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Last Time: Bayesian Statistics

For most of the course, we considered MAP estimation:

ŵ = argmax
w

p(w|X, y) (train)

ŷi = argmax
ŷ

p(ŷ|x̂i, ŵ) (test).

But w was random: I have no justification to only base decision on ŵ.
Ignores other reasonable values of w that could make opposite decision.

Last time we introduced Bayesian approach:
Treat w as a random variable, and define probability over what we want given data:

ŷi = argmax
ŷ

p(ŷ|x̂i, X, y)

= argmax
ŷ

∫
w
p(ŷ|x̂i, w)p(w|X, y)dw.

Directly follows from rules of probability, and no separate training/testing.



Empirical Bayes Conjugate Priors Hierarchical Bayes

7 Ingredients of Bayesian Inference
1 Likelihood p(y|X,w).
2 Prior p(w|λ).
3 Posterior p(w|X, y, λ).
4 Predictive p(ŷ|x̂, w).

5 Posterior predictive p(ŷ|x̂, X, y, λ).
Probability of new data given old, integrating over parameters.
This tells us which prediction is most likely given data and prior.

6 Marginal likelihood p(y|X,λ) (also called evidence).
Probability of seeing data given hyper-parameters.
We’ll use this later for setting hyper-parameters.

7 Cost C(ŷ|ỹ).
The penalty you pay for predicting ŷ when it was really was ỹ.
Leads to Bayesian decision theory: predict to minimize expected cost.
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Decision Theory

Consider a scenario where different predictions have different costs:

Predict / True True “spam” True “not spam”

Predict “spam” 0 100
Predict “not spam” 10 0

Suppose we have found “good” parameters w.

Instead of predicting most likely ŷ, we should minimize expected cost:

E[Cost(ŷ = “spam”)] = p(“spam”|x̂, w)C(“spam”|“spam”)

+ p(“not spam”|x̂, w)C(“spam”|“not spam”).

Consider a case where p(“spam”|x̂, w) > p(“not spam”|x̂, w).

We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

Bayesian decision theory:

If we estimate w from data, we should use posterior predictive,

E[Cost(ŷ = “spam”)] = p(“spam”|x̂, X, y)C(“spam”|“spam”)

+ p(“not spam”|x̂, X, y)C(“spam”|“not spam”).

Minimizing this expected cost is the optimal action.

Note that there is a lot going on here:

Expected cost depends on cost and posterior predictive.
Posterior predictive depends on predictive and posterior
Posterior depends on likelihood and prior.
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Bayesian Linear Regression

On Day 2, we argued that L2-regularized linear regression,

argmin
w

1

2σ2
‖Xw − y‖2 +

λ

2
‖w‖2,

corresponds to MAP estimation in the model

yi ∼ N (wTxi, σ2I), wj ∼ N (0, λ−1).

By some tedious Gaussian identities, the posterior has the form

w|X, y ∼ N
(

1

σ2
A−1XT y,A−1

)
, with A =

1

σ2
XTX + λI.

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose λ and choose basis.
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Learning the Prior from Data?

Can we use the data to set the hyper-parameters?

In theory: No!

It would not be a “prior”.
It’s no longer the right thing to do.

In practice: Yes!

Approach 1: use a validation set or cross-validation as before.
Approach 2: optimize the marginal likelihood,

p(y|X,λ) =

∫
w

p(y|X,w)p(w|λ)dw.

Also called type II maximum likelihood or evidence maximization or empirical Bayes.
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Type II Maximum Likelihood for Basis Parameter

Consider polynomial basis, and treat degree M as a hyper-parameter:

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Marginal likelihood (evidence) is highest for M = 2.
“Bayesian Occam’s Razor”: prefers simpler models that fit data well.
p(y|X,λ) is small for M = 7, since 7-degree polynomials can fit many datasets.
Model selection criteria like BIC are approximations to marginal likelihood as n→∞.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Type II Maximum Likelihood for Regularization Parameter

Maximum likelihood maximizes probability of data given parameters,

ŵ = argmax
w

p(y|X,w).

If we have a complicated model, this often overfits.

Type II maximum likelihood maximizes probability of data given hyper-parameters,

λ̂ = argmax
λ

p(y|X,λ), where p(y|X,λ) =

∫
w
p(y|X,w)p(w|λ)dw,

and the integral has closed-form solution because posterior is Gaussian.

We are using the data to optimize the prior.

Even if we have a complicated model, much less likely to overfit:

Complicated models need to integrate over many more alternative hypotheses.
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Learning Principles

Maximum likelihood:

ŵ = argmax
w

p(y|X,w) ŷi = argmax
ŷ

p(ŷ|x̂i, ŵ).

