisfy this: x2 + 3 sin2(x) has µ > 1/32.
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Linear Convergence without Strong-Convexity

The least squares problem is convex but not strongly convex.
We could add a regularizer to make it strongly-convex.
But if we really want the MLE, are we stuck with sub-linear rates?

Many conditions give linear rates that are weaker than strong-convexity:
1963: Polyak- Lojasiewicz (PL).
1993: Error bounds.
2000: Quadratic growth.
2013-2015: essential strong-convexity, weak strong convexity, restricted secant
inequality, restricted strong convexity, optimal strong convexity, semi-strong
convexity.

Least squares satisfies all of the above (bonus slide for PL).

Do we need to study any of the newer ones?
No! All of the above imply PL except for QG.
But with only QG gradient descent may not find optimal solution.
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Linear Convergence for “Locally-Nice” Functions

For linear convergence it’s sufficient to have

L[f(xt+1)− f(xt)] ≥ 1

2
‖∇f(xt)‖2 ≥ µ[f(xt)− f∗],

for all xt for some L and µ with L ≥ µ > 0.
(technically, we could even get rid of the connection to the gradient)

Notice that this only needs to hold for all xt, not for all possible x.

We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
We can get lucky and converge faster than the global L/µ would suggest.

Arguments like this give linear rates for some non-convex problems like PCA.
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Motivation: Automatic Brain Tumour Segmentation

Task: identifying tumours in multi-modal MRI data.

Applications:

Image-guided surgery.
Radiation target planning.
Quantifying treatment response.
Discovering growth patterns.
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Motivation: Automatic Brain Tumour Segmentation

Formulate as supervised learning:

Pixel-level classifier that predicts “tumour” or “non-tumour”.
Features: convolutions, expected values (in aligned template), and symmetry.

All at multiple scales.
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Motivation: Automatic Brain Tumour Segmentation

Logistic regression was among the most effective, with the right features.

But if you used all features, it overfit.

We needed feature selection.

Classical approach:

Define some score: AIC, BIC, cross-validation error, etc.
Search for features that optimize score:

Usually NP-hard, so we use greedy: forward selection, backward selection,. . .
In this application, these are too slow: one image is 8 million training examples.
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Feature Selection

General feature selection problem:

Given our usual X and y, we’ll use xj to represent column j:

X =


x1 x2 . . . xd


 , y =


y


 .

We think some features/columns xj are irrelevant for predicting y.

We want to fit a model that uses the “best” set of features.

One of most important problems in ML/statistics, but very very messy.

In 340 we saw how difficult it is to define what “relevant” means.
For now, a feature is “relevant” if it helps predict yi from xi.
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L1-Regularization

A popular appraoch to feature selection we saw in 340 is L1-regularization:

w∗ ∈ argmin
w∈Rd

g(w) + λ‖w‖1.

Advantages:
Fast: can apply to large datasets, just minimizing one convex function.
Reduces overfitting because it simultaneously regularizes.
Sample complexity is logarithmic in number of irrelevant features.

Compared to linear dependence for L2-regularization.

Disadvantages:
Prone to false positives, particularly if you pick λ by cross-validation.
Not unique: there may be infinite solutions.

There exist many extensions:
“Elastic net” adds L2-regularization to make solution unique.
“Bolasso” uses bootstrapping to reduce false positives.
Non-convex regularizers reduce false positives but are NP-hard.
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L1-Regularization

Key property of L1-regularization: if λ is large, solution w∗ is sparse:

w∗ has many values that are exactly zero.

How this performs feature selection in linear models:

ŷi = wTxi = w1x
i
1 + w2x

i
2 + w3x

i
3 + w4x

i
4 + w5x

i
5.

If w =
[
0 0 3 0 −2

]
then:

ŷi = 0xi1 + 0xi2 + 3xi3 + 0xi4 + (−2)xi5

= 3xi3 − 2xi5.

Features {1, 2, 4} are not used in making predictions.
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L1-Regularization vs. L2-Regularization
Why does L1-regularization give sparsity but L2-regularization does not?

Don’t they both shrink variables towards 0?

Consider a 2-variable problem whose MLE is given by

w =

[
100
0.01

]
.

which has ‖w‖2 = 10000.0001.

And MAP estimates with one variable “shrunk” by 0.01:

w1 =

[
100
0

]
, w2 =

[
99.99
0.01

]
.

L2-regularization strongly prefers w2.

‖w1‖2 = 10000, ‖w2‖2 = 99.992 + 0.012 = 9998.0001 + 0.0001 = 9998.0002,

It focuses on decreasing largest variables and making magnitudes similar.
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L1-Regularization vs. L2-Regularization
Why does L1-regularization give sparsity but L2-regularization does not?

Don’t they both shrink variables towards 0?

