CPSC 540: Machine Learning Empirical Bayes, Hierarchical Bayes

Mark Schmidt

University of British Columbia

Winter 2017

Admin

• Assignment 5:

- Due April 10.
- Project description on Piazza.
- Final details coming soon.
- Bonus lecture on April 10th (same time and place)?

Last Time: Bayesian Statistics

• For most of the course, we considered MAP estimation:

$$\begin{split} \hat{w} &= \operatorname*{argmax}_{w} p(w|X,y) \qquad \qquad (\text{train}) \\ \hat{y}^{i} &= \operatorname*{argmax}_{\hat{y}} p(\hat{y}|\hat{x}^{i},\hat{w}) \qquad \qquad (\text{test}). \end{split}$$

- But w was random: I have no justification to only base decision on \hat{w} .
 - ${\ensuremath{\,\circ\,}}$ Ignores other reasonable values of w that could make opposite decision.
- Last time we introduced Bayesian approach:
 - Treat w as a random variable, and define probability over what we want given data:

$$\begin{split} \hat{y}^i &= \operatorname*{argmax}_{\hat{y}} p(\hat{y} | \hat{x}^i, X, y) \\ &= \operatorname*{argmax}_{\hat{y}} \int_w p(\hat{y} | \hat{x}^i, w) p(w | X, y) dw \end{split}$$

• Directly follows from rules of probability, and no separate training/testing.

7 Ingredients of Bayesian Inference

- **1** Likelihood p(y|X, w).
- **2** Prior $p(w|\lambda)$.
- **3** Posterior $p(w|X, y, \lambda)$.
- Predictive $p(\hat{y}|\hat{x}, w)$.
- **9** Posterior predictive $p(\hat{y}|\hat{x}, X, y, \lambda)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.
- Marginal likelihood $p(y|X, \lambda)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.
 - We'll use this later for setting hyper-parameters.
- $\ \ \, {\rm Cost} \ C(\hat{y}|\tilde{y}).$
 - The penalty you pay for predicting \hat{y} when it was really was $\tilde{y}.$
 - Leads to Bayesian decision theory: predict to minimize expected cost.

Decision Theory

• Consider a scenario where different predictions have different costs:

Predict / True	True "spam"	True "not spam"
Predict "spam"	0	100
Predict "not spam"	10	0

- Suppose we have found "good" parameters w.
- Instead of predicting most likely \hat{y} , we should minimize expected cost:

$$\begin{split} \mathbb{E}[\mathsf{Cost}(\hat{y} = \text{``spam''})] &= p(\text{``spam''}|\hat{x}, w)C(\text{``spam''}|\text{``spam''}) \\ &+ p(\text{``not spam''}|\hat{x}, w)C(\text{``spam''}|\text{``not spam''}). \end{split}$$

- Consider a case where $p(\text{``spam''}|\hat{x}, w) > p(\text{``not spam''}|\hat{x}, w)$.
 - We might still predict "not spam" if expected cost is lower.

Bayesian Decision Theory

- Bayesian decision theory:
 - If we estimate w from data, we should use posterior predictive,

$$\begin{split} \mathbb{E}[\mathsf{Cost}(\hat{y} = \texttt{`spam''})] &= p(\texttt{``spam''}|\hat{x}, X, y)C(\texttt{``spam''}|\texttt{``spam''}) \\ &+ p(\texttt{``not spam''}|\hat{x}, X, y)C(\texttt{``spam''}|\texttt{``not spam''}). \end{split}$$

- Minimizing this expected cost is the optimal action.
- Note that there is a lot going on here:
 - Expected cost depends on cost and posterior predictive.
 - Posterior predictive depends on predictive and posterior
 - Posterior depends on likelihood and prior.

