CPSC 540: Machine Learning Gradient Descent, Newton-like Methods

Mark Schmidt

University of British Columbia

Winter 2017

Admin

• Auditting/registration forms:

- Submit them in class/help-session/tutorial this week.
- Pick them up in the next class/help-session/tutorial.
- Add/drop deadline is Tuesday.
- Tutorials: start this Friday (4:00 in DMP 110).
- Assignment 1 due January 16.
 - 1 late day to hand it in January 18.
 - 2 late days to hand it in January 23.

Last Time: MAP Estimation

• We showed that the loss plus regularizer framework

$$f(w) = \sum_{\substack{i=1\\ \text{data-fitting term}}}^{n} f_i(w) + \underbrace{\lambda g(w)}_{\text{regularizer}},$$

can arise from the MAP estimation principle applied to IID data,

$$w^* \in \operatorname*{argmax}_{w \in \mathbb{R}^d} \underbrace{p(w|y,X)}_{\text{posterior}} \equiv \operatorname*{argmin}_{w \in \mathbb{R}^d} - \underbrace{\sum_{i=1}^n \log p(y^i|x^i,w)}_{\text{log-likelihood}} - \underbrace{\log p(w)}_{\text{log-prior}}.$$

- Most common models arise from particular assumptions:
 - Gaussian likelihood \rightarrow squared error.
 - $\bullet~$ Gaussian prior \rightarrow L2-regularization.
 - Laplace likelihood \rightarrow absolute error.
 - Sigmoid likelihood \rightarrow logistic loss.

Last Time: Gaussian-Gaussian Model and L2-Regularized Least Squares

• Least squares corresponds to MLE under the assumption,

 $y^i \sim \mathcal{N}(w^T x^i, \sigma^2),$

where σ^2 is irrelevant.

- Why does σ^2 not affect sensitivity to outliers?
 - Scales all residuals by the same quantity (unlike switching norms).
- If we use a different σ_i^2 for each example, the σ_i^2 values would be relevant.
 - Leads to weighted least squares
- L2-regularized least squares corresponds to the assumption

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$$

with $\sigma^2 = 1$.

• Here changing σ^2 changes solution, but it's equivalent to changing λ .

Last Time: Converting Absolute/Max Problems to Smooth/Constrained

• We turned non-smooth problems involving absolute values and maxes like

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \|Xw - y\|_1 + \lambda \|w\|_1,$$

into smooth problems with linear constraints,

 $\underset{w \in \mathbb{R}^d, r \in \mathbb{R}^n, v \in \mathbb{R}^d}{\operatorname{argmin}} \mathbf{1}^T r + \lambda \mathbf{1}^T v, \quad \text{with} \quad r \geq X w - y, \; r \geq y - X w, \; v \geq w, \; v \geq -w.$

• This is a linear objective and linear constraints: linear program.

• If we had an L2-regularizer or a squared error we would get a quadratic program.

Convex Sets and Functions

• Software like CVX can minimize many convex functions over convex sets.

- Key property: all local minima are global minima for convex problems.
- We discussed proving sets are convex:
 - Show that for w for $v \in C$, any convex combination u is in C.
 - Show that the set is an intersection of convex sets.
- We discussed proving functions are convex:
 - Show that for w for $v \in C$, f(u) is below chord for any convex combination u.
 - Show that $\nabla^2 f(w)$ is positive semi-definite for all w.
 - Show that f is convex functions and operations that preserve convexity:
 - Non-negative scaling, sum, max, composition with affine map.

Ĵ

Strictly-Convex Functions

• A function is strictly-convex if the convexity definitinos hold strictly:

$$\begin{split} f(\theta w + (1-\theta)v) &< \theta f(w) + (1-\theta)f(v), \quad 0 < \theta < 1 & \text{(general)} \\ f(v) &> f(w) + \nabla f(w)^T(v-w) & \text{(differentiable)} \\ \nabla^2 f(w) &\succ 0 & \text{(twice-differentiable)} \end{split}$$

- Strictly-convex function have at most one global minimum:
 - w and v can't be global minima if $w \neq v$: it would imply f(u) for convex combination u is below global minimum.
- L2-regularized least squares has unique solution since we showed $\nabla^2 f(w) \succ 0$.

