Empirical Bayes

Conjugate Priors

CPSC 540: Machine Learning

Empirical Bayes, Hierarchical Bayes

Mark Schmidt

University of British Columbia

Winter 2017

Hierarchical Bayes



Empirical Bayes Conjugate Priors Hierarchical Bayes

Admin

Assignment 5:
e Due April 10.

Project description on Piazza.

Final details coming soon.

@ Bonus lecture on April 10th (same time and place)?
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Last Time: Bayesian Statistics

@ For most of the course, we considered MAP estimation:
w = argmax p(w| X, y) (train)
w
§" = argmax p(g|@’, o) (test).
¥

@ But w was random: | have no justification to only base decision on w.
e Ignores other reasonable values of w that could make opposite decision.
@ Last time we introduced Bayesian approach:
e Treat w as a random variable, and define probability over what we want given data:

g = argmaxp(jla’, X, y)
g

= argmaX/ p(9|2", w)p(w| X, y)dw.
g w

Directly follows from rules of probability, and no separate training/testing.
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7 Ingredients of Bayesian Inference
Likelihood p(y| X, w).
Prior p(w]|\).
Posterior p(w| X, y, A).
Predictive p(y|z, w).

© 0000

Posterior predictive p(g|z, X, y, A).
e Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.

@ Marginal likelihood p(y|X,\) (also called evidence).
o Probability of seeing data given hyper-parameters.
o We'll use this later for setting hyper-parameters.

@ Cost C(9]y).
e The penalty you pay for predicting y when it was really was 3.
e Leads to Bayesian decision theory: predict to minimize expected cost.



Decision Theory

Consider a scenario where different predictions have different costs:
Predict / True True “spam”  True “not spam”
Predict “spam” 0 100
Predict “not spam” 10 0

Suppose we have found “good” parameters w.

Instead of predicting most likely ¢, we should minimize expected cost:

E[Cost(y = “spam”)] = p(“spam” |z, w)C(“spam” | "spam”)

+ p(“not spam” |z, w)C(“spam” | “not spam”).

Consider a case where p(“spam” |z, w) > p(“not spam” |z, w).
o We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

@ Bayesian decision theory:
o If we estimate w from data, we should use posterior predictive,

E[Cost(§ = “"spam”)] = p(“spam” |z, X, y)C(“spam” | “spam”)
+ p(“not spam” |z, X, y)C(“spam” | “not spam”).

e Minimizing this expected cost is the optimal action.

@ Note that there is a lot going on here:
o Expected cost depends on cost and posterior predictive.
o Posterior predictive depends on predictive and posterior
e Posterior depends on likelihood and prior.
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Bayesian Linear Regression

On Day 2, we argued that L2-regularized linear regression,
.1 9 A 9
argmin gz IXw —yl” + Sl

corresponds to MAP estimation in the model

y' ~ N(wlz',o®T), wj~N(O0,X71).

By some tedious Gaussian identities, the posterior has the form

1 1
w| X,y ~N <2A_1XTy,A_1) ,  with A = —2XTX + Al
o o

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose A and choose basis.
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Learning the Prior from Data?

@ Can we use the data to set the hyper-parameters?
@ In theory: No!

e It would not be a “prior"”.
e It's no longer the right thing to do.

@ In practice: Yes!

e Approach 1: use a validation set or cross-validation as before.

e Approach 2: optimize the marginal likelihood,

p(yIX,A):/p(y|X,w)p(w\A)dw.

w

Hierarchical Bayes

e Also called type Il maximum likelihood or evidence maximization or empirical Bayes.
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Type Il Maximum Likelihood for Basis Parameter

e Consider polynomial basis, and treat degree M as a hyper-parameter:

M=0
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http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

e Marginal likelihood (evidence) is highest for M = 2.
e "Bayesian Occam’s Razor”: prefers simpler models that fit data well.
o p(y|X,\) is small for M =7, since 7-degree polynomials can fit many datasets.
e Model selection criteria like BIC are approximations to marginal likelihood as n — oco.
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http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Type Il Maximum Likelihood for Regularization Parameter

@ Maximum likelihood maximizes probability of data given parameters,

w = argmax p(y|X, w).
w

If we have a complicated model, this often overfits.

Type Il maximum likelihood maximizes probability of data given hyper-parameters,

A = argmaxp(y|X, ), where p(le,A)Z/p(le,w)p(wlA)dw,
A

w

and the integral has closed-form solution because posterior is Gaussian.