Hierarchical Bayes

Outline

1 Empirical Bayes

2 Conjugate Priors

3 Hierarchical Bayes

Bayesian Linear Regression

• On Day 2, we argued that L2-regularized linear regression,

$$\underset{w}{\operatorname{argmin}} \frac{1}{2\sigma^2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2,$$

corresponds to MAP estimation in the model

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda^{-1}).$$

• By some tedious Gaussian identities, the posterior has the form

$$w|X, y \sim \mathcal{N}\left(\frac{1}{\sigma^2}A^{-1}X^Ty, A^{-1}
ight), \quad \text{with } A = \frac{1}{\sigma^2}X^TX + \lambda I.$$

- Notice that mean of posterior is the MAP estimate (not true in general).
- $\bullet\,$ Bayesian perspective gives us variability in w and optimal predictions given prior.
- But it also gives different ways to choose λ and choose basis.

Learning the Prior from Data?

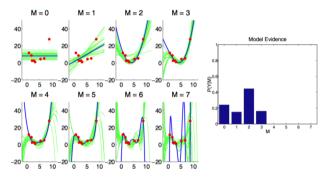
- Can we use the data to set the hyper-parameters?
- In theory: No!
 - It would not be a "prior".
 - It's no longer the right thing to do.
- In practice: Yes!
 - Approach 1: use a validation set or cross-validation as before.
 - Approach 2: optimize the marginal likelihood,

$$p(y|X,\lambda) = \int_w p(y|X,w) p(w|\lambda) dw.$$

• Also called type II maximum likelihood or evidence maximization or empirical Bayes.

Type II Maximum Likelihood for Basis Parameter

 \bullet Consider polynomial basis, and treat degree M as a hyper-parameter:



http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

- Marginal likelihood (evidence) is highest for M = 2.
 - "Bayesian Occam's Razor": prefers simpler models that fit data well.
 - $p(y|X,\lambda)$ is small for M = 7, since 7-degree polynomials can fit many datasets.
 - Model selection criteria like BIC are approximations to marginal likelihood as $n \to \infty$.

Type II Maximum Likelihood for Regularization Parameter

• Maximum likelihood maximizes probability of data given parameters,

$$\hat{w} = \operatorname*{argmax}_{w} p(y|X,w).$$

- If we have a complicated model, this often overfits.
- Type II maximum likelihood maximizes probability of data given hyper-parameters,

$$\hat{\lambda} = \operatorname*{argmax}_{\lambda} p(y|X,\lambda), \quad \text{where} \quad p(y|X,\lambda) = \int_w p(y|X,w) p(w|\lambda) dw,$$

and the integral has closed-form solution because posterior is Gaussian.

- We are using the data to optimize the prior.
- Even if we have a complicated model, much less likely to overfit:
 - Complicated models need to integrate over many more alternative hypotheses.

Learning Principles

• Maximum likelihood:

$$\hat{w} = \mathop{\mathrm{argmax}}_{w} p(y|X,w) \qquad \qquad \hat{y}^i = \mathop{\mathrm{argmax}}_{\hat{y}} p(\hat{y}|\hat{x}^i,\hat{w}).$$

• MAP:

$$\hat{w} = \mathop{\mathrm{argmax}}_{w} p(w|X,y,\lambda) \qquad \qquad \hat{y}^i = \mathop{\mathrm{argmax}}_{\hat{y}} p(\hat{y}|\hat{x}^i,\hat{w}).$$

• Optimizing λ in this setting does not work: sets $\lambda=0.$

• Bayesian:

$$\hat{y}^i = \operatorname*{argmax}_{\hat{y}} \int_w p(\hat{y} | \hat{x}^i, w) p(w | X, y, \lambda) dw.$$

• Type II maximum likelihood:

$$\hat{\lambda} = \operatorname*{argmax}_{\lambda} p(y|, X, \lambda) \qquad \quad \hat{y}^i = \operatorname*{argmax}_{\hat{y}} \int_w p(\hat{y}|\hat{x}^i, w) p(w|X, y, \hat{\lambda}) dw.$$

Type II Maximum Likelihood for Individual Regularization Parameter

• Consider having a hyper-parameter λ_j for each w_j ,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

- Too expensive for cross-validation, but type II MLE works.
 - You can do gradient descent to optimize the λ_j using log-marginal likelihood.
- Weird fact: yields sparse solutions (automatic relevance determination).
 - Can send $\lambda_j \to \infty$, concentrating posterior for w_j at 0.
 - This is L2-regularization, but empirical Bayes naturally encourages sparsity.
- Non-convex and theory not well understood:
 - Tends to yield much sparser solutions than L1-regularization.