Practical Issues and Newton-Like Methods

I Gradient Descent Convergence Rate

2 Gradient Descent for Logistic Regression

3 Practical Issues and Newton-Like Methods

Gradient Descent

- Most ML objective functions can't be written as a linear system/program.
- But many of them yield differentiable and convex objective functions.
 - An example is logistic regression.
- We can minimize these functions using gradient descent:
 - Algorithm for finding a stationary point of a differentiable function.
- Gradient descent is an iterative optimization algorithm:
 - It starts with a "guess" w^0 .
 - It uses w^0 to generate a better guess w^1 .
 - It uses w^1 to generate a better guess w^2 .
 - ...
 - The limit of w^t as t goes to ∞ has $\nabla f(w^t)=0.$

- Gradient descent is based on a simple observation:
 - Given parameters w, the direction of largest instantaneous decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
 - Given parameters w, the direction of largest instantaneous decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
 - Given parameters w, the direction of largest instantaneous decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
 - Given parameters w, the direction of largest instantaneous decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
 - Given parameters w, the direction of largest instantaneous decrease is $-\nabla f(w)$.

- Gradient descent is based on a simple observation:
 - Given parameters w, the direction of largest instantaneous decrease is $-\nabla f(w)$.

- Gradient descent algorithm:
 - Start with some initial guess, w^0 .
 - Generate new guess w^1 by moving in the negative gradient direction:

$$w^1 = w^0 - \alpha_0 \nabla f(w^0),$$

where α^0 is the step size.

• Repeat to successively refine the guess:

$$w^{t+1} = w^t - \alpha_t \nabla f(w^t), \quad \text{for } t = 1, 2, 3, \dots$$

- Stop if not making progress $\|\nabla f(w^t)\|$ is small.
- If α_t is small enough and $\nabla f(w^t) \neq 0$, guaranteed to decrease f.
- Under weak conditions, procedure converges to a stationary point.
 - If f is convex, converges to a global minimum.

Practical Issues and Newton-Like Methods

Gradient Descent in 2D

Digression: Cost of L2-Regularizd Least Squares

• We've shown that L2-regularized least squares has the solution

$$w = (X^T X + \lambda I)^{-1} (X^T y).$$

• With basic matrix multiplication, cost is dominated by:

- $O(nd^2)$ to form $X^T X$.
- $O(d^3)$ to solve the linear system.
 - Use "Cholesky" factorization because it's positive-definite.
- This is fine for d = 5000, but too slow for d = 1,000,000.

Cost of L2-Regularizd Least Squares

- Would it make any sense to use gradient descent instead?
- The gradient descent iteration would be

$$w^{t+1} = w^t - \alpha_t \nabla f(w^t), \quad \text{where} \quad \nabla f(w^t) = X^T (Xw) - X^T y,$$

and the cost of each iteration is O(nd), due to the multiplications by X and X^{T} .

- So t iterations of gradient descent cost O(ndt).
- Gradient descent can be faster if t is not too big:
 - O(ndt) is less than $O(nd^2 + d^3)$ when $(t < \max\{d, d^2/n\})$.

Iteration Complexity

- How many iterations of gradient descent do we need?
- Let w^* be the optimal solution and ϵ be the accuracy that we want.
- We want to know the smallest number of iteration t that guarantees

$$f(w^t) - f(w^*) \le \epsilon,$$

which is called the iteration complexity.

- $\bullet~{\rm Think}~{\rm of}~1/\epsilon$ as "number of digits of accuracy" I want.
 - We want to grow slowly with $1/\epsilon$.