We are using the data to optimize the prior.
@ Even if we have a complicated model, much less likely to overfit:
o Complicated models need to integrate over many more alternative hypotheses.
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Learning Principles

@ Maximum likelihood:
w = argmax p(y|X, w) g' = argmax p(g|@, o).
w (]
o MAP:
w = argmax p(w| X, y, \) §' = argmaxp(g|at, ).
w 9
@ Optimizing A in this setting does not work: sets A = 0.
o Bayesian:

j' = arg(naX/ p(912", w)p(w] X, y, A)dw.
g w

Type Il maximum likelihood:

~

A = argmaxp(y|, X, \) g = argmaX/ p(§]2", w)p(w| X, y, \)dw.
A Y w
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Type Il Maximum Likelihood for Individual Regularization Parameter

@ Consider having a hyper-parameter \; for each wj,
. T B
y' ~ N(whz', o*I), wj ~ N(0, A .
@ Too expensive for cross-validation, but type Il MLE works.

e You can do gradient descent to optimize the \; using log-marginal likelihood.

e Weird fact: yields sparse solutions (automatic relevance determination).

e Can send \; — 0o, concentrating posterior for w; at 0.
e This is L2-regularization, but empirical Bayes naturally encourages sparsity.

@ Non-convex and theory not well understood:
e Tends to yield much sparser solutions than L1-regularization.
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Type Il Maximum Likelihood for Other Hyper-Parameters

o Consider also having a hyper-parameter o; for each 1,
j T, i 2 -1
Y~ N(w'a',o7), w; ~N(0,A;7).
@ You can also use type |l MLE to optimize these values.
@ The “automatic relevance determination” selects training examples.
e This is like support vectors.
@ Type Il MLE can also be used to learn kernel parameters like RBF variance.
@ Bonus slides: Bayesian feature selection gives probability that z; is relevant.
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Bayes Factors for Bayesian Hypothesis Testing

@ Suppose we want to compare hypotheses:
e E.g., L2-regularizer of \; and L2-regularizer of X,.

@ Bayes factor is ratio of marginal likelihoods,

p(y|X7 )\1)
p(y|Xa >‘2)

o If very large then data is much more consistent with A;.

@ A more direct method of hypothesis testing:

e No need for null hypothesis, “power” of test, p-values, and so on.
e But can only tell you which model is more likely, not whether any is correct.
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@ Last year from American Statistical Assocation:
e “Statement on Statistical Significance and P-Values":
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

@ Bayes factors don't solve problems with p-values.
o But they give an alternative view, and make prior assumptions clear.

@ Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,
x ~ Ber(0).

@ Last time we considered that either § =1 or 6 = 0.5.

Today: 6 is a continuous variable coming from a beta distribution,
0 ~ B(a, ).

@ The parameters « and (3 of the prior are called hyper-parameters.
e Similar to A in regression, these are parameters of the prior.
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Beta-Bernoulli Prior
Why the beta as a prior distribution?
@ “It's a flexible distribution that includes uniform as special case”.

@ "It makes the integrals easy”.
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https://en.wikipedia.org/wiki/Beta_distribution

@ Uniform distribution if « =1 and g = 1.
@ “Laplace smoothing” corresponds to MAP with a = 2 and § = 2.


https://en.wikipedia.org/wiki/Beta_distribution
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Beta-Bernoulli Posterior

@ The PDF for the beta distribution has similar form to Bernoulli,
p(Bla, ) oc 0271 (1 = 0)7
@ Observing HTH under Bernoulli likelihood and beta prior then posterior is
p(0|HTH, o, B) x p(HTHI0, o, B)p(0|ev, )

x (02(1 —g)lge(1 - 9)5—1)

— 9(2+o¢)—1(1 _ 9)(1+ﬂ)—1‘
@ So posterior is a beta distribution,

O|[HTH,o, 8 ~ B2+ a,1+ ).

@ When the prior and posterior come from same family, it’s called a conjugate prior.
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Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

@ Posterior involves updating parameters of prior.

e For Bernoulli-beta, if we observe h heads and ¢ tails then posterior is B(a + h, 8 + t).
@ Hyper-parameters o and 3 are “pseudo-counts” in our mind before we flip.

@ We can update posterior sequentially as data comes in.
o For Bernoulli-beta, just update counts h and ¢.
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Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

© Marginal likelihood has closed-form as ratio of normalizing constants.
@ The beta distribution is written in terms of the beta function B,

p(6a, B) = ﬁea*u —0)°7', where B(a,B) = /ea (1 —0)"""de.
and using the form of the posterior we have
1 _ _ B(h+a,t+B)
HTH|a,B) = | =———0"FT) (1 —g)t+AH-1gg = 22T T
witiied) = [ g, =0 B(a. 8)

o Empirical Bayes (type Il MLE) would optimize this in terms of « and S.