Type II Maximum Likelihood for Other Hyper-Parameters

• Consider also having a hyper-parameter σ_i for each i,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma_i^2), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

- You can also use type II MLE to optimize these values.
- The "automatic relevance determination" selects training examples.
 - This is like support vectors.
- Type II MLE can also be used to learn kernel parameters like RBF variance.
- Bonus slides: Bayesian feature selection gives probability that x_j is relevant.

Bayes Factors for Bayesian Hypothesis Testing

- Suppose we want to compare hypotheses:
 - E.g., L2-regularizer of λ_1 and L2-regularizer of λ_2 .
- Bayes factor is ratio of marginal likelihoods,

$$\frac{p(y|X,\lambda_1)}{p(y|X,\lambda_2)}.$$

• If very large then data is much more consistent with λ_1 .

- A more direct method of hypothesis testing:
 - No need for null hypothesis, "power" of test, p-values, and so on.
 - But can only tell you which model is more likely, not whether any is correct.

- Last year from American Statistical Assocation:
 - "Statement on Statistical Significance and P-Values":
 - http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
- Bayes factors don't solve problems with p-values.
 - But they give an alternative view, and make prior assumptions clear.
- Some notes on various issues associated with Bayes factors: http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

Outline

2 Conjugate Priors

Beta-Bernoulli Model

• Consider again a coin-flipping example with a Bernoulli variable,

 $x \sim \mathsf{Ber}(\theta).$

- Last time we considered that either $\theta = 1$ or $\theta = 0.5$.
- Today: θ is a continuous variable coming from a beta distribution,

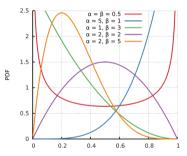
$$\theta \sim \mathcal{B}(\alpha, \beta).$$

- The parameters α and β of the prior are called hyper-parameters.
 - Similar to λ in regression, these are parameters of the prior.

Beta-Bernoulli Prior

Why the beta as a prior distribution?

- "It's a flexible distribution that includes uniform as special case".
- "It makes the integrals easy".



https://en.wikipedia.org/wiki/Beta_distribution

- Uniform distribution if $\alpha = 1$ and $\beta = 1$.
- "Laplace smoothing" corresponds to MAP with $\alpha=2$ and $\beta=2.$

Conjugate Priors

Beta-Bernoulli Posterior

• The PDF for the beta distribution has similar form to Bernoulli,

$$p(\theta|\alpha,\beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}.$$

• Observing HTH under Bernoulli likelihood and beta prior then posterior is

$$p(\theta|HTH, \alpha, \beta) \propto p(HTH|\theta, \alpha, \beta)p(\theta|\alpha, \beta)$$
$$\propto \left(\theta^2 (1-\theta)^1 \theta^{\alpha-1} (1-\theta)^{\beta-1}\right)$$
$$= \theta^{(2+\alpha)-1} (1-\theta)^{(1+\beta)-1}.$$

• So posterior is a beta distribution,

$$\theta | HTH, \alpha, \beta \sim \mathcal{B}(2 + \alpha, 1 + \beta).$$

• When the prior and posterior come from same family, it's called a conjugate prior.

Conjugate Priors

- Conjugate priors make Bayesian inference easier:
 - Osterior involves updating parameters of prior.
 - For Bernoulli-beta, if we observe h heads and t tails then posterior is $\mathcal{B}(\alpha + h, \beta + t)$.
 - Hyper-parameters α and β are "pseudo-counts" in our mind before we flip.
 - 2 We can update posterior sequentially as data comes in.
 - For Bernoulli-beta, just update counts h and t.

Conjugate Priors

- Conjugate priors make Bayesian inference easier:
 - **O** Marginal likelihood has closed-form as ratio of normalizing constants.
 - The beta distribution is written in terms of the beta function B,

$$p(\theta|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, \quad \text{where} \quad B(\alpha,\beta) = -\int_{\theta} \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta.$$

and using the form of the posterior we have

$$p(HTH|\alpha,\beta) = \int_{\theta} \frac{1}{B(\alpha,\beta)} \theta^{(h+\alpha)-1} (1-\theta)^{(t+\beta)-1} d\theta = \frac{B(h+\alpha,t+\beta)}{B(\alpha,\beta)}.$$

• Empirical Bayes (type II MLE) would optimize this in terms of α and β .