Consider a 2-variable problem whose MLE is given by

w =

[
100
0.01

]
.

which has ‖w‖2 = 10000.0001.

And MAP estimates with one variable “shrunk” by 0.01:

w1 =

[
100
0

]
, w2 =

[
99.99
0.01

]
.

L1-regularization has no preference:

‖w1‖1 = 100, ‖w2‖1 = 99.99 + 0.01 = 100.

So it will focus on decreasing both variables until the small one is zero.
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L1-Regularization vs. L2-Regularization

Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin
w∈Rd

f(w) + λ‖w‖p ⇔ argmin
w∈Rd,τ∈R

f(w) + λτ with τ ≥ ‖w‖p.

Notice that L2-regularization has a rotataional invariance.

This actually makes it more sensitive to irrelevant features.
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Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?

For example, the LASSO problem is

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1.

and let’s assume XTX is positive-definite, or we add L2-regularization.

Either condition makes it strongly-convex.

Use our trick to formulate as a quadratic program?

O(d2) or worse.

Make a smooth approximation to the L1-norm?

Destroys sparsity.

Formulate as a non-smooth convex optimization?

Sub-linear O(1/ε) convergence rate.
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The Key to Faster Methods

How can we beat the O(1/ε) lower bound in the first-order oracle model?

Make extra assumptions about the function/algorithm f .

For L1-regularized least squares, we’ll use that the objective has the form

argmin
x∈Rd

g(x) +

d∑

j=1

hj(xj)

︸ ︷︷ ︸
“separable”

,

that it’s the sum of a smooth function and a separable function.

The “non-smoothness” independently affects each coordinate.

We can obtain O(log(1/ε)) rates for strongly-convex functions of this form.
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Coordinate Optimization

An algorithm that can achieve this property is coordinate optimization:

At each iteration we only update one variable.

It’s easy to deal with the positive/negative cases for one variable.
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Coordinate Optimization

In coordinate optimization we select one variable jt and update this variable,

xt+1
jt

= xtjt + γt,

for some scalar γt.

We can write this as an update to all variables using

xt+1 = xt + γtejt ,

where ejt has a zero in every position except jt.

eT3 =
[
0 0 1 0 0 0 0

]

Classic choices for picking the variable jt to update:
Cyclic (in order), random, and greedy.

Classic choices for choosing the step-size γt:
Gradient descent (smooth functions), line-search, exact optimization.
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Coordinate Optimization

This is an obvious, old, and widely-used algorithm.

But until 2010, we had little theory about when to use it.

For some applications it’s great, for other it’s terrible.

2010: randomized coordinate optimization is faster than gradient descent if:

We can do d coordinate updates for the cost of one gradient descent step.

This applies to random or greedy coordinate selection.

So when can we do coordinate updates d-times faster?
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Problems Suitable for Coordinate Optimization

Coordinate update is d times faster than gradient update for
1 Separable functions,

f(x) =

d∑

j=1

hj(xj).

We have ∇jf(x) = h′j(xj) which costs O(1), while ∇f(x) costs O(d).

The hj can be minimized independently, so coordinate optimization is obvious choice.
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Problems Suitable for Coordinate Optimization

Coordinate update is d times faster than gradient update for
2 Composition of smooth function with affine map,

f(x) = g(Ax+ b),

for a matrix A, a vector b, and smooth function g with cost of O(n).
(includes least squares and logistic regression)

The partial derivatives have the form

∇jf(x) = ∇aTj g(Ax+ b).

If we have Ax, this costs O(n) instead of O(nd) for the full gradient.
We can track the product Axt as we go with O(n) cost,

Axt+1 = A(xt + γtejt) = Axt︸︷︷︸
old value

+γtAejt︸︷︷︸
O(n)

,
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Problems Suitable for Coordinate Optimization
Coordinate update is d times faster than gradient update for

3 Functions depending on smooth functions of variable pairs,

f(x) =

d∑

i=1

d∑

j=1

gij(xi, xj).

Cost of gradient is O(d2) but cost of partial derivative is O(d).
(each variable only appears in d out of the d2 functions gij)

Includes quadratics
Includes graph-based semi-supervised learning from 340.
Includes many variational inference methods (later in course).

Note that it’s still d times faster if we combine all three types:

f(x) = g(Ax) +

d∑

j=1

hj(xj) +

d∑

i=1

d∑

j=1

gij(xi, xj),

which includes L1-regularized least squares.
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Convergence Rate of Coordinate Optimization

To analyze coordinate optimization, let’s first assume each ∇jf is L-Lipshitz,

|∇jf(x+ γej)−∇jf(x)| ≤ L|γ|,

which for C2 functions is equivalent to ∇2
iif(x) ≤ L for all i.

(diagonals of Hessian are bounded)

This is not a stronger assumption: it’s implied by the gradient being Lipschitz.

