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Admin

Assignment 5:

Due Monday, 1 late day for Wednesday, 2 for the following Monday.

Project description posted on Piazza.

Final is here on April 25th at 3:30.

Final questions can be submitted up to April 17th.

Bonus lecture on April 10th (same time/place) or this lecture will be extra long.
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Stochastic Processes and Non-Parametric Bayes

A stochastic process is an infinite collection of random variables {xi}.

Non-parametric Bayesian methods use priors defined on stochastic processes:

Allows extremely-flexible prior, and posterior complexity grows with data size.
Typically set up so that samples from posterior are finite-sized.

The two most common priors are Gaussian processes and Dirichlet processes:

Gaussian processes define prior on space of functions (universal approximators).
Dirichlet processes define prior on space of probabilities (without fixing dimension).
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Gaussian Processes

Recall the partitioned form of a multivariate Gaussian
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Generalization of this to infinite set of variables is Gaussian processes (GPs):

Any finite set from collection follows a Gaussian distribution.
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Gaussian Processes
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Gaussian Processes

GPs are specified by a mean function m and covariance function k,

m(x) = E[f(x)], k(x, x0) = E[(f(x)�m(x))(f(x0)�m(x0))T ].

We write that
f(x) ⇠ GP(m(x), k(x, x0)),

As an example, we could have a zero-mean and linear covariance GP,

m(x) = 0, k(x, x0) = x

T

x

0
.
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Regression Models as Gaussian Processes

For example, predictions made by linear regression with Gaussian prior

f(x) = �(x)Tw, w ⇠ N (0,⌃),

are a Gaussian process with mean function

E[f(x)] = E[�(x)Tw] = �(x)TE[w] = 0.

and covariance function

E[f(x)f(x)T ] = �(x)TE[wwT ]�(x0) = �(x)⌃�(x0).
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Gaussian Process Model Selection

We can view a Gaussian process as a prior distribution over smooth functions.

Most common choice of covariance is RBF.

Is this the same as using RBF kernels or the RBFs as the bases?

Yes, this is Bayesian linear regression plus the kernel trick.
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Gaussian Process Model Selection

So why do we care?

We can get estimate of uncertainty in the prediction.
We can use marginal likelihood to learn the kernel/covariance.

Write kernel in terms of parameters, use empirical Bayes to learn kernel.

Hierarchical approach: put a hyper-prior of types of kernels.

Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

http://www.automaticstatistician.com/examples
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Dirichlet Process

Recall the finite mixture model:

p(x|✓) =
kX

c=1

⇡

c

p(x|✓
c

).

Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x|✓) =
1X

c=1

⇡

c

p(x|✓
c

).

Common choice for prior on ⇡ values is Dirichlet process:

Also called “Chinese restaurant process” and “stick-breaking process”.
For finite datasets, only a fixed number of clusters have ⇡c 6= 0.
But don’t need to pick number of clusters, grows with data size.
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Dirichlet Process

Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs

We could alternately put a prior on k:
“Reversible-jump” MCMC can be used to sample from models of di↵erent sizes.

AKA “trans-dimensional” MCMC.

There a variety of interesting variations on Dirichlet processes

Beta process (“Indian bu↵et process”).
Hierarchical Dirichlet process,.
Polya trees.
Infinite hidden Markov models.

https://www.youtube.com/watch?v=0Vh7qZY9sPs
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This section takes a lot from these sources:
http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf

http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf


Motivation: Sequence Modeling
• We want to predict the next words in a sequence:

– “I am studying to become a [???????????????????????????]”.

• Simple idea: supervised learning to predict the next word.
– Applying it repeatedly to generate the sequence.

• Simple approaches:
– Markov chain (doesn’t work well, see “Garkov”).

x1 x2 x3 x4 x5



Motivation: Sequence Modeling
• We want to predict the next words in a sequence:

– “I am studying to become a [???????????????????????????]”.

• Simple idea: supervised learning to predict the next word.
– Applying it repeatedly to generate the sequence.

• Simple approaches:
– Higher-order Markov chain:

x1 x2 x3 x4 x5



Motivation: Sequence Modeling
• We want to predict the next words in a sequence:

– “I am studying to become a [???????????????????????????]”.

• Simple idea: supervised learning to predict the next word.
– Applying it repeatedly to generate the sequence.

• Simple approaches:
– Neural network.

x1 x2 x3 x4 x5

z



State-Space Models
• Problem with simple approaches:

– All information about previous decision must be summarized by xt.
– We ‘forget’ why we predicted xt when we go to predict xt+1.

• More complex dynamics possible with state-space models:
– Add hidden states with their own latent dynamics.
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Challenges of State-Space Models
• Problem 1: inference only has closed-form in simple sitautions.