In many cases posterior predictive also has a nice form...

Bernoulli-Beta Posterior Predictive

If we observe 'HHH' then our different estimates are:

• Maximum likelihood:

$$\hat{\theta} = \frac{n_H}{n} = \frac{3}{3} = 1.$$

• MAP with uniform Beta(1,1) prior,

$$\hat{\theta} = \frac{(3+\alpha)-1}{(3+\alpha)+\beta-2} = \frac{3}{3} = 1.$$

• Posterior predictive with uniform Beta(1,1) prior,

$$p(H|HHH) = \int_0^1 p(H|\theta)p(\theta|HHH)d\theta$$
$$= \int_0^1 \text{Ber}(H|\theta)\text{Beta}(\theta|3+\alpha,\beta)d\theta$$
$$= \int_0^1 \theta \text{Beta}(\theta|3+\alpha,\beta)d\theta = \mathbb{E}[\theta]$$
$$= \frac{4}{5}.$$

(using mean of beta formula)

Effect of Prior and Improper Priors

- We obtain different predictions under different priors:
 - B(3,3) prior is like seeing 3 heads and 3 tails (stronger uniform prior),
 For HHH, posterior predictive is 0.667.
 - B(100,1) prior is like seeing 100 heads and 1 tail (biased),
 For HHH, posterior predictive is 0.990.
 - $\mathcal{B}(.01,.01)$ biases towards having unfair coin (head or tail),
 - For HHH, posterior predictive is 0.997.
 - Called "improper" prior (does not integrate to 1), but posterior can be "proper".
- We might hope to use an uninformative prior to not bias results.
 - But this is often hard/ambiguous/impossible to do (bonus slide).

Back to Conjugate Priors

• Basic idea of conjugate priors:

$$x \sim D(\theta), \quad \theta \sim P(\lambda) \quad \Rightarrow \quad \theta \mid x \sim P(\lambda').$$

• Beta-bernoulli example:

$$x \sim \mathsf{Ber}(\theta), \quad \theta \sim \mathcal{B}(\alpha, \beta), \quad \Rightarrow \quad \theta \mid x \sim \mathcal{B}(\alpha', \beta'),$$

• Gaussian-Gaussian example:

$$x \sim \mathcal{N}(\mu, \Sigma), \quad \mu \sim \mathcal{N}(\mu_0, \Sigma_0), \quad \Rightarrow \quad \mu \mid x \sim \mathcal{N}(\mu', \Sigma'),$$

and posterior predictive is also a Gaussian.

- If Σ is also a random variable:
 - Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.
- For the conjugate priors of many standard distributions, see: https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

Back to Conjugate Priors

- Conjugate priors make things easy because we have closed-form posterior.
- Two other notable types of conjugate priors:
 - Discrete priors are "conjugate" to all likelihoods:
 - Posterior will be discrete, although it still might be NP-hard to use.
 - Mixtures of conjugate priors are also conjugate priors.
- Do conjugate priors always exist?
 - No, only exist for exponential family likelihoods.
- Bayesian inference is ugly when you leave exponential family (e.g., student t).
 Need Monte Carlo methods or variational inference

Exponential Family

• Exponential family distributions can be written in the form

 $p(x|w) \propto h(x) \exp(w^T F(x)).$

• We often have h(x) = 1, and F(x) is called the sufficient statistics.

• F(x) tells us everything that is relevant about data x.

- If F(x) = x, we say that the w are the cannonical parameters.
- Exponential family distributions can be derived from maximum entropy principle.
 - Distribution that is "most random" that agrees with the sufficient statistics F(x).
 - Argument is based on convex conjugate of $-\log p$.