MAP:

ŵ = argmax
w

p(w|X, y, λ) ŷi = argmax
ŷ

p(ŷ|x̂i, ŵ).

Optimizing λ in this setting does not work: sets λ = 0.

Bayesian:

ŷi = argmax
ŷ

∫
w
p(ŷ|x̂i, w)p(w|X, y, λ)dw.

Type II maximum likelihood:

λ̂ = argmax
λ

p(y|, X, λ) ŷi = argmax
ŷ

∫
w
p(ŷ|x̂i, w)p(w|X, y, λ̂)dw.
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Type II Maximum Likelihood for Individual Regularization Parameter

Consider having a hyper-parameter λj for each wj ,

yi ∼ N (wTxi, σ2I), wj ∼ N (0, λ−1j ).

Too expensive for cross-validation, but type II MLE works.

You can do gradient descent to optimize the λj using log-marginal likelihood.

Weird fact: yields sparse solutions (automatic relevance determination).

Can send λj →∞, concentrating posterior for wj at 0.
This is L2-regularization, but empirical Bayes naturally encourages sparsity.

Non-convex and theory not well understood:

Tends to yield much sparser solutions than L1-regularization.
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Type II Maximum Likelihood for Other Hyper-Parameters

Consider also having a hyper-parameter σi for each i,

yi ∼ N (wTxi, σ2i ), wj ∼ N (0, λ−1j ).

You can also use type II MLE to optimize these values.

The “automatic relevance determination” selects training examples.

This is like support vectors.

Type II MLE can also be used to learn kernel parameters like RBF variance.

Bonus slides: Bayesian feature selection gives probability that xj is relevant.
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Bayes Factors for Bayesian Hypothesis Testing

Suppose we want to compare hypotheses:

E.g., L2-regularizer of λ1 and L2-regularizer of λ2.

Bayes factor is ratio of marginal likelihoods,

p(y|X,λ1)
p(y|X,λ2)

.

If very large then data is much more consistent with λ1.

A more direct method of hypothesis testing:

No need for null hypothesis, “power” of test, p-values, and so on.
But can only tell you which model is more likely, not whether any is correct.
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Last year from American Statistical Assocation:
“Statement on Statistical Significance and P-Values”:

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

Bayes factors don’t solve problems with p-values.

But they give an alternative view, and make prior assumptions clear.

Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,

x ∼ Ber(θ).

Last time we considered that either θ = 1 or θ = 0.5.

Today: θ is a continuous variable coming from a beta distribution,

θ ∼ B(α, β).

The parameters α and β of the prior are called hyper-parameters.

Similar to λ in regression, these are parameters of the prior.
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Beta-Bernoulli Prior
Why the beta as a prior distribution?

“It’s a flexible distribution that includes uniform as special case”.

“It makes the integrals easy”.

https://en.wikipedia.org/wiki/Beta_distribution

Uniform distribution if α = 1 and β = 1.

“Laplace smoothing” corresponds to MAP with α = 2 and β = 2.

https://en.wikipedia.org/wiki/Beta_distribution
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Beta-Bernoulli Posterior

The PDF for the beta distribution has similar form to Bernoulli,

p(θ|α, β) ∝ θα−1(1− θ)β−1.

Observing HTH under Bernoulli likelihood and beta prior then posterior is

p(θ|HTH,α, β) ∝ p(HTH|θ, α, β)p(θ|α, β)

∝
(
θ2(1− θ)1θα−1(1− θ)β−1

)
= θ(2+α)−1(1− θ)(1+β)−1.

So posterior is a beta distribution,

θ|HTH,α, β ∼ B(2 + α, 1 + β).

When the prior and posterior come from same family, it’s called a conjugate prior.
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Conjugate Priors

Conjugate priors make Bayesian inference easier:

1 Posterior involves updating parameters of prior.

For Bernoulli-beta, if we observe h heads and t tails then posterior is B(α+ h, β + t).
Hyper-parameters α and β are “pseudo-counts” in our mind before we flip.

2 We can update posterior sequentially as data comes in.

For Bernoulli-beta, just update counts h and t.
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Conjugate Priors

Conjugate priors make Bayesian inference easier:

3 Marginal likelihood has closed-form as ratio of normalizing constants.

The beta distribution is written in terms of the beta function B,

p(θ|α, β) = 1

B(α, β)
θα−1(1− θ)β−1, where B(α, β) =

∫
θ

θα−1(1− θ)β−1dθ.

and using the form of the posterior we have

p(HTH|α, β) =
∫
θ

1

B(α, β)
θ(h+α)−1(1− θ)(t+β)−1dθ =

B(h+ α, t+ β)

B(α, β)
.

Empirical Bayes (type II MLE) would optimize this in terms of α and β.