– Markov blanket of each node must be conjugate to node.
– Only 2 cases: Gaussian z and x (Kalman filter) or discrete z (HMMs).
– Otherwise, need to use approximate inference.

• Problem 2: memory is very limited.
– You have to choose a zt at time ‘t’.

• But still need to compress information into a single hidden state.

• Want (deep) hidden representation with combinatorial structure.



Recurrent Neural Networks
• Obvious solution:

– Have multiple hidden zt at time ‘t’, as we did before.
• But now inference becomes hard.

• Recurrent neural networks (RNNs) give solution to inference:
– At time ‘t’, hidden units are deterministic transformations of time ‘t-1’.
– Basically turns the problem into a big and structured neural network.
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Recurrent Neural Networks
• RNNs can be used to translate input sequence to output sequence:

– A neural network version of latent-dynamics models.
– Deterministic transforms mean hidden ‘z’ can be really complicated.

• But with easy inference.
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Sequence-to-Sequence
• An interesting variation on this for sequences of different lengths:

– Translate from French sentence ‘x’ to English sentence ‘y’.
– Turn video frames into a sentence.

• Usually we tie parameters in two phases:
– “Encoding phase” and “decoding phase”.
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Discussion of Recurrent Neural Networks
• Train using stochastic gradient: “backpropagation through time”.
• Similar challenges/heuristics to training deep neural networks:

• “Exploding/vanishing gradient”, initialization is important, slow progress, etc.

• Interesting variations:
– Skip connections: connections from older ‘zt’ to current hidden state.
– Bi-directional RNNs: feedforward from past and future.
– Recursive neural networks: consider sequences through non-chain data.



Long Short Term Memory (LSTM)
• Long short term memory (LSTM) models are special case of RNNs:

– Designed so that model can remember things for a long time.

• LSTMs are the analogy of convolutional neural networks for RNNs:
– The trick that makes them work in applications.

• LSTMs are getting impressive performance in various settings:
– Cursive handwriting recognition.

• https://www.youtube.com/watch?v=mLxsbWAYIpw

– Speech recognition.
– Machine translation.
– Image and video captioning.

https://www.youtube.com/watch?v=mLxsbWAYIpw


LSTMs for Image Captioning

https://arxiv.org/pdf/1411.4555.pdf



LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf



LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf



LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf



Long Short Term Memory
• In addition to usual hidden values ‘z’, LSTMs have memory cells ‘c’:

– Purpose of memory cells is to remember things for a long time.

• Pieces of LSTM model:
– Forget function: should we keep or forget value in a memory cell?
– Candidate value: new value based on inputs.
– Input function: should we take the new value?
– Output function: should we output a value?

• Three of the above are “gate” functions:
– Binary variables, which are approximated by sigmoids.



LSTM Structure



Vanilla RNN vs. LSTM

http://arxiv.org/pdf/1506.02078v2.pdf

• More recent: gated recurrent unit (GRU):
– Similar performance but a bit simpler.



More RNN Applications
• Generating text:

– https://pjreddie.com/darknet/rnns-in-darknet

• PDF to LaTeX:

• Lip reading:
– https://www.youtube.com/watch?v=5aogzAUPilE

https://arxiv.org/pdf/1609.04938v1.pdf

https://pjreddie.com/darknet/rnns-in-darknet
https://www.youtube.com/watch?v=5aogzAUPilE


RNNs for Poetry
• Generating poetry:

• Image-to-poetry:

• Movie script:
– https://www.youtube.com/watch?v=LY7x2Ihqjmc

https://medium.com/artists-and-machine-intelligence/adventures-in-narrated-reality-6516ff395ba3

https://www.youtube.com/watch?v=LY7x2Ihqjmc


RNNs for Music and Dance 
• Music generation:

– https://www.youtube.com/watch?v=RaO4HpM07hE

• Text to speech and music waveform generation:
– https://deepmind.com/blog/wavenet-generative-model-raw-audio

• Dance choreography:
– http://theluluartgroup.com/work/generative-choreography-using-deep-

learning

https://www.youtube.com/watch?v=RaO4HpM07hE
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://theluluartgroup.com/work/generative-choreography-using-deep-learning


Beyond LSTMs
• Google’s neural machine translation incorporates attention.

https://arxiv.org/pdf/1609.08144.pdf



Beyond LSTMs
• Many interesting recent variations on readable/writeable memory:

– Memory networks and neural Turing machines.

https://www.facebook.com/FBAIResearch/posts/362517620591864
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This section takes a lot from this source:
https://arxiv.org/pdf/1701.00160.pdf



Density Estimation Strikes Back
• The hottest topic at NIPS in December: density estimation?