Strong-Smoothness and Strong-Convexity Assumptions

- We'll assume f is twice-differentiable and satisfies two assumptions on $\nabla^2 f(w)$:
 - Strong smoothness means that eigenvalues of $\nabla^2 f(w)$ are at most a $L < \infty$
 - Strong convexity means that the eigenvalues of $\nabla^2 f(w)$ are at least $\mu > 0$.
- We denote these assumptions by

$$\mu I \preceq \nabla^2 f(w) \preceq LI, \quad \forall w.$$

 $\bullet\,$ Equivalently, for all w and v we have

$$\mu \|v\|^2 \le v^T \nabla^2 f(w) v \le L \|v\|^2.$$

• Note that strong-convexity \Rightarrow strict-convexity \Rightarrow convexity:

$$\nabla^2 f(w) \succeq \mu I \succ 0 \succeq 0.$$

Strongly-convex functions on closed convex sets have exactly 1 minimizer.
For L2-regularized least squares we have (see bonus slide).

$$L = \max\{ \mathsf{eig}(X^T X)\} + \lambda, \quad \mu = \min\{\mathsf{eig}(X^T X)\} + \lambda,$$

• We'll use different notation for optimization algorithms:

• For optimization algorithms our variables will be x instead of w.

• So the the gradient descent iteration will be

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

Convergence Rate of Gradient Descent

- For our first result we're assuming:
 - Function f is L-strongly smooth and μ -strongly convex,

$$\mu I \preceq \nabla^2 f(x) \preceq LI.$$

- We use a step-size of $\alpha_t = 1/L$ (makes proof easier).
- We'll show that gradient descent has a linear convergence rate,

$$f(x^t) - f(x^*) = O(\rho^t) \quad \text{for} \quad \rho < 1.$$

which is sometimes called "geometric" or "exponential" convergence rate.

Implies that iteration complexity is t = O(log(1/ε)) iterations (see bonus slide).
This is good! We're growing with logarithm of "digits of accuracy".

Implication of Strong-Smoothness

 \bullet From Taylor's theorem, for any x and y there is a z such that

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$$

• By strong-smoothness, $v^T \nabla^2 f(z) v \leq L \|v\|^2$ for any v and z.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

• Treating right side as a function of y, we get a quadratic upper bound on f.

Implication of Strong-Smoothness

• The quadratic upper-bound from strong-smoothness at \boldsymbol{x}^t is:

$$f(y) \le f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2$$

• If we set x^{t+1} to minimize the right side in terms of y, we get

$$x^{t+1} = x^t - \frac{1}{L}\nabla f(x^t),$$

so gradient descent with $\alpha_t=1/L$ minimizes this quadratic upper bound. \bullet Plugging in x^{t+1} gives:

$$\begin{split} f(x^{t+1}) &\leq f(x^t) + \nabla f(x^t)^T (x^{t+1} - x^t) + \frac{L}{2} \|x^{t+1} - x^t\|^2 \\ &= f(x^t) - \frac{1}{L} \nabla f(x^t)^T \nabla f(x^t) + \frac{1}{2L} \|\nabla f(x^t)\|^2 \qquad (x^{t+1} - x^t) = -\frac{1}{L} \nabla f(x^t) \\ &= f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2. \end{split}$$

Implication of Strong-Smoothness

• We've derived a bound on guaranteed progress at iteration *t*:

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2.$$

- If gradient is non-zero, guaranteed to decrease objective.
- Amount we decrease grows with the size of the gradient.
- This bound holds for any strongly-smooth function (including non-convex).

Implication of Strong-Convexity

• From Taylor's theorem, for any x and y there is a z such that

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$$

• By strong-convexity, $v^T \nabla^2 f(z) v \ge \mu \|v\|^2$ for any v and z.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} \|y - x\|^2$$

• Treating right side as function of y, we get a quadratic lower bound on f.

Implication of Strong-Convexity

 \bullet From Taylor's theorem, for any x and y there is a z such that

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$$

• By strong-convexity, $v^T \nabla^2 f(z) v \ge \mu \|v\|^2$ for any v and z.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$$

- Treating right side as function of y, we get a quadratic lower bound on f.
- $\bullet\,$ Minimize both sides in terms of y gives

$$f(x^*) \ge f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

• This upper bounds how far where we are from the solution.