4 In many cases posterior predictive also has a nice form...
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Bernoulli-Beta Posterior Predictive
If we observe ‘HHH’ then our different estimates are:

Maximum likelihood:

θ̂ =
nH
n

=
3

3
= 1.

MAP with uniform Beta(1,1) prior,

θ̂ =
(3 + α)− 1

(3 + α) + β − 2
=

3

3
= 1.

Posterior predictive with uniform Beta(1,1) prior,

p(H|HHH) =

∫ 1

0
p(H|θ)p(θ|HHH)dθ

=

∫ 1

0
Ber(H|θ)Beta(θ|3 + α, β)dθ

=

∫ 1

0
θBeta(θ|3 + α, β)dθ = E[θ]

=
4

5
. (using mean of beta formula)
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Effect of Prior and Improper Priors

We obtain different predictions under different priors:

B(3, 3) prior is like seeing 3 heads and 3 tails (stronger uniform prior),

For HHH, posterior predictive is 0.667.

B(100, 1) prior is like seeing 100 heads and 1 tail (biased),

For HHH, posterior predictive is 0.990.

B(.01, .01) biases towards having unfair coin (head or tail),

For HHH, posterior predictive is 0.997.
Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

We might hope to use an uninformative prior to not bias results.

But this is often hard/ambiguous/impossible to do (bonus slide).
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Back to Conjugate Priors

Basic idea of conjugate priors:

x ∼ D(θ), θ ∼ P (λ) ⇒ θ | x ∼ P (λ′).

Beta-bernoulli example:

x ∼ Ber(θ), θ ∼ B(α, β), ⇒ θ | x ∼ B(α′, β′),

Gaussian-Gaussian example:

x ∼ N (µ,Σ), µ ∼ N (µ0,Σ0), ⇒ µ | x ∼ N (µ′,Σ′),

and posterior predictive is also a Gaussian.

If Σ is also a random variable:
Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.

For the conjugate priors of many standard distributions, see:
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Back to Conjugate Priors

Conjugate priors make things easy because we have closed-form posterior.

Two other notable types of conjugate priors:
Discrete priors are “conjugate” to all likelihoods:

Posterior will be discrete, although it still might be NP-hard to use.

Mixtures of conjugate priors are also conjugate priors.

Do conjugate priors always exist?

No, only exist for exponential family likelihoods.

Bayesian inference is ugly when you leave exponential family (e.g., student t).

Need Monte Carlo methods or variational inference.
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Exponential Family

Exponential family distributions can be written in the form

p(x|w) ∝ h(x) exp(wTF (x)).

We often have h(x) = 1, and F (x) is called the sufficient statistics.

F (x) tells us everything that is relevant about data x.

If F (x) = x, we say that the w are the cannonical parameters.

Exponential family distributions can be derived from maximum entropy principle.

Distribution that is “most random” that agrees with the sufficient statistics F (x).
Argument is based on convex conjugate of − log p.
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Bernoulli Distribution as Exponential Family

We often define linear models by setting wTxi equal to cannonical parameters.

If we start with the Gaussian (fixed variance), we obtain least squares.

For Bernoulli, the cannonical parameterization is in terms of “log-odds”,

p(x|θ) = θx(1− θ)1−x = exp(log(θx(1− θ)1−x))

= exp(x log θ + (1− x) log(1− θ))

∝ exp

(
x log

(
θ

1− θ

))
.

Setting wTxi = log(yi/(1− yi)) and solving for yi yields logistic regression.
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Conjugate Graphical Models

DAG computations simplify if parents are conjugate to children.

Examples:

Gaussian graphical models.
Discrete graphical models.
Hybrid Gaussian/discrete, where discrete nodes can’t have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.



Empirical Bayes Conjugate Priors Hierarchical Bayes

Outline

1 Empirical Bayes

2 Conjugate Priors

3 Hierarchical Bayes



Empirical Bayes Conjugate Priors Hierarchical Bayes

Hierarchical Bayesian Models

Type II maximum likelihood is not really Bayesian:

We’re dealing with w using the rules of probability.
But we’re using a “point estimate” of λ.

Hierarchical Bayesian models introduce a hyper-prior p(λ|γ).

This is a “very Bayesian” model.

Now use Bayesian inference for dealing with λ:

Work with posterior over λ, p(λ|X, y, γ), or posterior over w and λ.
You could also consider a Bayes factor for comparing λ values:

p(λ1|X, y, γ)/p(λ2|X, y, γ).
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Bayesian Model Selection and Averaging

Bayesian model selection (“type II MAP”): maximize hyper-parameter posterior,

λ̂ = argmax
λ

p(λ|X, y, γ)

= argmax
λ

p(y|X,λ)p(λ|γ),

which further takes us away from overfitting (thus allowing more complex models).