– In particular, deep learning for density estimation.

• Very fast-moving, but two most-popular methods are:
– Variational autoencoders (VAEs).
– Generative adversarial networks (GANs).

• We’re getting closer to generating realistic images (not just digits):



Generative Adversarial Networks
• These models are showing promising results going beyond digits: 

https://arxiv.org/pdf/1406.2661.pdf



Neural Network Generative Model
• Recall the structure of a deep belief network:

• Notice that the edges are backwards compared to neural networks.
– We “generate” the features based on the latent ‘z’ variables.

• Inference is a nightmare: observing ‘x’ makes everything dependent.



Neural Network Generative Model
• Inference is easier if we make everything deterministic.

– But we need randomization since otherwise you generate same ‘x’.

• We usually assume top layer comes from multivariate Gaussian.
– So you sample a Gaussian, and neural network tries to convert to image.



Generative Adversarial Network
• Inference is still hard under the “convert Gaussian to sample”.

– We can’t compute the likelihood needed for training.

• Key ideas of generative adversarial networks (GANs):
– Sampling in this “generator” network is easy.
– Use a second “discriminator” network to decide if samples look real.

• Discriminator “teaches” generator to make real-looking samples.



Generative Adversarial Networks
• The generator and discriminator networks compete:

– Discriminator network trains to classify real vs. generated images.
• Tries to maximize probability of real images, minimize probability of sampled images.
• A standard supervised learning problem.

– Generator network adjust parameters so samples fool the discriminator.
• It never sees real data.
• Trains using the gradient of the discriminator network.

– Backpropagated through the network so samples look more like real images.

• Can be written as a saddle-point problem:

https://arxiv.org/pdf/1406.2661.pdf



Generative Adversarial Networks

https://arxiv.org/pdf/1701.00160.pdf



Beyond Initial GAN Model
• Improving GANs is an active research area…

https://blog.openai.com/generative-models



GANs for Other Problems
• GANs for text-to-image translation:

https://arxiv.org/pdf/1701.00160.pdf



GANs for Other Problems
• GANs for text-to-image translation:

https://arxiv.org/pdf/1701.00160.pdf



GANs for Other Problems
• GANs for super-resolution:

https://arxiv.org/pdf/1701.00160.pdf



GANs for Other Problems
• GANs for image manipulation:

– https://www.youtube.com/watch?v=9c4z6YsBGQ0
– https://www.youtube.com/watch?v=FDELBFSeqQs

https://www.youtube.com/watch?v=9c4z6YsBGQ0
https://www.youtube.com/watch?v=FDELBFSeqQs


GANs for Other Problems
• GANs for image-to-image translation:

– https://affinelayer.com/pixsrv

https://arxiv.org/pdf/1701.00160.pdf

https://affinelayer.com/pixsrv


In Progress…

https://arxiv.org/pdf/1701.00160.pdf

https://twitter.com/search?q=%23edges2cats&lang=en

https://twitter.com/search?q=#edges2cats&lang=en


Plug and Play Generative Networks
• New generative models are appearing at a very-fast rate:

https://arxiv.org/pdf/1701.00160.pdf
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Why Reinforcement Learning?

https://www.youtube.com/watch?v=Ih8EfvOzBOY
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw

https://www.youtube.com/watch?v=Ih8EfvOzBOY
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw


Building up to Reinforcement Learning
• Reinforcement learning (RL) is very general/difficult:

– It includes many other machine learning problems as special cases.

• Other names for reinforcement learning:
– Approximate dynamic programming.
– Neurodynamic programming.

• To build up to RL, let’s start with supervised learning:
– Introduce notation, and discuss ways RL is harder.



Supervised Learning
• Supervised learning notation:

– We have input features xt.
– There are possible outputs yt.
– We have a loss function L(xt,yt).

• E.g., loss of 0 if you classify correctly and loss of 1 is you classify incorrectly.

• Reinforcement learning notation:
– The features are referred to as states st.
– The outputs are referred to as actions at.
– The (negative) loss function is called the reward r(st,at).

• E.g., reward of 0 if you classify correctly and reward of -1 if you classify incorrectly.



Supervised Learning
• Supervised learning training phase:

– We have ‘n’ training examples, we can do whatever we want with them.
– The output of training is a classifier: maps from xt to yt.
– This is called a policy in RL: policies map from st to at.

• Goal: classifier minimizes loss Ù policy maximizes reward

• Some models give score for each label:
– For example, softmax gives probability of each yt given xt.
– This is a Q function: Q(st,at) is “value” of action at in state st.
– Given a policy, we can define the value function V(st) as “value” given 

policy that chooses at (which may be deterministic or stochastic).