Combining Strong-Smoothness and Strong-Convexity

• Given $x^t,$ we have bounds on $f(x^{t+1})$ and $f(x^{\ast}) {:}$

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2\mu} \|\nabla f(x^t)\|^2$$

Combining Strong-Smoothness and Strong-Convexity

• Our bound on guaranteed progress:

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2.$$

• Re-arranging our bound on "distance to go":

$$-\frac{1}{2} \|\nabla f(x^t)\|^2 \le -\mu [f(x^t) - f(x^*)].$$

• Use "distance to go" bound in guaranteed progress bound:

$$f(x^{t+1}) \leq f(x^t) - rac{1}{L} \left(\mu[f(x^t) - f(x^*)] \right).$$

• Subtract $f(x^*)$ from both sides and factor:

$$\begin{aligned} f(x^{t+1}) - f(x^*) &\leq f(x^t) - f(x^*) - \frac{\mu}{L} [f(x^t) - f(x^*)] \\ &= \left(1 - \frac{\mu}{L}\right) [f(x^t) - f(x^*)]. \end{aligned}$$

Combining Strong-Smoothness and Strong-Convexity

• We've shown that

$$f(x^{t}) - f(x^{*}) \le \left(1 - \frac{\mu}{L}\right) [f(x^{t-1}) - f(x^{*})].$$

• Applying this recursively:

$$\begin{split} f(x^{t}) - f(x^{*}) &\leq \left(1 - \frac{\mu}{L}\right) \left[\left(1 - \frac{\mu}{L}\right) \left[f(x^{t-2}) - f(x^{*}) \right] \right] \\ &= \left(1 - \frac{\mu}{L}\right)^{2} \left[f(x^{t-2}) - f(x^{*}) \right] \\ &\leq \left(1 - \frac{\mu}{L}\right)^{3} \left[f(x^{t-3}) - f(x^{*}) \right] \\ &\leq \left(1 - \frac{\mu}{L}\right)^{t} \left[f(x^{0}) - f(x^{*}) \right] \end{split}$$

• Since $\mu \leq L$, we have $(1 - \mu/L) < 1$, and we've shown linear convergence rate: • We have $f(x^t) - f(x^*) = O(\rho^t)$ with $\rho = (1 - \mu/L)$.

Discussion of Linear Convergence Rate

• We've shown that gradient descent under certain settings has

$$f(x^t) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^t [f(x^0) - f(x^*)].$$

- This is a non-asymptotic linear convergence rate:
 - It holds on iteration 1, there is no "limit as $t \to \infty$ " as in classic results.
- The number L/μ is called the condition number of f.
 - For least squares it's the "matrix condition number" of the Hessian,

$$L/\mu = \operatorname{cond}(\nabla^2 f(w)) = \operatorname{cond}(X^T X).$$

- This convergence rate is dimension-independent:
 - It does not directly depend on dimension *d*.
 - Though L might grow and μ might shrink as dimension increases.
- Consider a fixed condition number and accuracy ϵ :
 - There is a dimension d beyond which gradient descent is faster than linear algebra.

Gradient Descent Convergence Rate

Practical Issues and Newton-Like Methods

Gradient Descent Convergence Rate

2 Gradient Descent for Logistic Regression

3 Practical Issues and Newton-Like Methods

Gradient Descent for Logistic Regression

- Is gradient descent useful beyond least squares?
 - Yes: these types of methods tends to work well for a variety of models.
- For example, logistic regression is among most-used models,

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{i}w^{T}x^{i})) + \frac{\lambda}{2} ||w||^{2}.$$

- We can't even formulate as a linear system or linear program.
 - Setting $\nabla f(w) = 0$ gives a system of transcendental equations.
- But this objective function is convex and differentiable.
- $\bullet\,$ Let's compute the cost of minimizing f with gradient descent.

Gradient Descent for Logistic Regression

- To apply gradient descent, we'll need the gradient.
- Can we write logistic loss,

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{i} w^{T} x^{i})),$$

in matrix notation?