We could do the same thing to choose order of polynomial basis, σ in RBFs, etc.

Bayesian model averaging considers posterior over hyper-parameters,

ŷi = argmax
ŷ

∫
λ

∫
w
p(ŷ|x̂i, w)p(w, λ|X, y, γ)dw.

We could also maximize marginal likelihood of γ, (“type III ML”),

γ̂ = argmax
γ

p(y|X, γ) = argmax
γ

∫
λ

∫
w
p(y|X,w)p(w|λ)p(λ|γ)dwdλ.
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Discussion of Hierarchical Bayes

“Super Bayesian” approach:

Go up the hierarchy until model includes all assumptions about the world.
Some people try to do this, and have argued that this may be how humans reason.

Key advantage:
Mathematically simple to know what to do as you go up the hierarchy:

Same math for w, z, λ, γ, and so on.

Key disadvantages:

It can be hard to exactly encode your prior beliefs.
The integrals get ugly very quickly.
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Do we really need hyper-priors?

In Bayesian statistics we work with posterior over parameters,

p(θ|x, α, β) =
p(x|θ)p(θ|α, β)

p(x|α, β)
.

We discussed empirical Bayes, where you optimize prior using marginal likelihood,

argmax
α,β

p(x|α, β) = argmax
α,β

∫
θ
p(x|θ)p(θ|α, β)dθ.

Can be used to optimize λj , polynomial degree, RBF σi, polynomial vs. RBF, etc.

We also considered hierarchical Bayes, where you put a prior on the prior,

p(α, β|x, γ) =
p(x|α, β)p(α, β|γ)

p(x|γ)
.

But is the hyper-prior really needed?
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Hierarchical Bayes as Graphical Model

Let xi be a binary variable, representing if treatment works on patient i,

xi ∼ Ber(θ).

As before, let’s assume that θ comes from a beta distribution,

θ ∼ B(α, β).

We can visualize this as a graphical model:
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Hierarchical Bayes for Non-IID Data

Now let xi represent if treatment works on patient i in hospital j.

Let’s assume that treatment depends on hospital,

xij ∼ Ber(θj).

The xij are IID given the hospital.

But we may have more data for some hospitals than others:

Can we use data from one hospital to learn about others?
Can we say anything about a hospital with no data?
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Hierarchical Bayes for Non-IID Data

Common approach: assume θj drawn from common prior,

θj ∼ B(α, β).

This ties the parameters from the different hospitals together:

But, if you fix α and β then you can’t learn across hospitals:

The θj and d-separated given α and β.
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Hierarchical Bayes for Non-IID Data

Consider treating α and β as random variables and using a hyperprior:

Now there is a dependency between the different θj .

You combine the non-IID data across different hospitals.

Data-rich hospitals inform posterior for data-poor hospitals.

You even consider the posterior for new hospitals.
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Summary

Marginal likelihood is probability seeing data given hyper-parameters.

Empirical Bayes optimizes this to set hyper-parameters:

Allows tuning a large number of hyper-parameters.
Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Conjugate priors are priors that lead to posteriors in the same family.

They make Bayesian inference much easier.

Exponential family distributions are the only distributions with conjugate priors.

Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.

Leads to Bayesian model selection and Bayesian model averaging.

Next time: modeling cancer mutation signatures.
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Bonus Slide: Bayesian Feature Selection

Classic feature selection methods don’t work whe d >> n:

AIC, BIC, Mallow’s, adjusted-R2, and L1-regularization return very different results.

Here maybe all we can hope for is posterior probability of wj = 0.

Consider all models, and weight by posterior the ones where wj = 0.

If we fix λ and use L1-regularization, posterior is not sparse.

Probability that a variable is exactly 0 is zero.
L1-regularization only lead to sparse MAP, not sparse posterior.
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Bonus Slide: Bayesian Feature Selection

Type II MLE gives sparsity because posterior variance goes to zero.

But this doesn’t give probabiliy of being 0.

We can encourage sparsity in Bayesian models using a spike and slab prior:

Mixture of Dirac delta function at 0 and another prior with non-zero variance.
Places non-zero posterior weight at exactly 0.
Posterior is still non-sparse, but answers the question “what is the probability that
variable is non-zero”?
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Bonus Slide: Uninformative Priors and Jeffreys Prior

We might want to use an uninformative prior to not bias results.

But this is often hard/impossible to do.

We might think the uniform distribution, B(1, 1), is uninformative.

But posterior will be biased towards 0.5 compared to MLE.

We might think to use “pseudo-count” of 0, B(0, 0), are uninformative.

But posterior isn’t a probability until we see at one head and one tail.

Some argue that the “correct” uninformative prior is B(0.5, 0.5).

This prior is invariant to the parameterization, which is called a Jeffreys prior.
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