© In many cases posterior predictive also has a nice form...
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Bernoulli-Beta Posterior Predictive
If we observe ‘HHH' then our different estimates are:
@ Maximum likelihood:

~ nH
f="H -2 _q
n 3

e MAP with uniform Beta(1,1) prior,
B+a)—1 3
=-=1
B+a)+5—-2 3

@ Posterior predictive with uniform Beta(1,1) prior,

0 =

1
p(H|HHH) = /0 p(H|0)p(6]H H H)do

1
=/ Ber(H|0)Beta(6]3 + o, 3)d8

1
0Beta(0]3 + «, 8)d0 = E[0]

Il
o S— S

(using mean of beta formula)
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Effect of Prior and Improper Priors
@ We obtain different predictions under different priors:

o (3, 3) prior is like seeing 3 heads and 3 tails (stronger uniform prior),
e For HHH, posterior predictive is 0.667.

e (100, 1) prior is like seeing 100 heads and 1 tail (biased),
e For HHH, posterior predictive is 0.990.

e B(.01,.01) biases towards having unfair coin (head or tail),

o For HHH, posterior predictive is 0.997.
o Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

@ We might hope to use an uninformative prior to not bias results.
e But this is often hard/ambiguous/impossible to do (bonus slide).
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Back to Conjugate Priors
Basic idea of conjugate priors:
r~ D), 0~P) = 0|x~PN).
Beta-bernoulli example:
r ~Ber(), 6~ B(a,8), = 0|x~B(,p3),
Gaussian-Gaussian example:
r~ N %), p~Npo,Zo), = pla~N@, ),

and posterior predictive is also a Gaussian.
If 3 is also a random variable:

e Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.
For the conjugate priors of many standard distributions, see:

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions


https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Back to Conjugate Priors

Conjugate priors make things easy because we have closed-form posterior.

Two other notable types of conjugate priors:
e Discrete priors are “conjugate” to all likelihoods:
@ Posterior will be discrete, although it still might be NP-hard to use.
e Mixtures of conjugate priors are also conjugate priors.

Do conjugate priors always exist?
e No, only exist for exponential family likelihoods.

Bayesian inference is ugly when you leave exponential family (e.g., student t).
o Need Monte Carlo methods or variational inference.
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Exponential Family

@ Exponential family distributions can be written in the form
p(z|w) o< h(z) exp(w’ F(z)).

e We often have h(x) =1, and F(x) is called the sufficient statistics.
o F(x) tells us everything that is relevant about data z.

o If F'(x) = x, we say that the w are the cannonical parameters.

@ Exponential family distributions can be derived from maximum entropy principle.

o Distribution that is “most random” that agrees with the sufficient statistics F'(z).
e Argument is based on convex conjugate of — log p.
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Bernoulli Distribution as Exponential Family

@ We often define linear models by setting w” z? equal to cannonical parameters.
@ If we start with the Gaussian (fixed variance), we obtain least squares.

@ For Bernoulli, the cannonical parameterization is in terms of “log-odds”,

plal) = 6°(1 — 0)1 = exp(log(67(1 — 0)'*))
= exp(zlogb + (1 —z)log(l —0))

e (st (1))

o Setting w’z’ = log(y’/(1 —y")) and solving for 4 yields logistic regression.
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Conjugate Graphical Models
@ DAG computations simplify if parents are conjugate to children.

@ Examples:

Gaussian graphical models.

Discrete graphical models.

Hybrid Gaussian/discrete, where discrete nodes can't have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.

\@/x@@

Sl @
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Hierarchical Bayesian Models

@ Type Il maximum likelihood is not really Bayesian:

o We're dealing with w using the rules of probability.
o But we're using a “point estimate” of A.

@ Hierarchical Bayesian models introduce a hyper-prior p(A|7).
e Thisis a “very Bayesian” model.