• A "Matlab-y" way:

$$f(w) = 1^T \log(1 + \exp(-YXw))),$$

where we're using "element-wise" versions of \log and \exp function.

Gradient Descent for Logistic Regression

• To write in matrix notation without defining new operators we can use

$$f(w) = 1^T v + \frac{\lambda}{2} ||w||^2$$

where $v_i = \log(1 + \exp(-y^i w^T x^i))$.

• With some tedious manipulations we get

$$\nabla f(w) = X^T r + \lambda w$$

where $r_i = -y^i \sigma(-y^i w^T x^i)$.

- We know gradient has this form from the multivariate chain rule.
 - Functions for the form f(Xw) always have $\nabla f(w) = X^T r$ (see bonus slide).

• The gradient has the form

$$\nabla f(w) = X^T r + \lambda w$$

where $r_i = -y^i \sigma(-y^i w^T x^i)$.

- The cost of computing the gradient is dominated by:
 - Computing Xw to get the n values w^Tx^i .
 - 2 Computing $X^T r$ to get the gradient.
- These are matrix-vector multiplications, so the cost is O(nd).
 - So iteration cost is the same as least squares.

• With some more tedious manipulations we get

$$\nabla^2 f(w) = X^T D X + \lambda I$$

where D is a diagonal matrix with $d_{ii} = \sigma(y_i w^T x^i) \sigma(-y^i w^T x^i)$. • The f(Ax) structure leads to a $X^T D X$ Hessian structure.

• This implies the function is strongly-smooth and strongly-convex with

$$L = \frac{1}{4} \max\{\operatorname{eig}(X^T X)\} + \lambda, \quad \mu = \lambda.$$

 $(1/4 \text{ is the maximum value of } d_{ii} \text{ and the minimum converges to } 0.)$

 $\bullet\,$ Condition number L/μ forL2-regularized least squares was

$$\frac{\max\{\operatorname{eig}(X^T X)\} + \lambda}{\min\{\operatorname{eig}(X^T X)\} + \lambda},$$

while for logistic regression it is

$$\frac{\frac{1}{4}\max\{\operatorname{eig}(X^TX)\}+\lambda}{\lambda}.$$

- So number of iterations for logistic regression is similar to least squares.
- Also, in both cases number of iterations gets smaller as λ increases.
- For fixed condition number, total cost is $O(nd \log(1/\epsilon))$.
- Common approach in many software packages is called IRLS:
 - A Newton-like method that takes $O(nd^2 + d^3)$ per iteration.

1 Gradient Descent Convergence Rate

2 Gradient Descent for Logistic Regression

3 Practical Issues and Newton-Like Methods

Gradient Method: Practical Issues

- In practice, you should never use $\alpha = 1/L$.
 - Often you don't know L, or it's expensive to compute.
 - The "local" L may be much smaller than the "global" L.
 - You might also get a "lucky" direction that makes much more progress.
 - In practice, you can often take much bigger steps.
- One practical option is an adaptive step-size:
 - Start with a small guess for L (like L = 1).
 - Double L if the progress inequality in the proof is not satisfied:

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2.$$

- This often gives you a much smaller L: gives bigger steps and faster progress.
- But with this strategy, step-size never increases.

Gradient Method: Practical Issues

- In practice, you should never use $\alpha = 1/L$.
 - Often you don't know *L*, or it's expensive to compute.
 - Even if you did, the "local" L may be much smaller than the "global" L.
 - You might also get a "lucky" direction that makes much more progress.
 - In practice, you can often take much bigger steps.
- Another practical option is a backtracking line-search:
 - On *each* iteration, start with a large step-size α .
 - Decrease α if the Armijo condition is not satisfied,

 $f(x^{t+1}) \leq f(x^t) - \alpha \gamma \|\nabla f(x^t)\|^2 \quad \text{for} \quad \gamma \in (0, 1/2].$

(often $\gamma = 10^{-4}$)

- $\bullet\,$ Tends to work well if you use interpolation to select initial/decreasing α values.
 - $\bullet\,$ Good codes often only need around 1 value of $\alpha\,$ per iteration.
- Even more fancy line-search: Wolfe conditions (make sure α is not too small).