Bernoulli Distribution as Exponential Family

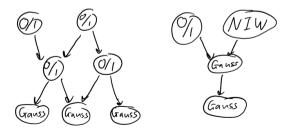
- We often define linear models by setting $w^T x^i$ equal to cannonical parameters.
- If we start with the Gaussian (fixed variance), we obtain least squares.
- For Bernoulli, the cannonical parameterization is in terms of "log-odds",

$$p(x|\theta) = \theta^x (1-\theta)^{1-x} = \exp(\log(\theta^x (1-\theta)^{1-x}))$$
$$= \exp(x\log\theta + (1-x)\log(1-\theta))$$
$$\propto \exp\left(x\log\left(\frac{\theta}{1-\theta}\right)\right).$$

• Setting $w^T x^i = \log(y^i/(1-y^i))$ and solving for y^i yields logistic regression.

Conjugate Graphical Models

- DAG computations simplify if parents are conjugate to children.
- Examples:
 - Gaussian graphical models.
 - Discrete graphical models.
 - Hybrid Gaussian/discrete, where discrete nodes can't have Gaussian parents.
 - Gaussian graphical model with normal-inverse-Wishart parents.



Hierarchical Bayes

Outline

1 Empirical Bayes

2 Conjugate Priors

Hierarchical Bayesian Models

- Type II maximum likelihood is not really Bayesian:
 - ${\ensuremath{\, \bullet }}$ We're dealing with w using the rules of probability.
 - But we're using a "point estimate" of λ .
- Hierarchical Bayesian models introduce a hyper-prior p(λ|γ).
 This is a "very Bayesian" model.
- Now use Bayesian inference for dealing with λ :
 - Work with posterior over λ , $p(\lambda|X, y, \gamma)$, or posterior over w and λ .
 - You could also consider a Bayes factor for comparing λ values:

 $p(\lambda_1|X, y, \gamma)/p(\lambda_2|X, y, \gamma).$

Bayesian Model Selection and Averaging

• Bayesian model selection ("type II MAP"): maximize hyper-parameter posterior,

$$\begin{split} \hat{\lambda} &= \operatorname*{argmax}_{\lambda} p(\lambda|X,y,\gamma) \\ &= \operatorname*{argmax}_{\lambda} p(y|X,\lambda) p(\lambda|\gamma), \end{split}$$

which further takes us away from overfitting (thus allowing more complex models).

- \bullet We could do the same thing to choose order of polynomial basis, σ in RBFs, etc.
- Bayesian model averaging considers posterior over hyper-parameters,

$$\hat{y}^i = \operatorname*{argmax}_{\hat{y}} \int_{\lambda} \int_{w} p(\hat{y} | \hat{x}^i, w) p(w, \lambda | X, y, \gamma) dw.$$

• We could also maximize marginal likelihood of γ , ("type III ML"),

$$\hat{\gamma} = \operatorname*{argmax}_{\gamma} p(y|X,\gamma) = \operatorname*{argmax}_{\gamma} \int_{\lambda} \int_{w} p(y|X,w) p(w|\lambda) p(\lambda|\gamma) dw d\lambda.$$

Discussion of Hierarchical Bayes

- "Super Bayesian" approach:
 - Go up the hierarchy until model includes all assumptions about the world.
 - Some people try to do this, and have argued that this may be how humans reason.
- Key advantage:
 - Mathematically simple to know what to do as you go up the hierarchy:
 - Same math for w, z, λ , γ , and so on.
- Key disadvantages:
 - It can be hard to exactly encode your prior beliefs.
 - The integrals get ugly very quickly.

Do we really need hyper-priors?

• In Bayesian statistics we work with posterior over parameters,

$$p(\theta|x, \alpha, \beta) = \frac{p(x|\theta)p(\theta|\alpha, \beta)}{p(x|\alpha, \beta)}$$

• We discussed empirical Bayes, where you optimize prior using marginal likelihood,

$$\operatorname*{argmax}_{\alpha,\beta} p(x|\alpha,\beta) = \operatorname*{argmax}_{\alpha,\beta} \int_{\theta} p(x|\theta) p(\theta|\alpha,\beta) d\theta.$$

• Can be used to optimize λ_j , polynomial degree, RBF σ_i , polynomial vs. RBF, etc. • We also considered hierarchical Bayes, where you put a prior on the prior,

$$p(\alpha,\beta|x,\gamma) = \frac{p(x|\alpha,\beta)p(\alpha,\beta|\gamma)}{p(x|\gamma)}.$$

• But is the hyper-prior really needed?