@ Now use Bayesian inference for dealing with A:

o Work with posterior over A, p(A|X,y,~), or posterior over w and A.
@ You could also consider a Bayes factor for comparing A values:

p(MIX,y,7)/p(Na] X, 9, 7).
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Bayesian Model Selection and Averaging

@ Bayesian model selection (“type Il MAP"): maximize hyper-parameter posterior,

~

A = argmax p(A| X, y,7)
A
= arg;naxp(y\X, Np(Ay),

which further takes us away from overfitting (thus allowing more complex models).
@ We could do the same thing to choose order of polynomial basis, o in RBFs, etc.
@ Bayesian model averaging considers posterior over hyper-parameters,

7' =argma><//p(@!ﬁ?’}w)p(w,k\X, Y 7)dw.
Y AJw
@ We could also maximize marginal likelihood of ~, (“type Il ML"),

4 = argmaxp(y|X,v) = argmaX/A/ p(y| X, w)p(w|A)p(Aly)dwdA.
v 8l w
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Discussion of Hierarchical Bayes

@ “Super Bayesian" approach:

e Go up the hierarchy until model includes all assumptions about the world.
e Some people try to do this, and have argued that this may be how humans reason.

@ Key advantage:
e Mathematically simple to know what to do as you go up the hierarchy:
e Same math for w, z, A, 7, and so on.

o Key disadvantages:

e It can be hard to exactly encode your prior beliefs.
o The integrals get ugly very quickly.
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Do we really need hyper-priors?

@ In Bayesian statistics we work with posterior over parameters,

_ plelf)p(lo. 0
PO B = el )

@ We discussed empirical Bayes, where you optimize prior using marginal likelihood,

argmaxp(zx|a, f) = argmax/p(x@)p(@]a,ﬁ)d@.
0

a,f a,p

o Can be used to optimize );, polynomial degree, RBF o;, polynomial vs. RBF, etc.
@ We also considered hierarchical Bayes, where you put a prior on the prior,

p(zla, B)p(a, B]7)
p(z]y)

pla, Blz,y) =

e But is the hyper-prior really needed?
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Hierarchical Bayes as Graphical Model

o Let 2° be a binary variable, representing if treatment works on patient ¢,
z' ~ Ber(6).

@ As before, let's assume that § comes from a beta distribution,
0 ~ B(a, B).

@ We can visualize this as a graphical model:

R 7

©
(x)
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Hierarchical Bayes for Non-IID Data

Now let 2% represent if treatment works on patient 4 in hospital j.

@ Let's assume that treatment depends on hospital,
x ~ Ber(0;).

@ The x; are IID given the hospital.

@ @f @E
Xi

@ But we may have more data for some hospitals than others:

e Can we use data from one hospital to learn about others?
e Can we say anything about a hospital with no data?
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Hierarchical Bayes for Non-IID Data

@ Common approach: assume 6; drawn from common prior,
Qj ~ B(a, B)

@ This ties the parameters from the different hospitals together:

GNP

S
by &

@ But, if you fix a and  then you can't learn across hospitals:
o The 0; and d-separated given a and 3.
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Hierarchical Bayes for Non-lID Data

o Consider treating a and 8 as random variables and using a hyperprior:

\

Lo b

@ Now there is a dependency between the different 6;.
@ You combine the non-11D data across different hospitals.
@ Data-rich hospitals inform posterior for data-poor hospitals.

@ You even consider the posterior for new hospitals.
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Summary

Marginal likelihood is probability seeing data given hyper-parameters.
Empirical Bayes optimizes this to set hyper-parameters:

o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Conjugate priors are priors that lead to posteriors in the same family.

e They make Bayesian inference much easier.
Exponential family distributions are the only distributions with conjugate priors.
Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.

o Leads to Bayesian model selection and Bayesian model averaging.

Next time: modeling cancer mutation signatures.
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Bonus Slide: Bayesian Feature Selection

@ Classic feature selection methods don't work whe d >> n:
o AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

@ If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
o L1-regularization only lead to sparse MAP, not sparse posterior.
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Bonus Slide: Bayesian Feature Selection

o Type Il MLE gives sparsity because posterior variance goes to zero.
e But this doesn't give probabiliy of being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

— T T

V)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.

o Posterior is still non-sparse, but answers the question “what is the probability that
variable is non-zero"?
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Bonus Slide: Uninformative Priors and Jeffreys Prior

o We might want to use an uninformative prior to not bias results.
o But this is often hard/impossible to do.

e We might think the uniform distribution, B(1,1), is uninformative.
e But posterior will be biased towards 0.5 compared to MLE.

e We might think to use “pseudo-count” of 0, B(0,0), are uninformative.
o But posterior isn't a probability until we see at one head and one tail.

@ Some argue that the “correct” uninformative prior is 5(0.5,0.5).
e This prior is invariant to the parameterization, which is called a Jeffreys prior.



	Empirical Bayes
	Conjugate Priors
	Hierarchical Bayes