Gradient Method: Practical Issues

• Gradient descent codes require you to write objective/gradient code:

```
function [nll,g,H] = objective(w,X,y,lambda)
yXw = y.*(X*w);
% Function value
nll = sum(log(l+exp(-yXw))) + (lambda/2)*(w'*w);
% Gradient
sigmoid = 1./(l+exp(-yXw));
g = -X'*(y.*(l-sigmoid)) + lambda*w;
```

- Make sure to check your derivative code:
 - Numerical approximation to partial derivative:

$$\nabla_i f(x) \approx \frac{f(x+\delta e_i) - f(x)}{\delta}$$

• For large-scale problems you can check a random direction d:

$$\nabla f(x)^T d \approx \frac{f(x+\delta d) - f(x)}{\delta}$$

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Practical Issues and Newton-Like Methods

Heavy-Ball Method and Variations

• The heavy-ball method (called momentum in neural network papers) is

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) + \beta_t (x^t - x^{t-1}).$$

- Faster rate for strictly-convex quadratic functions with appropriate α_t and β_t .
 - Depends on $\sqrt{L/\mu}$ instead of L/μ .
 - With the optimal α_t and β_t , we obtain conjugate gradient.
 - "Optimal" rate for strongly-convex quadratics in "high-dimensional setting".
- Variation is Nesterov's accelerated gradient method for strongly-smooth f,

$$x^{t+1} = y^{t} - \alpha_t \nabla f(y^{t}),$$

$$y^{t+1} = x^{t} + \beta_t (x^{t+1} - x^{t}),$$

• Rate depends on $\sqrt{L/\mu}$ for strongly-convex f for appropriate α_t and β_t .

Newton's Method

• Newton's method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))

• Modern form uses the update

$$x^{t+1} = x^t - \alpha_t d^t,$$

where $d^t \ensuremath{\text{ is a solution to the system}}$

$$abla^2 f(x^t) d^t =
abla f(x^t).$$
 (Assumes $abla^2 f(x^t) \succ 0$)

• Equivalent to minimizing the quadratic approximation:

$$f(y) \approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} (y - x^t) \nabla^2 f(x^t) (y - x^t).$$

• We can generalize the Armijo condition to

$$f(x^{t+1}) \le f(x^t) + \gamma \alpha \nabla f(x^t)^T d^t.$$

• Has a natural step length of $\alpha=1.$

(always accepted when close to a minimizer)

Convergence Rate of Newton's Method

• If $\mu I \preceq \nabla^2 f(x) \preceq LI$ and $\nabla^2 f(x)$ is Lipschitz-continuous, then close to x^* Newton's method has local superlinear convergence:

$$f(x^{t+1}) - f(x^*) \le \rho_t [f(x^t) - f(x^*)],$$

with $\lim_{t\to\infty} \rho_t = 0$.

- Converges very fast, use it if you can!
- But Newton's method is expensive if dimension *d* is large:
 - Requires solving $\nabla^2 f(x^t) d^t = \nabla f(x^t)$.
- "Cubic regularization" of Newton's method gives global convergence rates.

Practical Approximations to Newton's Method

- Practical Newton-like methods (that can be applied to large-scale problems):
 - Diagonal approximation:
 - Approximate Hessian by a diagonal matrix D (cheap to store/invert).
 - A common choice is $d_{ii} = \nabla_{ii}^2 f(x^t)$.
 - This sometimes helps, often doesn't.
 - ② Limited-memory quasi-Newton approximation:
 - Approximates Hessian by a diagonal plus low-rank approximation B^t ,

$$\boldsymbol{B}^{t} = \boldsymbol{D} + \boldsymbol{U}\boldsymbol{V}^{T},$$

which supports fast multiplication/inversion.