State-Space Models
• In standard supervised learning setup, the xt are IID samples:

• In state-space models, the xt come from a Markov chain:

– Value of xt depends on the value of xt-1.
– We obtain IID samples in the special case of no dependencies.
– Learning if we observe the xt full-observed DAG is pretty similar.



Markov Decision Processes
• State-space model in RL notation

• In Markov decision processes (MDPs), st also depends on at-1.
– The action affects the value of the next state.

• Here we need planning:
– Choose actions that will lead to future states with high reward.

– In MDPs we assume we have the “model”:
• Know all rewards r(st,at) and transition probabilities p(st | st-1, at-1).

– Given “model”, we can find optimal values/policy by dynamic programming:
• Value iteration and policy iteration

https://www.youtube.com/watch?v=N3s1NR9nhZQ


Reinforcement Learning
• Reinforcement learning is MDPs when we don’t know the “model”.

– All we can do is take actions and observe states/rewards that result.

• We need to simultaneously solve three problems:
– We need to solve a supervised learning problem, r(st,at).
– We need to discover dynamics of a state-space model, p(st | st-1, at-1).
– We need to plan an MDP policy maximizing long-term reward, st -> at.

• All while working with simulations.

• Unfortunately, this combination gives a few more challenges…



Active Learning
• Let’s go back to the basic supervised learning setting:

– Features st are just IID samples.

• Active learning considers the following variation:
– The training examples are unlabeled.
– The learner can query the user to label a training example st.
– Goal is to do well with a limited budget of queries.

• The limited budget means we can’t visit all features/states.
– Here we need exploration: which states do we visit to learn the most?



Online Learning and Bandit Feedback
• In online learning there is no separate training/testing phase:

– We receive a sequence of features/states st.
– We have to choose prediction/action at on each example as it arrives.
– Our “score” is the average loss/reward over time.
– Here we need to predict well as we go (not at the end).

• You pay a penalty for trying bad actions as you are learning.

• A common variation is with bandit feedback: 
– We only observe the reward function r(st,at) for actions at that we choose. 
– Here we have an exploration vs. exploitation trade-off:

• Should we explore by picking an at we don’t know much about?
• Should we exploit by picking an at that gives high reward?



Causal Learning
• Causal learning:

– Observational prediction:
• Do people who take Cold-FX have shorter colds?

– Causal prediction:
• Does taking Cold-FX cause you to have shorter colds?

– Counter-factual prediction:
• You didn’t take Cold-FX and had long cold, would taking it have made it shorter?

• Here we need to learn effects of actions.
– Including predicting effects of new actions.

• We may not control the actions: off-policy learning. 
– Actions are often randomized, but still want to find best actions.



Reinforcement Learning
• Reinforcement needs to consider:

– Modeling how (st,at) combinations affects reward (supervised learning)
– Learning how (st,at) affects st+1 (state-space models, causality).
– Planning for long-term reward (MDPs). 
– Exploring space of states and actions (active learning, bandit feedback).

• Two common frameworks:
– Monte Carlo methods collects a lot of simulations to turn it into an MDP.
– Temporal-difference learning considers online prediction as you go.

• Need to consider exploration vs. exploitation, penalties for trying bad actions.
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My Original Plan
• CPSC 340:
1. Data representation/summarization.
2. Supervised learning (counting/distances)
3. Unsupervised learning (counting/distances)
4. Supervised learning (linear models).
5. Unsupervised learning (latent-factor).
6. Deep Learning.
7. Random walks.

• CPSC 540:
1. Large-Scale Learning.
2. Density Estimation.
3. Graphical Models.
4. More Deep Learning.
5. Bayesian Methods.
6. Causal, active, and online learning.
7. Reinforcement learning.

Hopefully next year we’ll have 3 courses (not clear if it will be 240, 440, or 550).



Remaining Topics
• For online learning, active learning, and causality:

– We’ll be covering these in the MLRG this summer:
• http://www.cs.ubc.ca/labs/lci/mlrg

• To learn about reinforcement learning:
– Read Sutton ad Barto’s “Introduction to Reinforcement Learning”.
– You can also take EECE 592.

• Other major topics we didn’t cover:
– Learning theory (VC dimension).
– Probabilistic context-free grammars (recursive version of Markov chains).
– Relational models (Markov logic networks).
– Sub-modularity (discrete version of convexity).
– Spectral methods (consistent HMMs).

http://www.cs.ubc.ca/labs/lci/mlrg


Data Science Job Board
• Many local companies are looking for people with CPSC 540 skills.
• If you are looking for local jobs, go here and make a profile.

– http://makedatasense.ca/jobs

• Thank you for your patience, I’m still learning to teach!

http://makedatasense.ca/jobs
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