We’ll also assume that we use the update

xt+1 = xt − 1

L
∇jtf(xt)ejt ,

which is a gradient step along the coordinate with a step-size of 1/L.
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Convergence Rate of Coordinate Optimization

The coordinate-wise L-Lipschitz assumption implies that

f(y) ≤ f(x) +∇jf(x)(y − x)j +
L

2
(y − x)2j ,

for any x and y that only differ in coordinate j.

If we plug in our previous analysis of gradient descent we get

f(xt+1) ≤ f(xt)− 1

2L
|∇jtf(xt)|2,

a progress bound based on only updating coordinate jt.

Bound also holds for exact update, uglier-but-similar bounds hold for line-searches.
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Convergence Rate of Randomized Coordinate Optimization
Our bound for updating coordinate jt is

f(xt+1) ≤ f(xt)− 1

2L
|∇jtf(xt)|2,

but we need to pick jt giving sufficient progress.
Let’s consider expected progress with random selection, p(jt) = 1/d,

E[f(xt+1)] ≤ E
[
f(xt)− 1

2L
|∇jtf(xt)|2

]
(expectation wrt jt)

=

d∑

j=1

1

d

[
f(xt)− 1

2L
|∇jf(xt)|2

]
(p(j) = 1/d)

= f(xt)− 1

2dL

d∑

j=1

|∇jf(xt)|2

= f(xt)− 1

2dL
‖∇f(xt)‖2.
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Convergence Rate of Randomized Coordinate Optimization

Our guaranteed progress bound for randomized coordinate optimization,

E[f(xt+1))] ≤ f(xt)− 1

2Ld
‖∇f(xt)‖2.

If we subtract f(x∗) and use strong-convexity or PL,

E[f(xt+1)]− f(x∗) ≤
(

1− µ

dL

)
[f(xt)− f(x∗)].

Which we’ll show implies a linear convergence rate.



How hard is optimization? Weaker Assumptions for Linear Convergence L1-Regularization and Coordinate Optimization

Summary

Optimization zoo for minimizing continuous functions.

Weaker assumptions for gradient descent:

Lipschitz-continuity, PL inequality, practical step-sizes.

L1-regularization: feature selection as convex optimization.

Coordinate optimization: for problems with fast single-variable updates.

Next time: going beyond L1-regularization to “group sparsity”.
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Bonus Slide: Descent Lemma

Let ∇f be L-Lipschitz continuous, and define g(α) = f(x+ αz) for a scalar α.

f(y) = f(x) +

∫ 1

0
∇f(x+ α(y − x))T (y − x)dα (fund. thm. calc.)

= f(x) +∇f(x)T (y − x) +

∫ 1

0
(∇f(x+ α(y − x))−∇f(x))T (y − x)dα

(CS ineq.) ≤ f(x) +∇f(x)T (y − x) +

∫ 1

0
‖∇f(x+ α(y − x))−∇f(x)‖‖y − x‖dα

(Lipschitz) ≤ f(x) +∇f(x)T (y − x) +

∫ 1

0
L‖x+ α(y − x)− x‖‖y − x‖dα

= f(x) +∇f(x)T (y − x) +

∫ 1

0
Lα‖y − x‖2dα

= f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2.
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Bonus Slide: Strong-Convexity Lemma

If g(x) = f(x)− µ
2‖x‖2 is convex then from C1 definition of convexity

g(y) ≥ g(x) +∇g(x)T (y − x)

or that

f(y)− µ

2
‖y‖2 ≥ f(x)− µ

2
‖x‖2 + (∇f(x)− µx)T (y − x),

which gives

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y‖2 − µxT y +

µ

2
‖x‖2

= f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2.



How hard is optimization? Weaker Assumptions for Linear Convergence L1-Regularization and Coordinate Optimization

Bonus Slide: PL Inequality for Least Squares

Least squares can be written as f(x) = g(Ax) for a σ-strongly-convex g and matrix A, we’ll show that the PL inequality is satisfied for
this type of function.

The function is minimized at some f(y∗) with y∗ = Ax for some x, let’s use X∗ = {x|Ax = y∗} as the set of minimizers. We’ll use
xp as the “projection” (defined next lecture) of x onto X∗.

f
∗

= f(xp) ≥ f(x) + 〈∇f(x), xp − x〉 +
σ

2
||A(xp − x)||2

≥ f(x) + 〈∇f(x), xp − x〉 +
σθ(A)

2
||xp − x||2

≥ f(x) + min
y

[
〈∇f(x), y − x〉 +

σθ(A)

2
||y − x||2

]
= f(x)−

1

2θ(A)σ
||∇f(x)||2.

The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on X∗ being a polyhedral set defined in this

particular way to give a constant θ(A) depending on A that holds for all x (in this case it’s the smallest non-zero singular value of A), and

the third line uses that xp is a particular y in the min.
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