• Based on "quasi-Newton" equations which use differences in gradient values.

$$(\nabla f(x^t) - \nabla f(x^{t-1})) = B^t(x^t - x^{t-1}).$$

• A common choice is L-BFGS.

Practical Approximations to Newton's Method

- Practical Newton-like methods (that can be applied to large-scale problems):
 Barzilai-Borwein approximation:
 - Approximates Hessian by the identity matrix (as in gradient descent).
 - But chooses step-size based on least squares solution to quasi-Newton equations.

$$\alpha_t = -\alpha_t \frac{v^T \nabla f(w)}{\|v\|^2}, \quad \text{where} \quad v = \nabla f(x^t) - \nabla f(x^{t-1}).$$

- Works better than it deserves to (*findMind.m* from CPSC 340).
- We don't understand why it works so well.
- e Hessian-free Newton:
 - Uses conjugate gradient to approximately solve Newton system.
 - Requires Hessian-vector products, but these cost same as gradient.
 - If you're lazy, you can numerically approximate them using

$$\nabla^2 f(x^t) d \approx \frac{\nabla f(x^t + \delta d) - \nabla f(x^t)}{\delta}.$$

• If f is analytic, can compute exactly by evaluating gradient with complex numbers.

(look up "complex-step derivative")

• A related appraoch to the above is non-linear conjugate gradient.

Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

- x1 = 0.0000, x2 = 0.0000 (starting point)
- x1 = 1.0000, x2 = 1.0000 (optimal solution)
- x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
- x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
- x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
- x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
- x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)
- $\times 1 = 1.0000$, $\times 2 = 1.0000$ (minFunc with limited-memory BFGS default)

- Gradient descent is findins stationary point of differentiable f.
- Iteration complexity measures number of terations to reach accuracy ϵ .
- Linear convergence rate is achieve by gradident descent.
- Faster first-order methods like Nesterov and Newton-like methods.
- Next time: is using L1-regularization as easy as using L2-regularization?

Bonus Slide: Constants for Least Squares

• Consider least squares: $f(x) = \frac{1}{2} ||A \times -b||^2$

What are 'L' and 'n' such that uI & V2 F(x) KLI?

Note that
$$\nabla^2 f(x) = A^T A_3$$
 and since it's symmetric we can sectral decomposition:

$$A^T A = \sum_{j=1}^{d} \lambda_j q_j q_j^T \text{ where } q_j^T q_j = 1 \text{ and } q_i^T q_j = 0 \text{ for } i \neq j. \quad (Assume \lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_d)$$

Bonus Slide: Rates vs. Number of Iterations

If we have

$$f(w^t) - f(w^*) = \epsilon = O(\rho^t),$$

this means $\epsilon \leq \kappa \rho^t$ for some κ for large t or

$$\log(\epsilon) \le \log(\kappa \rho^t) = \log(\kappa) + t \log(\rho),$$

or

$$t \ge \log(\epsilon) / \log(\rho) - \text{constant},$$

or that it holds for any

$$t \ge O(\log(1/\epsilon))$$
 since $\rho < 1$.

 $\bullet~{\rm Often}~\rho$ has the form $(1-1/\kappa),$ so if we use $(1-1/\kappa) \le \exp(-\kappa)$ we get

 $t \ge O(\kappa \log(1/\epsilon)).$

Bonus Slide: Multivariate Chain Rule in Matrix Notation

• If $g:\mathbb{R}^d\mapsto\mathbb{R}^n$ and $f:\mathbb{R}^n\mapsto\mathbb{R},$ then h(x)=f(g(x)) has gradient

$$\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),$$

where $\nabla g(x)$ is the Jacobian (since g is multi-output).

• If g is an affine map $x \mapsto Ax + b$ so that h(x) = f(Ax + b) then we obtain

$$\nabla h(x) = A^T \nabla f(Ax + b).$$

• Further, for the Hessian we have

$$\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.$$

Bonus Slide: Convergence of Gradient Descent

• We can show convergence of gradient descent without strong convexity.