Hierarchical Bayes as Graphical Model

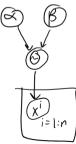
• Let x^i be a binary variable, representing if treatment works on patient i,

 $x^i \sim \mathsf{Ber}(\theta).$

• As before, let's assume that θ comes from a beta distribution,

 $\theta \sim \mathcal{B}(\alpha, \beta).$

• We can visualize this as a graphical model:

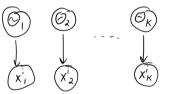


Hierarchical Bayes for Non-IID Data

- Now let x^i represent if treatment works on patient i in hospital j.
- Let's assume that treatment depends on hospital,

$$x_j^i \sim \mathsf{Ber}(\theta_j).$$

• The x_j^i are IID given the hospital.



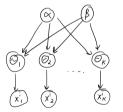
- But we may have more data for some hospitals than others:
 - Can we use data from one hospital to learn about others?
 - Can we say anything about a hospital with no data?

Hierarchical Bayes for Non-IID Data

• Common approach: assume θ_j drawn from common prior,

 $\theta_j \sim \mathcal{B}(\alpha, \beta).$

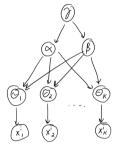
• This ties the parameters from the different hospitals together:



- But, if you fix α and β then you can't learn across hospitals:
 - The θ_j and d-separated given α and β .

Hierarchical Bayes for Non-IID Data

 \bullet Consider treating α and β as random variables and using a hyperprior:



- Now there is a dependency between the different θ_j .
- You combine the non-IID data across different hospitals.
- Data-rich hospitals inform posterior for data-poor hospitals.
- You even consider the posterior for new hospitals.

Summary

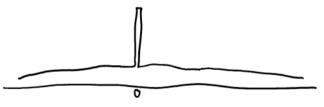
- Marginal likelihood is probability seeing data given hyper-parameters.
- Empirical Bayes optimizes this to set hyper-parameters:
 - Allows tuning a large number of hyper-parameters.
 - Bayesian Occam's razor: naturally encourages sparsity and simplicity.
- Conjugate priors are priors that lead to posteriors in the same family.
 - They make Bayesian inference much easier.
- Exponential family distributions are the only distributions with conjugate priors.
- Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.
 - Leads to Bayesian model selection and Bayesian model averaging.
- Next time: modeling cancer mutation signatures.

Bonus Slide: Bayesian Feature Selection

- Classic feature selection methods don't work whe d >> n:
 - AIC, BIC, Mallow's, adjusted-R², and L1-regularization return very different results.
- Here maybe all we can hope for is posterior probability of $w_j = 0$.
 - Consider all models, and weight by posterior the ones where $w_j = 0$.
- If we fix λ and use L1-regularization, posterior is not sparse.
 - Probability that a variable is exactly 0 is zero.
 - L1-regularization only lead to sparse MAP, not sparse posterior.

Bonus Slide: Bayesian Feature Selection

- Type II MLE gives sparsity because posterior variance goes to zero.
 - But this doesn't give probabiliy of being 0.
- We can encourage sparsity in Bayesian models using a spike and slab prior:



- Mixture of Dirac delta function at 0 and another prior with non-zero variance.
- Places non-zero posterior weight at exactly 0.
- Posterior is still non-sparse, but answers the question "what is the probability that variable is non-zero"?

Bonus Slide: Uninformative Priors and Jeffreys Prior

• We might want to use an uninformative prior to not bias results.

- But this is often hard/impossible to do.
- \bullet We might think the uniform distribution, $\mathcal{B}(1,1),$ is uninformative.
 - $\bullet\,$ But posterior will be biased towards 0.5 compared to MLE.
- We might think to use "pseudo-count" of 0, B(0,0), are uninformative.
 But posterior isn't a probability until we see at one head and one tail.
- Some argue that the "correct" uninformative prior is $\mathcal{B}(0.5,0.5).$
 - This prior is invariant to the parameterization, which is called a Jeffreys prior.